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Counting Objects

Wiebe van der Hoek! | Maarten de Rijke?
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1 Introduction

Terminological languages provide a means for expressing knowledge about hierarchies of sets of objects
with common properties. A very important thing is to be able to count the number of objects sharing a
property. This talk unifies several approaches to formalizing such counting abilities. Taking the family of
terminological AL-languages from [3] as our starting point, we establish connections with a modal system
from [4, 5] in which one can reason about arbitrary finite quantities, wad with quantifier formalisms from
[1, 8, 9]. This cross-fertilization is quite profitable in that it yields complexity results for both modal and
generalized quantifier systems; it also yields complete axiomatizations of subsumption in members of the

family of AL-languages.

2 The basic systems
We introduce our main formalisms. In recent years modal logicians have considered a number of enriched
modal systems that bear on issues of knowledge representation. For example, Schild [6] relates standard
modal logic to the ALC-language of [7], and propositional dynamic logic to a terminological language
called 7SL to obtain complexity results for terminological reasoning. Below we relate a graded modal
logic to a whole class of alternative terminological systems, viz. the family of .AL-languages, whose main
distinguishing feature it is that they can be used to reason about finite quantities by means of number
restrictions. _

Here are the details. Terminological expressions are built up using concepts and roles by means of
a number of constructs. Suppose that female and young are primitive concepts, and child and relative
are primitive roles. On the domain of all humans one can use intersection M and complementation — to
describe the set of “youngsters that are not female” as young M —female. Most terminological languages
provide restricted quantification, that is, quantification over roles. “Women whose children are all young”
are described by female M (ALL child young). An important construct found in many terminological
languages is number restrictions of the form (> n R). Thus, female (> 3 relative) describes the set of
all women having at least three relatives.
Definition 2.1 (Donini et al. {3]) The basic terminological language AL has concepts C,D,... that
are built up from primitive concepts (denoted by A) and primitive roles (denoted by R) according to the
rule Cu=T|L|A|-4A|CiNC; | (ALL R C) | (SOME R T); in AL roles are always primitive.

Models for the AL-languages have the form (D,-%), consisting of a set D, the domain, and an inter-
pretation function -Z that maps concepts to subsets of D, and roles to binary relations on D such that
TZ =D and L% = §, as usual, while

(Cinec)r = CEncE, (ALLRC) = {deD:Vy(dRTy—yeCh)},
(=C)* = D\C7 (SOME R T)? = {deD:3y(dR*y)}.
Definition 2.2 Languages extending AL are obtained by adding to AL one of the following constructs:
U wunion of concepts, written C U D, with (CU D)* = C* U D%;
E full ezistential quantification, written as (SOME R C), defined by (SOME R C)* = {d € DT :
3y (dR*y Ay € CT) };
C complement of non-primitive concepts, written as ~C, with (=~C)* =D\ C7%;
N number restrictions, written as (> n R) and (< n R), where n ranges over the nonnegative integers,
with, for each b € {>,<}, (xn R)F ={d e D: |[{y :dR%y} an};

R intersection of roles, written as Q M R, with (@1 R = @*Tn R~
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Following [3], suffixing the name of any of the above constructs to ‘AL’ denotes the addition of the
construct to the basic AL-language; e.g., ACUN extends AL by allowing unions and number restrictions.

Let us quickly move on to modal logic. Just like some of the .AL-languages, our modal language also has
the important ability to count. To be precise, formulas of the graded modal system Gr(K(m)) are built
up from a set of proposition letters @, and a set of (unary) modal operators Op = {{Ri)n|i=1,...,m,
and n € N}, according to therule ¢ :=p | L| T | ¢ | ¢1 A ¢z | O¢, where p is in @ and O isin Op. We
write [R;]n for =(Ri)n—. The semantics for Gr(K(m)) is based on structures M = (W,Ry,...,Rn,V)
where W # 0 is the domain, R; C W?, and V is a valuation assigning subsets of W to elements of ®.
The truth conditions are M,z =piff e € V(p); M,z ¢ iff M,z ¢; M,z = oAY Hf M,z E ¢ and
M,z | +; and
Mo = (Rijné < |{y:oRy end My =@} >n,

where, for a set X, | X| denotes its cardinality. So [R;]»¢ is true at a state z iff the number of R;-successors
of = at which ¢ fails, does not exceed n. The ordinary diamond < and box O from standard modal logic
whose semantics are based on a binary relation R, can be defined here as (R)o and [R]o, respectively.

The obvious translation & taking AL-expressions to modal ones maps primitive concepts 4 to propo-
sition letters p, and roles R to binary relations R; 6 commutes with the Boolean constructs, while
§(ALL R C) = [R]6(C), and §(> n R) = (R)n—1T. Moreover, there is a transformation A taking models
(D, ) for terminological languages to models M = (W, { R}grer,V)® for modal languages, such that
given (D, %), we have z € CT iff A(D,-%),z |= 6(C). By means of such correspondences results for modal
logics translate effortlessly into results for terminological languages, and conversely.

Of the extensions of AL, the language ALUECN is the one that resembles Gr(K(m)) most. However,
in ACUECN one can only reason about numbers of R-related things, not about numbers of R-related
things that satisfy some property C.* From a modal logic point of view, this restriction is not a very
natural one, but in some cases it yields an improvement in complexity, as can be deduced from 3.
Moreover, some researchers in the terminological field don’t consider this restriction (cf. {2]).

