
Computer Architecture 2012/2013
Assignment 2a

Date: September 25th, 2012
Deadline: October 1st 2012, 23:59

Contents
1 Overview 1

2 Instructions 2

3 Prerequisites 2

4 Set up your development environment 3
4.1 Set up your shell environment . 3
4.2 Set up your copy of the MGSim source code 3

5 Using micro-programs for testing 5
5.1 Testing “add” on the Alpha platform 5
5.2 Testing “add” on your MIPS platform 6

6 Implementing one MIPS instruction 6
6.1 Making changes to the MIPS ISA implementation 6
6.2 Testing the MIPS code . 7
6.3 Producing a patch file . 7
6.4 Describing the architecture . 7

7 Implementing another MIPS instruction 8

8 Summary of submission contents 8

9 Grading 8

10 Next steps 9

1 Overview
The purpose of assignment series 2 is to implement the MIPS ISA in MGSim, so as
to be able to run real MIPS code compiled using GCC and the GNU Binary utilities
(assembler+linker). Assignment series 2 will be spread over multiple weeks, and split
into individual assignments 2a, 2b, etc.

1

The goal of assignment 2a is to:

∙ set up your development environment for the rest of the assignment;

∙ learn how to inspect the simulation environment during program execution;

∙ familiarize yourself with the MGSim core pipeline;

∙ implement your first MIPS instructions.

2 Instructions
∙ For this assignment, you can work in groups of 2.

∙ Read this entire document before you start.

∙ Your must submit a compressed tarball1, named after your last name and student
ID, containing:

– the files that you have produced during the assigment.

– a file report.rst containing your write ups to open questions using
reStructured Text. This must also contain your full name and student ID.
Ensure that report.rst is valid by using rst2html.

∙ Your submission must be sent by e-mail before the deadline, at the e-mail address
given by the assistants. Do not send your submission to the mailing list!

3 Prerequisites
You will need the following:

∙ the Alpha an MIPS cross-utilities and cross-compilers, and the MGSim simulator
compiled for Alpha, as per assignment 1.

∙ a copy of the following files, which should accompany this document:

File Description
alpha-cc Script to compile/assemble/link Alpha

code.
mipsel-cc Script to compile/assemble/link MIPS

code.
minisim.ini Configuration file for MGsim.
add-alpha.s Example micro-program.
add-mips.s Example micro-program.
arith.c Example micro-program.

1A compressed tarball is created with tar -czf xxxx.tgz

2

http://docutils.sourceforge.net/rst.html

Note
The files alpha-cc, mipsel-cc and minisim.ini are different from
assignment 1.

4 Set up your development environment

4.1 Set up your shell environment
1. Log in to the Unix shell in your work environment.

2. For the rest of the assignment(s) you will need two directories: an “instal-
lation” directory and a “source” directory, both in a private location, for
example somewhere in your home directory. We suggest:

∙ use $HOME/opt (or ~/opt) as “installation” directory;

∙ use $HOME/src (or ~/src) as “source” directory.

(you are free to select your own, but they must be different from each
other)

3. Set up the environment variables CASRC and CAINST to point to the full
path of your directories. Ensure the configuration persists by setting up
these environment variables in your shell’s configuration file. (Ask the
assistants for help on this if you’re unsure).

4. Insert $CAINST/bin in your PATH environment. Again, ensure the
modified PATH is preserved in your shell’s configuration file.

5. Insert $CAINST/share/man in your MANPATH environment. Again,
ensure the modified MANPATH is preserved in your shell’s configuration
file.

4.2 Set up your copy of the MGSim source code
1. Clone the MGSim repository in $CASRC/mgsim:

cd $CASRC
git clone https://github.com/knz/mgsim.git
cd mgsim

2. Ensure you are working on the “mips” branch:

git checkout mips

3. Run the following, to initialize your working copy:

./bootstrap

This generates the configure file. You only need to run bootstrap
the first time you obtain the MGSim source, ie when you use step #1 above.

3

Note
If you use your own computer, you will need to ensure that Autoconf, Au-
tomake, SDL (with development files) and Docutils are installed before run-
ning bootstrap.

