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Abstract

Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent

systems� One shortcoming of �standard� temporal logic is that it is inadequate for real�time applications�

because it only deals with qualitative timing properties� This is overcome by metric temporal logics which

o�er a uniform logical framework in which both qualitative and quantitative timing properties can be expressed

by making use of a parameterized operator of relative temporal realization�

In this paper we deal with completeness issues for basic systems of metric temporal logic � despite

their relevance� such issues have been ignored or only partially addressed in the literature� We view metric

temporal logics as two�sorted formalisms having formulae ranging over time instants and parameters ranging

over an �ordered� abelian group of temporal displacements� We 	rst provide an axiomatization of the pure

metric fragment of the logic� and prove its soundness and completeness� Then� we show how to obtain the

metric temporal logic of linear orders by adding an ordering over displacements� Finally� we consider general

metric temporal logic allowing quanti	cation over algebraic variables and free mixing of algebraic formulae

and temporal propositional symbols�
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�� Introduction

Logic�based methods for representing and reasoning about temporal information have proved
to be highly bene�cial in the area of formal speci�cations� In this paper we consider their
application to the speci�cation of real�time systems� Timing properties play a major role in
the speci�cation of reactive and concurrent software systems that operate in real�time� They
constrain the interactions between di�erent components of the system as well as between the
system and its environment� and minor changes in the precise timing of interactions may
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lead to radically di�erent behaviors� Temporal logic has been successfully used for modeling
and analyzing the behavior of reactive and concurrent systems �see Manna and Pnueli �		

and Ostro� �	�
�� It supports semantic model checking� in order to verify consistency of
speci�cations� and to check positive and negative examples of system behavior against spec�
i�cations
 it also supports pure syntactic deduction� in order to prove properties of systems�
Unfortunately� most common representation languages in the area of formal speci�cations
are inadequate for real�time applications� because they lack an explicit and quantitative rep�
resentation of time� In recent years� some of them have been extended to cope with real�time
aspects� In this paper� we focus on metric temporal logics which provide a uniform frame�
work in which both qualitative and quantitative timing properties of real�time systems can
be expressed�

The idea of a logic of positions �topological� or metric� logic� has originally been formulated
by Rescher and Garson �	�
� They de�ned the basic features of the logic� and showed how
to give it a temporal interpretation� The logic of positions extends propositional logic with a
parametrized operator P� of positional realization� Such an operator allows one to constrain
the truth value of a proposition at position �� The parameter � denotes either �i� an absolute
position or �ii� a displacement with respect to the current position which is left implicit�
According to interpretation �ii�� P�p is true at the position i if and only if p is true at a position
j at distance � from i� In �	�
� Rescher and Garson introduced two axiomatizations of the logic
of positions that di�er from each other in the interpretation of parameters� Later� Rescher
and Urquhart �	�
 proved the soundness and completeness of the axiomatization based on an
absolute interpretation of parameters through a reduction to monadic quanti�cation theory�
A metric temporal logic has been independently developed by Koymans �	�
 to support
the speci�cation and veri�cation of real�time systems� He extended the standard model for
temporal logic based on point structures with a distance function that measures� for any
pair of time points� how far they are apart in time� He provided the logic with a sound
axiomatization� but no proof of completeness is given�

The main issues to confront in developing a metric temporal logic for executable speci�ca�
tions are�

Expressiveness �de�nability�� Is the metric temporal logic powerful enough to express both
the properties of the underlying temporal structure and the timing requirements of the
speci�ed real�time systems�

Soundness and completeness� Is the metric temporal logic provided with a sound and com�
plete axiomatization�

Decidability� Which properties of the speci�ed real�time system can be automatically veri�
�ed� Most temporal logics for real�time systems proposed in the literature cannot be
decided �see Henzinger ��
�� Some of them recover decidability sacri�cing completeness�

Executability� How can we prove the consistency and adequacy of speci�cations� In prin�
ciple� decidability proof methods �e�g� via B�uchi automata� outline an e�ective pro�
cedure to prove the satis�ability and�or validity of a formula� But as soon as certain
assumptions about the nature of the temporal domain and the available set of primitive
operations are relaxed� the satis�ability�validity problem becomes undecidable �Alur
and Henzinger �	
��
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An alternative approach consists in looking at metric temporal logics as particular poly�
modal logics and supporting derivability by means of proof procedures for nonclassical
logics or via translation in �rst�order theories �see D�Agostino et al� ��
� and Ohlbach
�	�
�� In this case� providing the logic with a sound and complete axiomatization be�
comes a central issue�

The aim of this paper is to explore completeness issues of metric temporal logic
 we do this
by starting with a very basic system� and build on it either by adding axioms or by enriching
the underlying structures� We view metric temporal logics as two�sorted logics having both
formulae and parameters
 formulae are evaluated at time instants while parameters take
values in an �ordered� abelian group of temporal displacements� In Section �� we de�ne a
minimal metric logic that can be seen as the metric counterpart of minimal tense logic� and
we provide it with a sound and complete axiomatization� In Section �� we characterize the
class of two�sorted frames with a linearly ordered temporal domain� In Section �� we extend
the previously considered systems with the ability of mixing temporal and displacement
formulae to make their logical machinery su�ciently powerful� The conclusions provide an
assessment of the work and they outline further directions of research� In particular� we argue
on the possibility of using the proposed two�sorted framework for characterizing a variety of
metric temporal logics simply changing the requirements on its algebraic and�or temporal
components� We also mention our ongoing work on decidability aspects of metric temporal
logics�

�� The basic metric logic

In this section we de�ne the minimal metric temporal logic MTL�� and consider some of its
natural extensions�

Language� We de�ne a two�sorted temporal language for our basic calculus MTL�� First� its
algebraic part is built up from a non�empty set A of constants denoting the group elements�
The set of terms over A� T �A�� is the smallest set such that �	� A � T �A�� and ��� if ��
� � T �A� then �� � ��� ����� � � T �A�� Next� the temporal part of the language is built
from a non�empty set � of proposition letters� The set of MTL��formulae over � and A�
F ���A�� is the smallest set such that �	� � � F ���A�� and ��� if �� � � F ���A� and
� � T �A�� then ��� � � �� ��� �and its dual r�� �� ������� � � F ���A�� We will adopt
the following notational conventions� p� q� � � � denote proposition letters
 �� �� � � � denote
MTL��formulae
 	� 
 � � � � denote sets of MTL��formulae
 �� �� � � � denote algebraic terms�

Structures� We de�ne a two�sorted frame to be a triple F � �T�D
 DIS�� where T is the
set of �time� points over which temporal formulae are evaluated� D is the algebra of metric
displacements in whose domain D terms take their values� and DIS � T � D � T is an
accessibility relation relating pairs of points and displacements�

We require the following properties to hold for the components of two�sorted frames� First�
we require D to be an abelian group� that is� a ��tuple �D����� �� where � is a binary
function of displacement composition� � is a unary function of inverse displacement � and �
is the zero displacement constant� such that�

�i� �� � � � � � �commutativity of ��
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�ii� �� �� � �� � ��� �� � � �associativity of ��
�iii� �� � � � �zero element of ��
�iv� �� ���� � � �inverse�

Second� we require the displacement relation DIS to respect the converse operation of the
abelian group in the following sense� if DIS�i� �� j� then DIS�j���� i��

We turn a two�sorted frame F into a two�sorted model by adding an interpretation for
our algebraic terms� and a valuation for atomic temporal formulae� An interpretation for
algebraic terms is given by a function g � A� D that is automatically extended to all terms
from T �A�� A valuation is simply a function V � � � �T � Then� we say that an equation
� � � is true in a modelM � �T�D
 DIS
V� g� whenever g��� � g���� Next� truth of temporal
formulae is de�ned by

