
Computer Architecture 2012/2013
Assignment 1

Date: September 4th, 2012
Deadline: September 24th 2012, 23:59

1 Instructions
∙ For this assignments, you must work individually. However, you are free to ask

questions on the mailing list.

∙ Your must be submit a compressed tarball1, named after your last name and
student ID, containing:

– your annotated and optimized assembly source files;

– one file report.rst containing your write ups to open questions using
reStructured Text. This must also contain your full name and student ID.

∙ Your submission must be sent by e-mail before the deadline, at the e-mail address
given by the assistants. Do not send your submission to the mailing list!

2 Prerequisites
You will need the following:

∙ the Alpha an MIPS cross-utilities and cross-compilers; this should be prepared
for you before the assignment starts.

∙ the MGSim simulator compiled for Alpha;

∙ a copy of the following files, which should accompany this document:

File Description
alpha-cc Script to compile/assemble/link Alpha code.
mipsel-cc Script to compile/assemble/link MIPS code.
minicrt-alpha.s Boot code for the Alpha environment.
minicrt-mips.s Boot codeq for the MIPS environment.
minisim.ini Configuration file for MGsim.
hello.c Example program.

... continued on next page
1A compressed tarball is created with tar -czf xxxx.tgz

1

http://docutils.sourceforge.net/rst.html

File Description
helloworld.c Example program.
fibo.c Example program.
comp.c Example program.
sumdemo.c Example program.
roman.c Ancillary file for fibo.c, comp.c and

sumdemo.c.
sum.c Ancillary file for sumdemo.c.

3 Getting acquainted with the environment
1. Open the program hello.c in a text editor. Analyze what it does. Picture

in your mind its expected output.

2. Compile the program down to assembly:

./alpha-cc -S hello.c -o hello.s

3. Assemble the code:

./alpha-cc -c hello.s -o hello.o

4. Assemble the minicrt:

./alpha-cc -c minicrt-alpha.s -o minicrt-alpha.o

5. Link both objects to form an executable file

./alpha-cc hello.o minicrt-alpha.o -o hello.bin

Note
You can simplify steps 2-5 as follows:

./alpha-cc hello.c minicrt-alpha.s -o hello.bin

6. Run this program:

mgsim -c minisim.ini hello.bin

Check that the program indeed prints the expected output.

7. Repeat steps #1-#6 using theother programs helloworld.c, fibo.c,
comp.c and sumdemo.c. Note that some files must be linked with oth-
ers (e.g. sumdemo with sum and roman).

2

4 Annotating code and understanding optimizations
1. Generate the unoptimized Alpha assembly code for comp.c:

./alpha-cc -O0 -S comp.c

2. Rename the assembly file to comp-0-alpha.s. Add code comments to
this file that explain how the code works. Explain how the different regis-
ters are used and describe the structure of the assembly program. Relate
this structure to the original C code. Your comments should explain the
workings of the program and not the (trivial) meaning of the instructions
themselves. (eg we know that lda $1,104($31) loads the value 104
into register $1, so don’t tell us)

3. Compile the same source file again using -O1 to comp-1-alpha.s.
Compare comp-1-alpha.s to comp-0-alpha.s. Add code com-
ments to this file that relate the code back to the C source. Explain in your
own words (separately) what the compiler did to optimize.

4. Compile again using -O2 to comp-2-alpha.s. Compare comp-2-alpha.s
to comp-1-alpha.s. Again, related the assembly to the original pro-
gram, then explain in your own words the optimizations.

5. Calculate by hand, for each assembly source:

a. the number of static instructions in the code.

b. the number of dynamic instructions executed at run-time.

c. the number of memory accesses performed during execution.

d. assume that the execution time is proportional to the dynamic
instruction count. Estimate the speedup at each optimization
stage.

Note: exclude the execution of print_roman in your analysis.

6. MGSim can report the number of instructions executed and the number
of load and store instructions performed at the end of the execution of a
program. Use MGSim to verify your estimations for #5b, #5c, #5d.

Tip
The instructions in print_roman will “pollute” the results reported by
MGSim. Determine a way to exclude this overhead from the verification.