∙ Ubuntu/Debian: apt-get install autoconf automake
libsdl1.2-dev python-docutils

∙ MacPorts: port install autoconf automake
py27-docutils libsdl (or libsdl-devel)

4. Create a build directory, separate from the source directory. For example:

cd $CASRC
mkdir mgsim-build

5. In the build directory, run the configure script:

$CASRC/mgsim/configure --target=mipsel --prefix=$CAINST \
CXXFLAGS="-ggdb3 -O1" \
--disable-abort-on-trace-failure \
--disable-verbose-trace-checks

This step generates the Makefile necessary to drive the build process.
This step is only necessary once per build directory.

Note
If you use your own computer, you will need to ensure you have libev (http://
software.schmorp.de/pkg/libev.html), argp (standard in GNU C Library, oth-
erwise argp-standalone http://www.lysator.liu.se/~nisse/misc/), GNU Make,
and Python 2.x (http://www.python.org/) installed, with development files. If
possible ensure that SDL is also installed: http://www.libsdl.org/ .

We customize the work of configure as follows:

∙ MGSim can support Alpha, SPARC and now MIPS cores. We use the
argument --target=mipsel to prepare the build for the MIPS
core model.

∙ --prefix selects where the compiled files are installed.

∙ CXXFLAGS"-ggdb3 -O1" indicates that the simulator itself must
be built so that it is easy to debug later.

∙ --disable-abort-on-trace-failure and --disable-verbose-trace-checks
disable an advanced checking mechanism in MGSim that is other-
wise not relevant for this course.

6. Build with:

make

4

http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libev.html
http://www.lysator.liu.se/~nisse/misc/
http://www.python.org/
http://www.libsdl.org/

This compiles the MGSim source code into your build directory and pro-
duces the mgsim executable and documentation.

7. Install with:

make install

This installs the MGSim executable file, reference configuration and doc-
umentation into $CAINST.

8. Check that your installation was successful:

mipsel-mgsim --version
man mipsel-mgsimdoc

5 Using micro-programs for testing
The execution of a regular C program starts with its function main, which is run as
if it was “called by the environment”. The C language is said to be “hosted”: there
is some operating software running on the computer around the C program, in charge
of loading the C program into memory, setting up its standard library, and calling the
main function.

This must be true even in a reduced environment like an architecture simulator.
Even without a C library or process management, the main function must be “called”
from somewhere, and will eventually “return” to that somewhere upon completion.

This is the role of the assembly source called minicrt in assignment 1: The
minicrt initializes a stack memory, then calls main. When main returns control to the
minicrt, it then terminates the simulation.

For assignment 2, we wish to start in a “simplified” environment where only very
few MIPS instructions are used. This means that we do not want to use the minicrt,
where there are at least 3-4 different kinds of instructions required before control is
transferred to main.

To achieve this, we will use micro-programs that do not require a minicrt, but also
do not use C’s idea of starting execution with main. Instead, our micro-programs
define a single function called _start: MGSim will start execution at this location in
memory directly.

5.1 Testing “add” on the Alpha platform
1. Look at the source code of add-alpha.s. Predict the value of the reg-

isters after each instruction has executed.

2. compile add-alpha.s to the executable add-alpha.bin, as per the
techniques from assignment 1. Notice that minicrt-alpha.s is not
needed here.

3. Use objdump to obtain the address of the entry point. Then run MGSim
for Alpha (from assignment 1) in interactive mode with the following
command-line parameters:

.../mtalpha-mgsim -c minisim.ini \
add-alpha.bin -i -R2 42 -R3 24 -R4 69 -R5 51 -R6 99

5

(You can use your own values for the various -R parameters)

Then set up a break point at the entry point, then start execution.

4. At the prompt, run the following command:

read cpu0.registers

This prints the contents of the register file. Check that the values conform
to the -R parameters you have specified above.

Note
You can only inspect the registers after the entry point is reached by a break-
point. If you attempt to inspect the registers at simulation cycle 0, they will
appear empty.

5. Run the following command:

trace pipe

This enables reporting the events in the pipeline.

6. Run the following command six times, one after another:

step

Explain what you see at each step in your own words (in the separate
report).

7. Run step further. How many times can you run it? Why?

8. Observe the contents of the register file at the end of the execution. Is it
compatible with your predictions at step #1? Why?

5.2 Testing “add” on your MIPS platform
1. Look at the file add-mips.s. Predict the register values after each in-

struction.

2. Perform steps #2-#8 from the previous question, substituting “mips” for
“alpha” where necessary. How many steps can you run?