M� i � p i� i � V �p�

M� i � � never

M� i � �� i� M� i 	� �

M� i � � � � i� M� i � � and M� i � �

M� i � ��� i� there exists j such that DIS�i� g���� j� and M� j � ��

To avoid messy complications we only consider one�sorted consequences 
 j� �
 for al�
gebraic formulae �
 j� �� means �for all two�sorted models M� if M j� 
 � then M j� ��

for temporal formulae it means �for all models M� and times instants i� if M� i � 
 � then
M� i � ���

A simple example� Even though the language of MTL� is very poor� it already allows us
to express conditions on real�time systems� As a �rst example� consider a communication
channel C that outputs each message with a delay � with respect to its input time� and that
neither generates nor loses messages �cf� Montanari et al �	�
�� C can be speci�ed as follows�

out
 ���in

This example can easily be generalized to the case of a channel C that collects messages from
n di�erent sources S��� � � �Sn and outputs them with a delay �� To exclude that two input
events can occur simultaneously� we add the constraint�

�i� j ��in�i� � in�j� � i 	� j��

which is shorthand for

��in�	� � in���� � � � � � ��in�n� 	� � in�n���

Then the behavior of C is speci�ed by the formula

�i �out�i�
 ���in�i���

which is shorthand for a �nite conjunction�
Notice that preventing input events from occurring simultaneously also guarantees that

output events do not occur simultaneously�
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Suppose now that C outputs the messages it receives from S�� � � � Sn with a �generally
di�erent� delay ��� � � � � �n� respectively� Constraining input events not to occur simultane�
ously no longer guarantees that there are no con�icts at output time� A simple strategy of
con�ict resolution consists in assigning a di�erent priority to messages coming from di�erent
knowledge sources� so that� when a con�ict occurs� C only outputs the message with highest
priority� Accordingly� the speci�cation of C is modi�ed� preserving the requirement that it
does not generate messages� but relaxing the requirement that it does not lose messages�

Assume that S�� � � � � Sn are listed in decreasing order of priority� The behavior of C can
be speci�ed as follows�

�i �out�i�
 ����iin�i� � ��j ����j in�j� � j 
 i����

which is a shorthand for

�out�	�
 ����in�	�� � �out���
 �����in��� � �����in�	��� � � � ��

�out�n�
 ����nin�n� � ������in�	� � � � � � ����n��in�n� 	����

More complex examples are given in the following�

Axioms� Our basic calculus MTL� has two components� On the one hand it has the usual
laws of algebraic logic to deal with the displacements�

�Ref� 
 � � � for all terms � �re�exivity�
�Sym� 
 � � � �� 
 � � � �symmetry�
�Tra� 
 � � �� � � � �� 
 � � � �transitivity�
�Rep� 
 � � � �� 
 ���x
� � ���x
� �replacement�
�Sub� 
 � � � �� 
 ���x
� � ���x
� �substitution��

as well as the above axioms �i� �iv� for abelian groups� Here ���x
� denotes the result of
substituting � for all occurrences of x in ��

The second component of MTL� governs the temporal aspect of our structures
 its axioms
are the usual axioms of propositional logic plus

�Ax	� r��p� q�� �r�p�r�q� �normality�
�Ax�� p� r����p� �symmetry�

and its rules are modus ponens and

�NEC� 
 � �� 
 r�� �necessitation rule for r��
�SUB� 
 �
 � �� 
 ����p�
 ����p� �uniform substitution�

where ���p� denotes substitution of � for the variable p
�LIFT� 
 � � � �� 
 r��
r�� �transfer of identities��

Axiom �Ax	� is the usual distribution axiom
 axiom �Ax�� expresses that a displacement
� is the converse of a displacement ��� The rules �NEC� and �SUB� are familiar from
modal logic� and the rule �LIFT� allows us to transfer provable algebraic identities from the
displacement domain to the temporal domain�
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A derivation in MTL� is a sequence of terms and�or formulae ��� � � � � �n such that each
�i �	 � i � n� is either an axiom� or obtained from ��� � � � � �n�� by applying one of the
derivation rules of MTL�� We write 
MTL� � to denote that there is a derivation in MTL�

that ends in �� It is an immediate consequence of this de�nition that 
MTL� � � � i�
� � � is provable �in algebraic logic� from the axioms of abelian groups only� whereas we
can lift algebraic information from the displacement domain to the temporal domain using
the �LIFT� rule� there is no way in which we can import temporal information into the
displacement domain� As with consequences� we only consider one�sorted inferences �
 
 ���

Completeness� In this subsection we prove completeness for the basic calculus MTL�� Our
strategy will be to construct a canonical�like model by taking the free abelian group over our
algebraic elements as the displacement component� by taking the familiar canonical model as
the temporal component� and by linking the two in a suitable way�

The displacement domain�Recall that T �A� is the collection of all algebraic terms built
up from the elements of A� De�ne a congruence relation � on T �A� by taking

��� �� � � i� 
MTL� � � ��

Then the canonical displacement domain D� is constructed by taking

D� � T �A���

��� � ��� � ��� ����

���� � ������

� � ����

That D� is indeed an abelian group is easily shown using the de�ning axioms and rules of
MTL�� The group D� is known as the free abelian group over A �cf� Burris and Sankap�
panavar ��
��

We interpret our terms using the canonical mapping g � T �A�� D� de�ned by � �� ����

The temporal domain�A set of MTL��formulae ismaximal MTL��consistent �or� an MCS�
if it is MTL��consistent and it does not have proper MTL��consistent extensions� The canon�
ical temporal domain T � is constructed by taking

T � � f	 j 	 is maximal MTL��consistent g�

De�ne a canonical valuation V � by putting V ��p� � f	 j p � 	g�

The canonical model for MTL��We almost have all the ingredients to de�ne a canonical
model for MTL�
 we only need to de�ne a displacement relation DIS� � T � �D�� T �� This
is done as follows�

DIS��	����� 
 � i� for every formula �� � � 
 implies ��� � 	

�equivalently� for all formulae �� if r�� � 	 then � � 
 ��

Note that if ��� �� � �� then 
 � � �� hence 
 r�� 
 r�� by the �LIFT� rule� for all
formulae �� From this one easily derives that the de�nition of DIS� does not depend on the
representative we take for ����
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Also� DIS��	����� 
 � implies DIS��
������	�� if DIS��	����� 
 � and � � 	� then
r����� � 	 by axiom �Ax��� hence ���� � 
 �

Then� the canonical model for MTL� is the model M� � �T ��D�
 DIS�
V �� g��

Theorem ��� �Completeness� MTL� is sound and complete for the class of all MTL��

frames�

Proof� Proving soundness is left to the reader� To prove completeness we show that every
consistent set of MTL��formulae is satis�able in a model based on a two�sorted frame�

Let 	 be a MTL��consistent set of formulae
 by standard techniques we can extend it to a
maximalMTL��consistent set 	

� that lives somewhere in the canonical modelM� for MTL��
To complete the proof of the theorem it su�ces to establish the following Truth Lemma� For
all MTL��formulae � and all 	 � T ��

� � 	 i� M�� 	 � ��

The proof of the lemma is by induction on �� The atomic case is immediate from the de�nition
of V �� and the boolean cases are immediate from the induction hypothesis� So consider a
modal formula ����

��� Assume 	 � ���� Then there exists 
 such that DIS��	����� 
 � and 
 � �� By
induction hypothesis � � 
 � so ��� � 	�

��� If ��� � 	� then� to prove 	 � ���� we need to �nd a 
 with � � 
 and
DIS��	����� 
 �� Such a 
 exists if we can show that f�g � f� j r�� � 	g is consistent !
but this can be done by standard modal means�

This completes the proof of the Truth Lemma� and hence the proof of the completeness
theorem� a

Imposing additional constraints� For many purposes two�sorted frames as we have studied
them so far are too simple� In particular� they don�t satisfy all the natural conditions one
may want to impose on the displacement relation� Examples of such properties that arise in
application areas such as real�time system speci�cation include

Transitivity� �i� j� k� �� � �DIS�i� �� j� �DIS�j� �� k� � DIS�i� � � �� k��
Quasi�functionality� �i� j� j�� � �DIS�i� �� j� �DIS�i� �� j��� j � j��
Re�exivity� �iDIS�i� �� i�
Antisymmetry� �i� j� � �DIS�i� �� j� �DIS�j� �� i� � i � j � � � ���

As in standard modal and temporal logic only some of the natural properties we want to
impose on structures are expressible� In particular� the �rst three of the above properties are
expressible in metric temporal logic� as follows �see Montanari et al �	�
��

�Ax�� r���p� r�r�p �transitivity�
�Ax�� ��p�r�p �quasi�functionality w�r�t� the �rd argument�
�Ax�� r�p� p �re�exivity�

In the case of Transitivity� Quasi�functionality� and Re�exivity we are able to extend the
basic completeness result fairly e�ortlessly because each of the corresponding temporal for�
mulae is a Sahlqvist formula� And the important feature of Sahlqvist formulae is that they
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are canonical in the sense that they are validated by the frame underlying the canonical
model de�ned in the proof of Theorem ��	 �see Goldblatt ��
 for analogous arguments in
standard modal and temporal logic� or De Rijke and Venema �	�
 for the general picture��
As a consequence we have the following�

Theorem ��� �Completeness� Let X � fAx��Ax��Ax�g� Then MTL�X is complete with

respect to the class of frames satisfying the properties expressed by the axioms in X�

Further natural properties like

Euclidicity� �i� j� k� �� � ��DIS�i� �� j� �DIS�i� � � �� k��� DIS�j� �� k���

which is represented in metric temporal logic by the formula �	�
�

��r�p�r���p �euclidicity��

can already be derived from MTL�Ax��
In the case of Antisymmetry� we have to do more work� First of all� Antisymmetry is not

expressible in the basic metric language� One can use a standard unfolding argument to prove
this claim �as in ordinary modal logic�� Despite the unde�nability of Antisymmetry� we can
prove a completeness result for the class of antisymmetric two�sorted frames� we will now
show that MTL� is complete with respect to such frames� To proof this we use a technique
which is based on Burgess� chronicle construction �see Burgess ��
��

De�nition ��� Below we write �� for the canonical displacement relation de�ned in the
proof of Theorem ��	� 	 �� 
 if for all � � 
 � ��� � 	�

Let F � �T�D
 DIS� be a two�sorted frame� and g an interpretation of the algebraic terms
on F� A chronicle � on F and g is a function � such that � assigns to each i � T an MCS
��i��

A chronicle � is coherent if for all �� DIS�i� �� j� implies ��i� �� ��j�� Moreover� � is
prophetic �resp� historic� if it is coherent and satis�es condition 	 �resp� ���

	� if ��� � ��i�� then there exists j such that DIS�i� g���� j�� and � � ��j�


�� if ���� � ��i�� then there exists j such that DIS�j� g���� i�� and � � ��j��

Finally� � is perfect if it is both prophetic and historic�
Let V be a valuation in �T�D
 DIS
 g�� The induced chronicle �V is a function �V such

that �V �i� � f� j i � V ���g� for each i � T � It is easy to see that �V is always perfect�
Conversely� if � is a perfect chronicle� then it naturally induces a valuation V� de�ned by
V� �p� � fi j p � ��i�g�

Lemma ��	 Let � be a perfect chronicle on a two�sorted frame �T�D
 DIS�� If V � V� is the

valuation induced by � � then � � �V is the chronicle induced by V � that is� V ��� � fi j � �
��i�g� Any member of any ��i� is thus satis�able in �T�D
 DIS
 g��

By de�nition� MTL� is complete for the class of all antisymmetric two�sorted frames i�
every consistent formula � is satis�able on a model based on an antisymmetric two�sorted
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frame� By Lemma ���� this is equivalent to the existence of a perfect chronicle � on some
anti�symmetric two�sorted frame �T�D
 DIS� and an interpretation g such that � � ��i� for
some i � T � We now construct such T � D� DIS� g and � �

Let T� be a countably in�nite set of time instants� and M the set of tuples �Tn� D� DISn�
g� �n� such that�

�a� Tn is a non�empty �nite subset of T�


�b� D is the free abelian group over the set A� and g is the canonical interpretation� as in
the proof of Theorem ��	


�c� DISn � Tn �D� � Tn is antisymmetric


�d� �n is a coherent chronicle on �Tn�D
 DISn� and g�

De�nition ��
 We say that a ��tuple �n � �Tn�D�DISn� �n� g� in M extends a ��tuple
�m � �Tm�D�DISm� �m� g� in M if� �	� Tn � Tm
 ��� DISn � DISm � �Tn � D� � Tn�
 and
��� �n � �m�

A conditional requirement of the form speci�ed in De�nition ��� �	� �resp� ���� is called
unborn for �n � �Tn�D�DISn� �n� g� � M � if its antecedent is not ful�lled� This is the case
when i 	� Tn� or i � Tn� but ��� 	� �n�i� �resp� ���� 	� �n�i��� It is called alive for �n
if its antecedent is ful�lled� but its consequent is not� This is the case when i � Tn and
��� � �n�i� �resp� ���� � �n�i��� but there is no j � Tn such that DISn�i� g���� j� �resp�
DISn�j� g���� i��� and � � �n�j�� Finally� it is called dead if its consequent is ful�lled�

Lemma ��� Consider �n � �Tn�D�DISn� �n� g� � M � For any requirement as in De�ni�

tion ��	 �
� �resp� ���� which is alive for �n� there exists an extension �m � M for which it

is dead�

Proof� Consider a requirement as in De�nition ��� �	�� Assume i � Tn and ��� � �n�i�� By
the proof of Theorem ��	 there exists an MCS 
 such that �n�i� �� 
 and � � 
 � De�ne
�m as follows�

� Tm � Tn � fjg


� DISm � DISn � f�i� �� j�g


� �m � �n � f�j� 
 �g� a

Theorem ��� �Completeness� MTL� is complete with respect to the class of all antisym�

metric two�sorted frames�

Proof� Let �� be a consistent formula� We construct an antisymmetric two�sorted frame
F � �T�D
 DIS�� an interpretation g� and a perfect chronicle � on F and g such that �� � ��i��
for some i� � T �

First� let D be the free algebra over the set A� and g the canonical interpretation� Second�
take a countably in�nite set S� and �x an enumeration i�� i�� � � � of S� and an enumeration
��� ��� � � � of all formulae� Then� to each conditional requirement of the form speci�ed in
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De�nition ��� �	� �resp� ����� with i � in and � � �m� we assign the number � � �n � �m �resp�
� � �n � �m�� Moreover� we take an MCS 
 with �� � 
 � and de�ne �� � �T��D�DIS�� ��� g��
where T� � fi�g� DIS� � �� and �� � f�i�� 
 �g� If �n is de�ned� we consider the requirement
with the least code number among all requirements which are alive for �n� By Lemma ���
we can choose an extension �n�� of �n for which that requirement is dead�

Let T�DIS and � be respectively de�ned as follows� T �
S
n Tn� DIS �

S
nDISn� and

� �
S
n �n� �T�D
 DIS� is an antisymmetric two�sorted frame and � is a perfect chronicle on

this frame and g� a

When metric temporal logic is employed for specifying real�time systems� one further condi�
tion is usually imposed to the displacement relation� Since the behaviour of real�time systems
is essentially modeled in terms of in�nite sequences of states�events� it is natural to require
the closure of the temporal domain under displacements� Such a requirement is captured by
imposing the Seriality of the displacement relation

Seriality� �i� ��j DIS�i� �� j��

which can be axiomatized as

�Ax�� r�p� ��p �seriality�
�or� equivalently� �����

Again� the basic completeness result can be extended e�ortlessly because the corresponding
temporal formula is Sahlqvist� Moreover� it is interesting to study the interplay between
Seriality and the properties of Transitivity� Quasi�functionality and Re�exivity�

The addition of Seriality turns Quasi�functionality into Functionality�

��p
r�p�

Therefore� each occurrence of �� can be replaced by r�� This allows us� for instance� to
merge Transitivity and Euclidicity

r���p
 r�r�p�

Moreover� it is immediate to show that the addition of Seriality forcesr� and � to commute

r���p�
 �r�p�

Given the Distributivity of r� with respect to �� we conclude that r� distributes itself over
all truth functional connectives�

�� Two�sorted frames based on ordered groups

For a variety of application purposes� our basic calculus and its semantics need to be extended
with orderings� In particular� a linear order on the temporal domain is needed in many
application areas
 for instance� in real�time speci�cation we want to guarantee that between
any two time instants there is a unique displacement� In the following� we achieve this by
adding a total ordering on the displacement domain D�

In the de�nition of a two�sorted frame we replace the abelian component by an ordered

abelian group� That is� by a structure D � �D����� �� 
�� where �D����� �� is an abelian
group� and 
 is an irre�exive� asymmetric� transitive and linear relation that satis�es the
comparability property �viii� below�
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�v� ��� 
 ��
�vi� ��� 
 � � � 
 ��
�vii� � 
 � � � 
 � � � 
 �
�viii� � 
 � � � � � � � 
 ��

Next� there are two axioms expressing the relation between � and �� and 
�

�ix� � 
 � � �� � 
 � � �
�x� � 
 � � �� 
 ���

One can use various languages to talk about ordered abelian groups� We do not have any
clear preference� as long as the language used can be equipped with a complete axiomatiza�
tion� We will simply use full �rst�order logic over �� 
 to reason about the ordered abelian
component of our two�sorted frames�

To be precise� our metric temporal language for talking about two�sorted frames based
on an ordered abelian group� has a �rst�order component built up from terms in T �A� and
predicates � and 

 its temporal component is as before�

The interpretation of this language on two�sorted frames based on an ordered abelian
group is fairly straightforward� the �rst�order component is interpreted on the group� and the
temporal component on the temporal domain� Validity in this language is easily axiomatized

for the displacement component we take the axioms and rules of identity� ordered abelian
groups� strict linear order together with any complete calculus for �rst�order logic
 and for the
temporal component we take the same axioms as in the case of MTL�� axioms �Ax	�� �Ax��
and the rules modus ponens� �NEC�� �SUB� and �LIFT�� Let MTL� denote the resulting
two�sorted calculus�

Theorem ��� �Completeness� MTL� is complete with respect to the class of two�sorted

frames based on ordered abelian groups�

Proof� We can simply repeat the proof of Theorem ��	 here� and replace the free algebra
construction of the displacement domain by a Henkin construction for �rst�order logic� a

	�
 Deriving a temporal ordering

Given that we have an ordering 
 on the algebraic component of our frames� a natural
de�nition for an ordering � on the temporal frame suggests itself�

i� j i� for some � � �� DIS�i� �� j�� ���	�

So i and j are ��related if there exists a positive displacement between them� Using the
relation �� we can de�ne the qualitative operators F � P of non�metric temporal logic as
follows�

M� i � F� �� �j �i� j � j � �� and M� i � P� �� �j �j � i � j � ���

We will not consider this extension�
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Additional properties� The de�nition of � given in ���	� does not produce a temporal or�
dering with all the natural properties that we usually expect it to have� In particular� unless
we put further restrictions on the relation of temporal displacement� � will not be a strict
linear order� and there may be time instants without a unique temporal distance between
them�

To repair this situation� we assume that the displacement relation DIS satis�es the following
properties� transitivity� quasi�functionality� re�exivity �as de�ned in Section ��� and total
connectedness and quasi�functionality w�r�t� the second argument�

�xi� �i� j��DIS�i� �� j� �total connectedness�
�xii� �i� j� �� � �DIS�i� �� j� �DIS�i� �� j� � � � ��

�quasi�functionality w�r�t� the �nd argument��

Given these assumptions on the displacement relation� we can show that the temporal relation
� as de�ned in ���	� is a strict linear order� To see that � is transitive� assume that
i � j � k� Then there exist �� � with DIS�i� �� j� and DIS�j� �� k�� Hence DIS�i� � � �� k�
and i� k�

For irre�exivity� assume i � i� Then DIS�i� �� i� for some � � �� By re�exivity of DIS�
DIS�i� �� i�� hence� by quasi�functionality of the second argument� � � � ! a contradiction�

For asymmetry� assume i � j � i� Then DIS�i� �� j� and DIS�j� �� i� for some �� � � ��
Then DIS�j���� i� and so � � ��� by quasi�functionality of the second argument again�
which yields a contradiction�

Finally� to prove totality� take any two i� j� By total connectedness there exists � such
that DIS�i� �� j�� By axiom �viii�� � � � � � � � � � � �� If � � �� then i � j� If � � ��
then by quasi�functionality and re�exivity of DIS� i � j� And if � 
 �� then �� � � and
DIS�j���� i�� so j � i�

Let us call a two�sorted frame nice if it is transitive� re�exive� totally�connected� and quasi�
functional in both the �nd and �rd argument of its displacement relation
 a model is nice if
it is based on an nice frame�

The next obvious question is� can we characterize the nice frames in the language ofMTL��
The answer is �no�� To see this� we adapt two truth preserving constructions from standard
modal logic to the present setting� For the sake of simplicity� we con�ne ourselves to frames
that share the same displacement domain
 however� the de�nitions are easily generalized to
the general case�

De�nition ��� Let F � �T�D
 DIS� and F� � �T ��D
 DIS�� be two�sorted frames� The
disjoint union of F and F� is the two�sorted frame F � F� � �T ���D�DIS���� Here� T �� is the
disjoint union of T and T �� while the displacement relation DIS�� is just the disjoint union of
DIS and DIS��

Theorem ��� Let F and F� be two�sorted frames� and F � F� their disjoint union� For all

algebraic terms �� �� if F j� � � � and F� j� � � �� then F � F� j� � � �� and� for all

formulae �� if F j� � and F� j� �� then F � F� j� ��

Theorem ��	 There is no modal formula � that expresses total connectedness of two�sorted

frames�
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Proof� We prove the claim by showing that the existence of such a formula would violate
preservation of truth under disjoint union� An intuitive account of this negative conclusion
can be given noticing that disjoint unions are not totally connected frames "by de�nition#�

Suppose that there exists a formula � expressing total connectedness� By Theorem ���� it
follows that � is valid in the disjoint union F � F� � �T ���D
 DIS��� of any two frames F and
F� validating �� Take i � F and j � F�
 by de�nition of F � F�� it follows that there exists no
� � D such that DIS���i� �� j�� a

De�nition ��
 Let F � �T�D
 DIS� and F� � �T ��D
 DIS�� be two�sorted frames� A bounded

morphism from F to F� is a mapping f � T � T � such that�

	� if DIS�i� �� j�� then DIS��f�i�� �� f�j��


�� if DIS��f�i�� �� j��� then for some j � T both f�j� � j� and DIS�i� �� j� hold�

Theorem ��� Let F and F� be two�sorted frames� and f a surjective bounded morphism from

F to F�� For all algebraic terms �� �� if F j� � � �� then F� j� � � �� And� for all formulae

�� if F j� �� then F� j� ��

Theorem ��� There is no modal formula � that expresses quasi�functionality w�r�t� the sec�

ond argument of the displacement relation�

Proof� We prove the claim by showing that the existence of such a formula would violate
preservation of truth under bounded morphisms� Suppose that there exists a formula � ex�
pressing quasi�functionality with respect to the second argument of the accessibility relation�

Consider the two�sorted frames F � �T�D
 DIS� and F� � �T ��D
 DIS�� such that T �
fi�� i�� i�� i�� j�� j�� j�� j�g� T

� � fi�� j�g� DIS contains �i�� 	� j��� �i�� �� j��� �i�� �� j��� �i�� 	� j���
�i�� 	� j��� �i�� �� j��� �i�� 	� j��� and �i�� �� j��� together with the converse triplets �j���	� i���
�j����� i��� and so on� while DIS� � f�i�� 	� j��� �i�� �� j��� �j����� i��� �j���	� i��g� Clearly� F
satis�es the requirement of quasi�functionality� while F� does not�

Now� consider the mapping f � T � T � de�ned by f�i�� � f�i�� � f�i�� � f�i�� � i��
f�j�� � f�j�� � f�j�� � f�j�� � j�� It is easy to verify that f is a surjective bounded
morphism� Then� from F j� � Theorem ��� allows us to infer that F� j� �� and we have a
contradiction� a

Enriching the language� Given that nice frames cannot be characterized in the language of
MTL�� a possible way out consists in enriching the language to make it possible to express
the two properties of total connectedness and quasi�functionality of the displacement relation
in its �nd argument� We brie�y show that those properties can actually be expressed by
adding to the language the future and past operators F� P � the di�erence operator D� and by
allowing information to be lifted from the temporal domain to the displacement domain by
permitting the two languages to be mixed�

First� the di�erence operator �de Rijke �	$
� is a unary modal operator D that allows us to
model unbounded jumps� Its semantic interpretation is de�ned as follows�

�F� V �� i � D� i� �j �j 	� i � �F� V �� j � ��

with dual D�
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�F� V �� i � D� i� �j �j 	� i� �F� V �� j � ���

The di�erence operator and its dual allow us to de�ne three derived unary operators E � its
dual A� and U that respectively model truth in at least one world� truth in all worlds� and
truth in one and only one world�

E� � D� � �� A� � D� � �� and U� � E�� � �D���

In a language in which the algebraic and temporal formulas may be mixed� properties �xi�
and �xii� can be axiomatized by means of the qualitative operators F � P and D� E � and U as
follows�

�Ax�� Dp� Fp � Pp �total connectedness of DIS�
�Ax$� Up � Uq � �E�p ���q� � E�p ���q�� � � ��

�quasi�functionality of DIS w�r�t� the �nd argument��

However� we prefer to remain within the original language of MTL� and reason about
nice frames there� mainly because adding the axioms Ax� and Ax� forces us to give up the
simplicity of the basic calculus and to include non�standard derivation rules to govern the
di�erence operator� As we will show below� the logic of nice frames can be captured in the
original language�

Completeness for nice frames� Instead of increasing the expressive power of metric temporal
logic� we leave it as it stands� and prove a completeness result for nice frames in the old
language� We will do this in two steps� We �rst prove completeness with respect to totally
connected frames via some sort of generated submodel construction� and then we prove the
full result�

Here�s the idea for the case of total connectedness� Let F � �T�D
 DIS� be a two�sorted
frame� The master relation on F is de�ned by

�i� j� � Master i� �i� j� � �������

Thus i� j are in the master relation i� there exists a zigzag path along the displacement
relation from i to j in the following sense�

DIS�i� ��� j���DIS�j�� ��� j��� � � � �DIS�jn� �n��� j��

where ��� � � � � �n � D� and j�� � � � � jn � T �
A point�generated component of a model M � �T�D
 DIS
V� g� is a model �T �� D
 DIS�
 g�

V �� such that for some i � T �

� T � � fj � T j �i� j� �Masterg

� DIS� � DIS � �T � �D � T ��

� V ��p� � V �p� � T �� for all p�

Proposition ��
 LetM� be a point�generated component of a modelM based on a two�sorted

frame with ordered abelian group� If M has a transitive displacement relation� then M� has a

transitive and totally connected displacement relation�
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Lemma ��� Let M� be a point�generated component of a two�sorted model M� Then M�

satis�es exactly the same algebraic formulae as M� Moreover� for all i � T � and for all
temporal formulae � we have M� i � � i� M�� i � ��

MTL�Ax� extends MTL� with the transitivity axiom r���p� r�r�p�

Theorem ���� �Completeness� MTL�Ax� is sound and complete with respect to the class

of two�sorted frames based on ordered abelian groups whose displacement relation is transitive

and totally connected�

Proof� We only prove completeness� and to establish this it su�ces to show that every
MTL�Ax��consistent set of formulae is satis�able in a model based on a frame of the right
kind�

Let 
 be a MTL�Ax��consistent set of formulae� By a Sahlqvist style argument �see
Theorem ���� it is easily seen that 
 is satis�able in a modelM based on a two�sorted frame
with a transitive displacement relation� say at a time instant i� Let M� be a point�generated
component ofM that contains i� By Proposition ��$M� has a transitive and totally connected
displacement relation� and by Lemma ��� we have M�� i � 
 � as required� a

To prove completeness w�r�t� the class of nice frames� we need to carry out a second con�
struction� First� call a two�sorted frame almost nice if it is transitive� re�exive� totally�
connected� and quasi�functional in the �rd argument of its displacement relation
 a model is
almost nice if it is based on an almost nice frame� So a frame is nice if it is almost nice and
quasi�functional in the �nd argument of its displacement relation�

Now� to build a nice model we will take an almost nice model and carefully unfold it� To be
precise� let M � �T�D
 DIS
V� g� be an almost nice model� and let i � T � The i�strati�cation
of M is the model M� � �T ��D
 DIS�
V �� g� which is de�ned as follows�

T � � f��� i�g � f��� j� j DIS�i� �� j� in Mg

DIS� � f���� i�� �� ��� j�� j ��� j� � T �g � f���� j����� ��� i�� j ��� j� � T �g

DIS� � f���� j�� � � �� ��� k�� j ��� j�� ��� k� � T �g

DIS� � DIS� �DIS�

V ��p� � f��� j� � T � j j � V �p�g�

Observe that DIS� � DIS��

Proposition ���� Let M be an almost nice model� and let i �M� The i�strati�cation of M

is nice�

Proof� We �rst observe that for any pairs ��� j�� ��� k� � T �� and � � D� if it holds that
DIS����� j�� �� ��� k�� then � � � � ��

Now� to prove the proposition� we have to check the nice�ness properties� First of all� we
show that DIS����� j�� �� ��� k�� implies DIS����� k����� ��� j��� By the observation � � ����
Also� ��� j�� ��� k� � T � implies DIS����� k�� � � �� ��� j��� that is� DIS����� k����� ��� j���

Next� we show that DIS� is re�exive� AsM is assumed to be re�exive� we have DIS�i� �� i��
hence DIS���� i�� �� ��� i��� As to other points ��� j� � T �� DIS����� j�� � � �� ��� j��� by de��
nition of DIS�� and thus DIS����� j�� �� ��� j���
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To see that DIS� is quasi�functional with respect to its �rd argument� assume that both
DIS����� j�� �� ��� k�� and DIS����� j�� �� ��� � k��� hold� We need to show that � � �� and
k � k�� First of all� � � � � � � �� � �� hence � � ��� Therefore� DIS�i� �� k� and
DIS�i� �� k��� So by the assumption that DIS is quasi�functional in its �rd argument� k � k��

Given that M is total� the totality of its i�strati�cations is immediate�
Transitivity of M� may be established as follows� assume that both DIS����� j�� �� ��� k��

and DIS����� k�� ��� ��� l�� hold� Then DIS����� j�� � ��� ��� l��� As � � �� � �� � �� � �� � ���
we are done�

Finally� to prove quasi�functionality of DIS� in its �nd argument� assume that we have both
DIS����� j�� �� ��� k�� and DIS����� j�� ��� ��� k��� It follows that � � � � � � ��� a

Proposition ���� Let M be an almost nice model� and let M� be an i�strati�cation of M�

For all formulae �� j in M� and ��� j� in M�� we have M� j � � i� M�� ��� j� � ��

Proof� This is by induction on �� The base case and the boolean cases are trivial� So consider
a temporal formula ���� Assume �rst that j � ���� Then there exists k with DIS�j� �� k��
Now� let � be such that ��� j� � T �� Then DIS�i� �� j�� and hence DIS�i� � � �� k� and
�� � �� k� � T �� By de�nition� DIS����� i�� �� ��� j�� and DIS����� i�� � � �� �� � �� k��� But
then DIS����� j�� �� �� � �� k��� By induction hypothesis� ��� �� k� � �� hence ��� j� � ����

Conversely� assume that ��� j� � ���� Then there exists ��� k� � T � such that both
DIS����� j�� �� ��� k�� and ��� k� � � hold� Hence � � � � �� By construction we must have
DIS�i� �� j� and DIS�i� �� k� and hence DIS�j� � � �� k�� As k � � �by induction hypothesis�
and � � � � �� this implies j � ���� as required� a

We are ready now for a completeness result for the class of nice frames� Let MTL� de�
note the extension of MTL� with axioms Ax�� Ax� and Ax� �expressing transitivity� quasi�
functionality of DIS in its �rd argument� and re�exivity� respectively�� By an easy adaptation
of the proof of Theorem ��	�� MTL� is sound and complete w�r�t� the class of almost nice
frames�

Theorem ���� �Completeness� MTL� is sound and complete with respect to the class of

nice frames�

Proof� We only show that every MTL��consistent set of temporal formulae is satis�able on a
nice model� Let 
 be such a set� By earlier remarks 
 is satis�able on an almost nice model
at some time instant i� Let M� be the i�strati�cation of M� By Propositions ��		 and ��	�
M� is a nice model that satis�es 
 at i� a

	�� Adding Discreteness

One natural specialization of the metric temporal logic of linear orders consists in the ad�
dition of discreteness� Analogously to the case of ordering� we will constrain the domain of
temporal displacements to be discrete and show that the discreteness of the temporal domain
necessarily follows�

The discreteness of the domain of displacements is expressed by the following axiom�

�xiii� ����� �
�

�� 
 � � ���� 
 � � �� � � � � 
 ��� � �
�


 ��

���� 
 �� ��
�

� � � �
�


 ����
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The discreteness of the temporal domain follows as shown by the following proposition�

Proposition ���	 Let F � �T�D
 DIS� be a two�sorted frame based on a discrete ordered

abelian group D� For all i� j � T � there exist only �nitely many k such that i� k � j�

Proof� To be supplied� a

An interesting e�ect of restricting ourselves to discrete temporal domains is that bounded
response and invariance properties like

p� �x�� � x 
 � ��xq��

and
p� �x�� � x 
 � � rxq��

respectively� become expressible in the basic systems of metric temporal logics �devoid of
quanti�cation and mixed formulae��

The restricted quanti�cation involved in bounded response properties can indeed be re�
placed by a �nite disjunction of formulae of the form ��q �one disjunct for each displacement
� there exists a �nite number of such displacements such that � � � 
 ��� Analogously�
the restricted quanti�cation involved in bounded invariance properties can be replaced by a
�nite conjunction of formulae of the form ��q�

On the contrary� the unrestricted quanti�cation involved in unbounded versions of response
and invariance properties like

p� �x�� � x ��xq��

and
p� �x�� 
 x�rxq��

respectively� as well as ���

�x�� 
 x � �xp � �y�� � y 
 x�ryq��

cannot be captured by basic metric temporal logics�
This de�ciency can be recovered by using the qualitative operators F� P and�or the opera�

tors Since Until� The above introduced properties can indeed be respectively represented as
p� Fp� p� Gp� and q Until p� However� this solution requires the addition of the axioms
for the qualitative operators and of the axioms constraining the relationships between the
qualitative operators and the operator of temporal realization� as well as a completeness proof
for the resulting logical system� We do not consider such an extension�

�� Increased interaction

So far we have only considered simple languages that allow us to lift information from the
algebraic domain to the temporal domain but not vice versa� For application purposes they
have to be extended� As an example� consider an automatic reply system that� whenever
it receives a message� sends an acknowledgment with a delay less than �� Such a bounded
response property can be represented by the following formula�

p� �x �� � x 
 � ��xq��
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where p and q denote the receipt of the message and its acknowledgment� respectively� How�
ever� the languages considered so far cannot express such conditions as they lack quanti�cation
and constrain displacements to occur as parameters of the operator of temporal realization
only�

In this section� we will show how the ability of freely mixing temporal and displacement
formulae enables us to exploit more complex ways of interaction between the two domains�
Our �rst goal is to de�ne the logic Q�MTL� and its language�

Language� Let A denote a set of algebraic constants� andX a collection of algebraic variables

a denotes a typical element of A� x a typical element ofX� The set of algebraic terms T �X�A�
is built up as follows�

� ��� � j a j x j �� � j ���

Using this� we de�ne the formulae of Q�MTL��

� ��� p j �� j � � � j � 
 � j � � � j ��� j �x��

Thus� we allow quanti�cation over algebraic variables and free mixing of algebraic formulae
and temporal propositional symbols�

Structures� Starting from an ordered two�sorted frame F � �T�D
 DIS� we arrive at a Q�

MTL��model by adding a valuation V and an interpretation function g for the algebraic
terms� as in Section �� What remains to be de�ned is the way we evaluate our new mixed
formulae at time instances� For the atomic case we stipulate the obvious de�nition�

M� i � � � � i� g��� � g���

M� i � � 
 � i� g��� 
 g����

Thus� the truth value of formulae of the form � � � and � 
 � is determined by referring
only to the algebraic component�

Next� to evaluate quanti�ed formulae �x� at a point in time� we write g �x g
� to denote

that the assignments g and g� agree on all algebraic variables except maybe x� Then

