
Computer Architecture 2012/2013
Assignment 3b

Date: November 27th, 2012
Deadline: December 9th 2012, 23:59

Contents
1 Overview 1

2 Instructions 2

3 Prerequisites 2
3.1 Using MGSim 3.3 as installed on LIACS 2
3.2 Using MGSim 3.2 from a previous assignment 2
3.3 Using MGSim 3.3 on your own computer 3

4 Getting acquainted with the programs 3
4.1 “Burst” and “Reuse” . 3
4.2 “Matmul” and “Matmul2” . 3
4.3 Compiling the programs . 3

5 Getting acquainted with the platform configurations 4
5.1 Memory topology . 4
5.2 Cache layouts . 4

6 Behavior analysis across platforms 4
6.1 Expected vs. observed . 4
6.2 Locality matters . 5
6.3 Matrix-matrix multiply . 5

1 Overview
Reminder: The purpose of assignment series 3 is to evaluate the cache behavior of
programs using MGSim, using MIPS code as made possible by assignment series 2.

The goal of assignment 3b is to compare the memory performance of various pro-
grams with different architectural parameters.

1

2 Instructions
∙ For this assignment, you can work in groups of 2.

∙ Read this entire document before you start.

∙ Your must submit a compressed tarball1, named after your last name and student
ID, containing:

– the files that you have produced during the assigment.

– a file report.rst containing your write ups to open questions using
reStructured Text. This must also contain your full name and student ID.
Ensure that report.rst is valid by using rst2html.

– any related diagram or program output.

∙ Your submission must be sent by e-mail before the deadline, at the e-mail address
given by the assistants. Do not send your submission to the mailing list!

3 Prerequisites
For this assignment, MGSim version 3.3 is recommended.

3.1 Using MGSim 3.3 as installed on LIACS
MGSim 3.3 for MIPSel has been preinstalled in /home/rcposs/opt/bin.

To set up the environment, use the following commands with bash:

export PATH=/home/rcposs/opt/bin:$PATH
export MANPATH=/home/rcposs/opt/share/man:$MANPATH
export LD_LIBRARY_PATH=/home/rcposs/opt/lib:$LD_LIBRARY_PATH
export MGSIM=/home/rcposs/opt/bin/mgsim-mipsel

or, with tcsh:

set path=(/home/rcposs/opt/bin $path)
setenv LD_LIBRARY_PATH /home/rcposs/opt/lib:$LD_LIBRARY_PATH
setenv MANPATH /home/rcposs/opt/share/man:$MANPATH
setenv MGSIM /home/rcposs/opt/bin/mgsim-mipsel

3.2 Using MGSim 3.2 from a previous assignment
(Not directly recommended, unless you would really enjoy using your own MIPS im-
plementation.)

MGSim 3.2 contains a bug: if a program requests termination of the simulator, for
example when control reaches the end of main, the simulator will not print statistics.
You can fix this as follows:

1. modify compile.sh to use minicrt-mips32.s instead of minicrt-mips33.s

1A compressed tarball is created with tar -czf xxxx.tgz

2

http://docutils.sourceforge.net/rst.html

2. in the ISA simulation code, change the implementation of the BREAK
instruction to:

GetKernel()->Stop();

(instead of ExecDebug... as previously advertised)

Moreover, you cannot use the script runall.sh and the provided .ini files with
MGSim 3.2. Instead:

3. copy minisim32.ini as many times as you need different hardware
configurations;

4. modify each copy as desired;

5. make your own script runall32.sh using a single execution loop and
COMMAND set to debug mem; run; stats; quit (note the extra
stats to ensure statistics are printed).

3.3 Using MGSim 3.3 on your own computer
To install your own copy of MGSim 3.3, follow the steps of

http://staff.science.uva.nl/~poss/ca2012/INSTALL.html

using --target=mipsel when configuring MGSim.

4 Getting acquainted with the programs

4.1 “Burst” and “Reuse”
1. Look at the source code of burst.c and reuse.c.