Note
Place the annotated files comp-0-alpha.s, comp-1-alpha.s,
comp-2-alpha.s in your submission archive. Place your separate answers
to #3, #4 and #5 in your report.rst.

3

5 Manual optimization of assembly
1. Generate the unoptimized MIPS assembly code for comp.c:

./mipsel-cc -O0 -S comp.c

2. Again, rename the assembly file to comp-0-mips.s. Add code com-
ments to this file that explain how the code works. Explain how the differ-
ent registers are used and describe the structure of the assembly program.
Relate this structure to the original C code.

3. Create an approximate correspondance table between the MIPS and Alpha
instruction sets, for the instructions used in this program (ie. not for the
complete MIPS & Alpha ISA).

4. Copy comp-0-mips.s to comp-opt-mips.s. Optimize the code in
comp-opt-mips.s by hand and explain your optimizations. Do not
use the MIPS compiler’s optimization flags! However, you can inspire
yourself from the Alpha techniques you learned from the compiler opti-
mizations in the previous section. Ensure that your optimized assembly
code is recognized by the assembler, by compiling it to binary code.

Of course the output of the program should be identical; as well as the
contents of arrays A and B at the end of the execution.

Any idea that may contribute to a performance increase may be used (ev-
erything about the structure of the program may be changed), provided
that you explain in detail what you did. In other words: give thorough
comments on what you did!

5. Calculate by hand the static and dynamic instruction counts, and the num-
ber of memory accesses, for both the unoptimized version and after your
optimizations.

Note
Place the annotated file comp-0-mips.s and optimized code
comp-opt-mips.s in your submission archive. Place your separate
answers to #3 and #5 in your report.rst.

Tip
You cannot yet test (run) your optimized MIPS code in MGSim. However,
preserve your optimized assembly source! In the next assignments, you will
extend MGSim with the MIPS ISA; you will then use this week’s code to test
your future simulator.

6 Bonus exercise: relocations
1. Compile the file helloworld.s to both Alpha and MIPS assembly

source (hw-alpha.s and hw-mips.s) with optimizations enabled (-O2).

2. Compile the file helloworld.c also to final Alpha and MIPS executa-
bles (hw-alpha.bin and hw-mips.bin) with the same optimization
level.

4

3. Using the commands alpha-linux-gnu-objdump -d and mipsel-linux-gnu-objdump
-d, disassemble the resulting executables to hw-alpharev.s and hw-mipsrev.s.

4. Compare the reverse assembly code to the code generated at step #1. Ob-
serve in particular how the address of the string is loaded into a register;
note how the assembler has transformed the code to use an additional com-
putation based on a register called GP.

5. Do additional research (Internet, binutils documentation, etc...) using the
keyword “relocation”; then explain in your own words how this mecha-
nism works. You can use the assembly source from comp.c as additional
example to illustrate your explanation.

Note
Place your explanation in your report.rst.

7 Preparing for the next assignments
1. Compile to MIPS binary code for all the test programs provided.

2. Using the command mipsel-linux-gnu-objdump -d, inventarize
all the different MIPS instruction names that are effectively used by the
test programs.

Note
Place the files hello-mips.bin, helloworld-mips.bin,
fibo-mips.bin, comp-mips.bin and sumdemo-mips.bin in
your submission archive. Place your inventary for #2 in your report.rst.

Tip
This list of instructions defines the minimum set of ISA instructions your fu-
ture assignments will need to emulate. In other words, as soon as your own
MIPS simulator supports these instructions, you will be able to run these pro-
grams.

8 Summary of submission contents
Your final submission archive should contain the following files:

report.rst
comp-0-alpha.s
comp-1-alpha.s
comp-2-alpha.s
comp-0-mips.s
comp-opt-mips.s
hello-mips.bin
helloworld-mips.bin
fibo-mips.bin
comp-mips.bin
sumdemo-mips.bin

5

	1 Instructions
	2 Prerequisites
	3 Getting acquainted with the environment
	4 Annotating code and understanding optimizations
	5 Manual optimization of assembly
	6 Bonus exercise: relocations
	7 Preparing for the next assignments
	8 Summary of submission contents