Here’s our third main character. A unary (binary) generalized quantifier is a function assigning to every
set M a unary (binary) predicate Qar of subsets of M. E.g., the universal quantifier V has Var = { M },
and the Tarskian numerical quantifiers 3>, have (Iyn) = {X C M : |X| > n} Given a set M, the
analogy between the latter numerical quantifiers and the graded modal operators (&), is made precise
by taking R = M x M (the universal relation); then, by some abuse of notation, we have X € (3yn)m
iff in M (considered as a modal model now) the formula (R),—1X is true at some state.

3 Exploiting the connections
To summarize, the formalisms introduced above deal with domains that may or may not have structure,
and these formalisms may or may not have ‘counting abilities’. The overall picture is the following:

no counting counting
structure [ terminological languages | terminological languages
modal logic modal logic
no structure | generalized quantifiers generalized quantifiers
modal logic modal logic

We will use modal logic to relate the formalisms introduced so far: every system presented here has a
modal counterpart. Besides that, its main contribution here are its techniques for establishing axiomatic
completeness results.

Our main system is Gr(K(m)); recall that it is designed for reasoning about domains that are struc-
tured, or equipped with m binary relations. Its axioms are the usual K-axioms and rules for {R;)o and
[Rio; on top of that it has the following axioms (for any &,/ € N):

Al [Rilo(¢ = ¥) = ((Ri)rd — (Ri)r¥),

A2 [Ri]o (8~ %) = ((Ri)kg A (Ri)lip) — (Ri)'x1(8 V ¥)), ‘
where (R;)!x¢ holds at a state iff it has precisely k R;-successorsat which ¢ holds. Semantically speaking,
axiom Al guarantees that a formula 9 is true in at least as many points as any stronger formula ¢. A2
expresses a notion of additivity: the number of objects satisfying one of two mutually exclusive formulas
is simply the sum of the number of objects satisfying each of those formulas separately.

The main tasks in terminological reasoning are satisfiability and subsumption checking. By our ob-
servations in §2 satisfiability in a terminological system is equivalent to satisfiability in the corresponding

3We tacitly assume that R = { R1,..., Rm }.
4Le., ALUECN does not allow for concepts of the form (> = R C).
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modal language, and subsumption is equivalent to derivability. Thus, modulo a translation, Gr(X(x))
completely axiomatizes subsumption in its corresponding terminoclogical language.

At this point there are two options: one can extend or restrict the language, and one can alter the
structure of the models. Many extensions and restrictions of the AL-languages have been considered in
the literature on terminological languages. Each of these corresponds to a modal language; axiomatic
completeness results for them can be given that use essentially the same techniques as for Gr(Km)),
although in some cases special provisions have to be made because of the absence of some of the Boolean
connectives (cf. [4, 5]).

The second option may lead to generalized quantifier theory, namely when we remove all (relational)
structure in the modal models. More precisely, consider the graded modal formulas built up with Op =
{{R)n : n € N}, and assume that (this single) R is interpreted as the universal relation. This modal
language is strong enough to simulate any first-order definable quantifier ([5]). Validity in this language
can be axiomatized completely by the system Gr(S5) which extends Gr(K(m)) with the following axioms:

A3 (R)r+19 — (R)xd,

A4 [R]0¢ - ¢,
Clearly, these axioms express essential properties of the Tarskian numerical quantifiers. As with Gr(K(m))
and the terminological domain, the axiomatic completeness of Gr(S5} and the techniques used to establish
it have direct applications to existing axiomatic calculi in generalized quantifier theory ([4, 5]).

Traditionally, matters of complexity have been at the centre of attention of research in terminological
languages. Given the connections between AL-languages and the graded modal language, one might
hope for a transfer of complexity results of the former domain to the latter. Indeed, despite the fact
that Gr(K(m)) does not have an exact counterpart in the AL-family, the techniques developped in (3] to
determine the complexity of AL-languages can be applied to Gr(K(y,)), yielding the following result.
Theorem 3.1 Satisfiability in the system Gr(K(m)) is PSPACE-complete.
(Compare: satisfiability in the multi-modal system K(m) or even in K is also PSPACE-complete.)
Complexity results for related modal systems can also be derived from complexity results in termino-
logical logic, either via a ‘direct’ transfer, or by tinkering with the proof techniques from the latter domain
(cf. [4]). Likewise, complexity results for some calculi in generalized quantifier theory can be obtained by
using or adapting known complexity results and techniques for S5-like modal systems (again, cf. [4]).

What does generalized quantifier theory have to bring in here? One important issue in generalized quan-
tifier theory has been the syntactic characterization of semantic properties (cf. [9]). E.g., a first-order
formula ¢(Pp, P;) defines an upward monotonic quantifier (in its left-hand) argument iff it’s equivalent
to a formula in which Py occurs only positively (in the usual syntactic sense). (A quantifier Q is upward
monotonic in its left-hand argument if QXY and X C X' imply QX'Y.)

In [5] such issues of syntactic characterizations have been lifted to the modal domain, to modal
operators simulating both first- and some higher-order quantifiers. We would like to suggest that a
similar move towards syntactic characterizations of semantic properties should be undertaken in the
terminological domain. First, because this paves the way for a better theoretical understanding of an area
“whose development has mainly been implementation-driven and rather ad hoc,” as Brink et al. [2] put it.
And second, as practical applications force one to reason not only with static information, but also with
changing data, and thus about changing taxonomies, it is useful to have syntactic characterizations of e.g.
relations between concepts that remain unaltered under certain updates of a taxonomy; a terminological
version of the above monotonicity property, for exawiple, would describe all binary relations between
concepts that are insensitive to increases in the size of their left-hand arguments?
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