2. How many dynamic memory loads do they define? Express this number
as a function of the value of N in your report.

3. Without running these programs, looking at their code alone, what differ-
ence do you expect to observe in their behavior? Explain in one paragraph
in your report.

4.2 “Matmul” and “Matmul2”
Same 3 questions as above.

4.3 Compiling the programs
1. Look at the source code of the script compile.sh and explain what it

does (in your report).

2. Run the script to compile the programs.

3

http://staff.science.uva.nl/~poss/ca2012/INSTALL.html

5 Getting acquainted with the platform configurations
MGSim 3.3 introduces the ability to specify multiple configuration files on the com-
mand line, so they are automatically combined to define a platform.

5.1 Memory topology
1. Use the following commands:

mipsel-mgsim -c minisim33.ini \
-I mem_directddr.ini -I l1_4k_1assoc.ini \
-T test.dot -n reuse-10

dot -Tpng -o test.png test.dot

then open the resulting file test.png. Explain what you see.

2. Try the different mem_*.ini configuration files. You can also view them
in a text editor. Explain in your report the differences between them, using
the generated diagrams and the information contained in the manual page
mgsimdoc(7). (Use man mgsimdoc to view this manual page.)

5.2 Cache layouts
1. Using the existing l1_*.ini and l2_*.ini files as examples, create

configurations for a 16KiB L1 D-cache and a 32KiB L2 cache. Copy them
in your submission directory.

2. Copy the text of the script runall.sh in your report, and annotate each
line to explain what it does.

6 Behavior analysis across platforms

6.1 Expected vs. observed
1. Run the following command:

./runall.sh reuse-1000

This command generates trace files in the output subdirectory automat-
ically.

2. Using your analysis tools from assignment 3a, compute the latency distri-
bution and statistics of reuse-1000. Place a copy in your submission.

3. You have estimated above the expected number of dynamic memory loads.
Does your measurement at step #2 confirm or infirm your prediction? How
do you explain the divergence, if any? Use your results from #2 to illus-
trate your argument.

4. Based on your prediction of dynamic load count, what difference of exe-
cution time do you expect between reuse-10 and reuse-1000?

4

5. Compare experimentally the performance of reuse-10 against reuse-1000,
by analyzing reuse-10 as per steps #1 and #2.

∙ Do your observations confirm/infirm your prediction for the memory
type “serial”? How do you explain this?

∙ Do your observations confirm/infirm your prediction for the memory
type “directddr”? How do you explain this?

Each time, you can illustrate using the metrics extracted by your tools from
assignment 3a.

6.2 Locality matters
1. Using the steps above, compare experimentally the performance of burst-10

against burst-1000. Provide the statistics from your tools from assign-
ment 3a to illustrate. Does your observation match your expectation?

2. Based on your understanding so far, rephrase (or repeat) your expectation
as to the difference of behavior between burst-1000 and reuse-1000.

3. Compare experimentally the performance of burst-1000 against reuse-1000.
Provide the statistics from your tools from assignment 3a to illustrate.
Does your observation match your expectation? Why?

6.3 Matrix-matrix multiply
1. Using the techniques discovered so far, extract the execution times of the

two matmul programs across multiple platforms.

2. Between the L1 overall cache size, L2 overall cache size, L1 or L2 asso-
ciativity, what are the parameters that have the most impact on the perfor-
mance? Why?

5

	Contents
	1 Overview
	2 Instructions
	3 Prerequisites
	3.1 Using MGSim 3.3 as installed on LIACS
	3.2 Using MGSim 3.2 from a previous assignment
	3.3 Using MGSim 3.3 on your own computer

	4 Getting acquainted with the programs
	4.1 ``Burst'' and ``Reuse''
	4.2 ``Matmul'' and ``Matmul2''
	4.3 Compiling the programs

	5 Getting acquainted with the platform configurations
	5.1 Memory topology
	5.2 Cache layouts

	6 Behavior analysis across platforms
	6.1 Expected vs. observed
	6.2 Locality matters
	6.3 Matrix-matrix multiply