6 Implementing one MIPS instruction

6.1 Making changes to the MIPS ISA implementation
1. Open the file $CASRC/mgsim/arch/proc/ISA.mips.cpp in your

favorite source code editor.

2. Add the following code in DecodeInstruction:

6

RegIndex Ra = (instr >> 21) & 0x1f;
RegIndex Rb = (instr >> 16) & 0x1f;
RegIndex Rc = (instr >> 11) & 0x1f;

COMMIT {
m_output.Ra = MAKE_REGADDR(RT_INTEGER, Ra);
m_output.Rb = MAKE_REGADDR(RT_INTEGER, Rb);
m_output.Rc = MAKE_REGADDR(RT_INTEGER, Rc);
}

Explain in your report what the values 11, 16, 21 and 0x1f mean and where
they come from.

3. Add the following code in ExecuteInstruction:

uint32_t Rav = m_input.Rav.m_integer.get(m_input.Rav.m_size);
uint32_t Rbv = m_input.Rbv.m_integer.get(m_input.Rbv.m_size);

COMMIT{
m_output.Rcv.m_state = RST_FULL;
m_output.Rcv.m_integer = Rav + Rbv;
}

4. Run make and make install again in your build directory.

Note
Any C++ code in DecodeInstruction or ExecuteInstruction that
modifies the output latch should be enclosed between COMMIT{ and }.

6.2 Testing the MIPS code
1. Test the add program as per Testing “add” on your MIPS platform above,

using the new simulator with your changes.

2. Compare the results with your expectations. In particular, explain how
many times you can “step” through the execution and how this differs
from the Alpha platform.

6.3 Producing a patch file
Run the command git diff origin/mips in your MGSim source tree. Save the
output to mips-add.patch.

6.4 Describing the architecture
In your report, list the latch buffers that you have used and their width in bits. Make a
simple diagram that illustrates which components are involved so far in your processor
model.

7

7 Implementing another MIPS instruction
1. Copy add-alpha.s and add-mips.s to sub-alpha.s and sub-mips.s.

Modify the latter two, to mix sub instructions with add, so that the re-
sulting program uses these two types of instructions.

2. Extend your implementation to support subu next to addu. For this,
use the buffer function already present in the decode-read latch (see
ISA.mips.h):

∙ in DecodeInstruction use m_output.function =

∙ in ExecuteInstruction use if (m_input.function ...)

3. Test your changes. Copy-paste in your report the part of the output from
MGSim that proves that your modification works.

4. Produce another patch for these changes to mips-sub.patch.

5. In your report, list the additional buffers that you have used and their width
in bits. Make a simple diagram that illustrates which components are in-
volved so far in your processor model.

8 Summary of submission contents
Your final submission archive should contain the following files:

report.rst
add-alpha.bin
add-mips.bin
sub-alpha.s
sub-mips.s
sub-alpha.bin
sub-mips.bin
mips-add.patch
mips-sub.patch

9 Grading
You will be evaluated as follows:

∙ whether you have investigated + explained the behavior of “add” on the Alpha
platform (10% of grade);

∙ whether you have investigated + explained the behavior of “add” on the MIPS
platform prior to changes (10% of grade);

∙ whether you have implemented “add” properly for MIPS, explained the decoding
constants, produced the appropriate patch file and described the latches properly
(30% of grade);

∙ whether you have implemented “add” and “sub” properly for MIPS side-by-side,
produced the appropriate illustration of behavior and patch file, and described the
latches and components properly (50% of grade).

8

10 Next steps
If you have remaining time available, you can move forward and start implementing
the additional ALU instructions that you have identified in assignment 1, question 7.
Use arith.c as a test program (you can modify it as needed). This will be graded
later in assignment 2b.

9

	Contents
	1 Overview
	2 Instructions
	3 Prerequisites
	4 Set up your development environment
	4.1 Set up your shell environment
	4.2 Set up your copy of the MGSim source code

	5 Using micro-programs for testing
	5.1 Testing ``add'' on the Alpha platform
	5.2 Testing ``add'' on your MIPS platform

	6 Implementing one MIPS instruction
	6.1 Making changes to the MIPS ISA implementation
	6.2 Testing the MIPS code
	6.3 Producing a patch file
	6.4 Describing the architecture

	7 Implementing another MIPS instruction
	8 Summary of submission contents
	9 Grading
	10 Next steps