�F
V� g�� i � �x� i� �F
V� g��� i � ��

for all assignments g� such that g �x g
��

Remark 	�� Note that in the traditional terminology from quanti�ed modal logic� our se�
mantic structures implement a �xed�domain approach with a rigid �objectual� interpretation
of terms ��
� Indeed� we assume that there exists a single domain of quanti�cation for all
time points which contains all the possible values for displacements�

An example� TO BE SUPPLIED�
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Axioms� Our next goal is to arrive at a complete axiomatization of validity in the language
of Q�MTL�� To the axioms of MTL� we will add a number of axiom schemata governing the
behavior of quanti�ers and substitutions � First of all� we have

�Ax$� �x ��� ��
 ��x�� �x�� �functionality�
�Ax�� �� �x�� for x not in � �elimination of vacuous quanti�er�
�Ax	�� �x�� ����x�� with � free for x in � �universal instantiation�

and the rule�

�UG� 
 � �� 
 �x� �universal generalization��

We also add the Barcan formula�

�Ax		� �xr���r��x�� with x 	� ��

where x 	� � denotes that x 	� � and x does not occur in �� Furthermore� we have the
following axioms relating algebraic terms and temporal operators�

�Ax	�� � � � � �xrx� � �
�Ax	�� � 	� � � �xrx� 	� �
�Ax	�� � 
 � � �xrx� 
 �
�Ax	�� � 	
 � � �xrx� 	
 ��

Remark 	�� It is worth noting that the requirement that neither x � � nor x � � in �Ax		�
is essential to guarantee the soundness of the Barcan formula� as is shown by the following
example�

Suppose that the Barcan formula holds without restrictions� Let x be a variable �over
displacements�� From axiom �Ax��� by �UG�� �Ax	�� and Modus Ponens� we obtain p �
rx��xp� Then� by �UG�� �Ax$�� �Ax�� and Modus Ponens� it follows that p� �xrx��xp�
Now� since the Barcan formula holds without restrictions� we obtain by Modus Ponens that
p�rx�x��xp� which clearly is not a valid formula�

Remark 	�� Note that we also have converses to �Ax	�� �Ax	���

�xrx�� � �� � r��� � ��� by �Ax	��

� � � �� by �Ax���

and similarly for the other cases� As a consequence we have that for purely algebraic formulae
� the following equivalence is provable� �
 �xrx��

Lemma 	�	 MTL� derives the following formula�

�T	� r��x�� �xr��� with x 	� � �converse of the Barcan formula�

Proof� We have


 r��x��r��� by �Ax��� �NEC� and �Ax	�

� 
 �xr��x�� �xr��� by �UG� and �Ax$�

� 
 r��x�� �xr��� �Ax���

Observe that �T	� together with the Barcan formula allows us to conclude that the domain of
temporal displacements does not change when we move from one time point to another� a
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Completeness� To prove a completeness result for Q�MTL� we can follow the general pattern
of the completeness proofs given in Sections � and �� but the presence of mixed formulae
complicates some of the details� We use a variant of Hughes and Cresswell�s �$
 method for
proving axiomatic completeness in the presence of the Barcan formula�

First� a Henkin�formula with respect to a variable y is de�ned as follows

	� Any formula of the form �y �� ��y�x� is a Henkin formula with respect to y�

�� If � is a Henkin�formula with respect to y� � is any formula not containing y free� and
� is an algebraic term not containing y� then ��� � ���� � �� is a Henkin�formula
with respect to y�

Henkin�formulae that di�er only in that each is a Henkin�formula with respect to a di�erent
variable will be said to have the same Henkin�form� A set of formula has the Henkin�property
if it contains at least one Henkin formula of every Henkin�form�

Lemma 	�
 If � is a Henkin�formula with respect to y� then 
 �y ��

Proof� We argue by induction on Henkin�formulae� If � is of the form �x�� ��y�x�� then�
using the validity of �y ��x�� ��y�x�� for y not free in �� we get 
 �y ��

Suppose that � is a Henkin�formula with respect to y� and that 
 �y �� Assume that
y is not free in the formula � and doesn�t occur in the term �
 we have to show that

 �y ����� ���� � ���� Observe


 �y � � 
 ���� ���� � �y ��� by standard modal reasoning�

� 
 ���� ���y �� � ��� as y is not free in ��

� 
 ���� �y���� � ��� by the Barcan formula�

� 
 �y ����� ���� � ���� as y does not occur in �� a

Lemma 	�� Assume 	 is a consistent set of formulae� none of which contains any occur�

rence of y� and let � be a Henkin formula with respect to y� Then 	 � f�g is consistent�

Proof� Let 	� � 	 be �nite� It su�ces to show that 	��f�g is consistent� Suppose otherwise�
Then



�

	� � �� � 

�

	� � �y��

� 
 �y � � �
�

	�

� 
 �
�

	�� by Lemma ����

which contradicts the consistency of 	� a

Lemma 	�� Every consistent formula is contained in a maximal consistent set with the

Henkin�property�

Proof� This is standard
 use Lemma ���� a
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Lemma 	�
 Let 	 be a maximal consistent set of formulae with the Henkin�property� Let

��� � 	� Then there exists a maximal consistent set of formulas 
 with the Henkin�property
such that

f�g � f� j r�� � 	g � 
�

Proof� De�ne 
� �� f�g� Take the �rst Henkin�form in some �xed enumeration of all Henkin�
forms� and enumerate the Henkin�formulae of the �rst form as ���� � � � � ��n� � � � � By assump�
tion 	 has the Henkin�property� hence it contains a formula of the form ��� � �������i���
Put 
� �� 
� � f��i�g�

In general� given that for the �rst m Henkin�forms we have added Henkin�formulae ��i� �
� � � � �mim � we consider a formula ��m���i�m���

of the �m� 	��th form� which is such that

���� � ��i� � � � � � �mim�� ���� � ��i� � � � � � �mim � ��m���i�m���
�

is in 	� and obtain 
m�� as 
m � f��m���i�m���
g� Let 
 � �

S
m 
m� Then 
 � has the Henkin�

property�
Next� add f� j r�� � 	g to 
 � to obtain 
 ��
 this can be done without destroying

consistency� Finally� increase 
 �� to a maximal consistent set 
 in the usual way� a

We can now embark on the completeness proof for Q�MTL�� Let 	 be a maximal Q�MTL��
consistent set of formulae that has the Henkin property� Using 	 we will de�ne a canonical
model M� � �T ��D�
 DIS�
V �� g� as follows�

The displacement domain�Using a Henkin construction� we build a displacement domain
D� from 	� In this domain the �displacement� objects are equivalences classes of terms
modulo the congruence relation �� where � is �provable equality according to 	�� ��� �� � �
i� 	 
 � � �� The interpretation function g � T �X �A�� D� is de�ned in the obvious way
by putting g��� � ����

The displacement relation�De�ne the relation DIS� as in the unquanti�ed case� for max�
imal consistent sets 
�� 
�� and for every term � � T �X �A�� de�ne

DIS��
�� g���� 
�� i� for every formula �� � � 
� implies ��� � 
�

�equivalently� for all �� if r�� � 
� then � � 
���

The temporal domain�The canonical temporal domain T � consists of all maximal consis�
tent sets 
 with the Henkin�property such that for some �� DIS��	� g���� 
 �� De�ne the
canonical valuation V � by putting V ��p� � f
 j p � 
g� for all proposition letters p�

Lemma 	�� For all 
 � T �� and all algebraic terms �� � we have that �� � �� � 
 i�

�� � �� � 	� and similarly for formulas of the form � � ��

Proof� As 
 � T �� we have DIS��	� g���� 
 � for some �� Then �� � �� � 
 implies ���� �
�� � 	� and so �� � �� � 	 by axiom �Ax	�� and universal instantiation� Conversely�
�� � �� � 	 implies r��� � �� � 	� by axiom �Ax	��� implies �� � �� � 
 � a
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Theorem 	��� �Completeness� Q�MTL� is sound and complete for the class of all Q�

MTL��frames�

Proof� Take a consistent formula �� and let 	 be a maximal consistent extension of f�g with
the Henkin�property� Construct the canonical modelM� for 	 as de�ned above� To establish
the completeness of Q�MTL� we need to check thatM� validates the axioms of Q�MTL�� but
this is clear� On top of that we need a truth lemma for Q�MTL��

We �rst treat the case of atomic algebraic formulae� Let 
 � T �
 then DIS��	� g���� 
 � for
some �� Then �� � �� � 
 i� �� � �� � 	 �by Lemma ���� i� g��� � g��� i� 
 � � � �� as
required�

The remaining atomic cases and the boolean cases are straightforward� The case of the
universal quanti�er is the same as in standard completeness proofs for �rst�order logic� So
let us consider the case of r�� We have to show that

if �r�� � 
�� then �
�
�
DIS��
�� g���� 
�� and �� � 
 ��

�
�

where 
�� 
� � T ��
By Lemma ��$ the set f� j r�� � 
�g � f��g can be extended to a maximal consistent

set 
� with the Henkin�property� Clearly� 
� � T � and DIS��
�� g���� 
�� implies 
� � T ��
by axiom �Ax��� Finally� f� j r�� � 
�g is a subset of 
�� so DIS��
�� g���� 
�� holds� as
required� a

Enriching the temporal component� For most application purposes the language of Q�MTL�

�or a minor extension thereof� su�ces� However� if full quanti�cational force of the temporal
domain is required� the above techniques can easily be extended� as we will demonstrate now�

We consider a rich language in which the temporal component is based on a full �rst�order
language instead of a propositional one� We consider the system Q�MTL��

The language Q�MTL� is built up using algebraic terms speci�ed by

� ��� � j a j x j �� � j ���

as before� and using a disjoint collection of �temporal� variables S� typically denoted with s�
t� � � � 
 these are the variables that we will quantify over in the quanti�ed temporal part of
our language� Next� we de�ne the formulae of Q�MTL��

� ��� Rt� � � � tn j �� j � � � j � 
 � j � � � j ��� j �x� j �s ��

Thus� we can quantify using displacement variables x� or using �temporal� variables s�
The models of Q�MTL� are structures of the form

M � �T�D
 DIS
O�V� g��

O is the domain of individual objects
 the function V assigns a member of O to each individual
temporal variable� For every n�ary �temporal� predicate letter R� V �R� is a collection of
�n� 	��tuples �u�� � � � � un� w�� where u�� � � � � un � O and w � T �

Given this set�up� we can calculate the truth value for all formulas � in the following
manner�

�F
O�V� g�� i � R�s�� � � � � sn� i� �V �s��� � � � � V �sn�� i� � V �R�
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�F
O�V� g�� i � � � � i� g��� � g���

�F
O�V� g�� i � � 
 � i� g��� 
 g���

�F
O� V� g�� i � �x� i� �F
O�V� g��� i � � for all assignments g�

such that g �x g
�

�F
O�V� g�� i � �s � i� �F
O�V �� g�� i � � for all valuations V �

such that V �s V
�

�F
O�V� g�� i � ��� i� �F
O� V� g�� j � � for some time instance j

with DIS�i� g���� j��

Remark 	��� Observe that� just as with Q�MTL� models� in Q�MTL� models� the dis�
placement domain is constant over all time instances� as are the truth values of the purely
algebraic formulas� And the newly added individual objects domain is constant across all
time instances� but� of course� �purely� temporal formulas may di�er in truth value from one
time instance to another�

Next� we specify the axioms of Q�MTL�� To the axioms of Q�MTL� �page 	�� we add quan�
ti�cational axioms for the temporal quanti�ers� as well as the rule of universal generalization
and the Barcan formula for the temporal quanti�ers�

�Ax$�� �s ��� ��
 ��s �� �s�� �functionality�
�Ax��� �� �s �� for s not in � �elimination of vacuous quanti�er�
�Ax	��� �s �� ��t�s�� with t free for s in � �universal instantiation�

and the rule�

�UG�� 
 � �� 
 �s � �universal generalization��

We also add the Barcan formula�

�Ax		�� �sr���r��s ��

Theorem 	��� �Completeness� Q�MTL� is sound and complete�

Sketch of the proof� To establish the completeness of Q�MTL� using the proof technique of
Theorem ��	� we need to adopt the notions of a Henkin�formula �page ��� and a Henkin�form
�page ��� as follows� Let r be either a displacement variable or a temporal variable�

	� Any formula of the form �y �� ��y�x� is a Henkin formula with respect to y�

�� Any formula of the form �t �� ��t�s� is a Henkin formula with respect to t�

�� If � is a Henkin�formula with respect to y� � is any formula not containing y free� and
� is an algebraic term not containing y� then ��� � ���� � �� is a Henkin�formula
with respect to y�

�� If � is a Henkin�formula with respect to t� � is any formula not containing t free� then
���� ���� � �� is a Henkin�formula with respect to t�
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As before� Henkin�formulae that di�er only in that each is a Henkin�formula with respect
to a di�erent variable of the same sort �i�e�� either they are all displacement variables� or
all temporal variables� will be said to have the same Henkin�form� A set of formula has the
Henkin�property if it contains at least one Henkin formula of every Henkin�form�

We leave it to the reader to verify that given the above notions of Henkin�formula� Henkin�
form� and Henkin�property� Lemma�s ��� ��$ remain valid�

The canonical model for Q�MTL� is built up in the same way as for Q�MTL�� except for
the fact that we need to specify a domain of individual objects O and a valuation V 
 the
former will simply be the collection of all temporal variables� and the latter is de�ned by
V �R� � f�u�� � � � � un� 
 � j R�u�� � � � � un� � 
g� where R is an n�ary predicate symbol� With
this modi�cation a truth lemma can be established as in the proof of Theorem ��	�� a

�� Conclusion and further developments

In this paper we have proved completeness results for basic systems of metric temporal logic�
We started with the minimal calculus and showed how to extend it to obtain the logic of two�
sorted frames with a linear temporal order in which there exists a unique temporal distance
between any two time instants�

In the paper� we traced a sort of preferred path from the minimal metric temporal logic
MTL� to the quanti�ed metric temporal logic Q�MTL�� passing through the �unquanti�ed�
metric temporal logic of linear orders MTL� � In fact� the proposed two�sorted framework
allows one to characterize a variety of metric temporal logics simply by weakening or strength�
ening the requirements on the algebraic and temporal components and their interaction� Here
are some examples�

� Changing the temporal component�

� Removing quasi�functionality �w�r�t� the third argument��

� Changing the algebraic component�

� Replacing the abelian group with a semigroup�

The complete picture is currently under development�

In this report we have not discussed deciability issues� It is known that a negative result holds
for Q�MTL�� Burgess ��
 shows that the decision problem for quanti�ed metric temporal
logic is equivalent to that for the set of all universal monadic second�order formulae true
in all ordered abelian groups� and he proves that the decision problem for the validity of
�rst�order formulae involving a single binary predicate� which is known to be undecidable�
can be reduced to this equivalent problem�

As to the decidability question for propositional metric temporal logics� we are currently
using studying links between �propositional� metric temporal logics and versions propositional
dynamic logic with a view to importing results and techniques on decidability from the latter�
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