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Abstract

This paper contributes to the model theory of modal logic using bisimulations as the fundamental tool� A

uniform presentation is given of modal analogues of well�known de�nability and preservation results from

�rst�order logic� These results include algebraic characterizations of modal equivalence� and of the modally

de�nable classes of models� the preservation results concern preservation of modal formulas under submodels�

unions of chains� and homomorphisms�
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�� Introduction

The guiding theme of this paper is the �equation�

��p

�rst�order logic
�

�

modal logic
�

That is� bisimulations are to modal logic� what partial isomorphisms are for �rst�order logic	
We substantiate this claim by establishing key results from �rst�order logic 
and beyond� for
modal logic� using bisimulations instead of partial isomorphism	
Speci�cally� after some background material has been presented in x�� x
 introduces basic

bisimulations	 In x� these are linked to basic modal languages� resulting in an analogue of the
Keisler�Shelah Theorem from �rst�order logic� as well as modal analogues of Karp�s Theorem
and the Scott IsomorphismTheorem from L�� and L��� respectively in x�	 Building on those
results x� supplies a series of de�nability results	 Then x� pushes the idea that bisimulations
are a fundamental tool in modal model theory even further by using them to establish modal
analogues of three well�known preservation results from �rst�order logic� �Lo�s�s Theorem� the
Chang��Lo�s�Suszko Theorem� and Lyndon�s Theorem	 The �nal section� x�� is devoted to
extensions� questions and suggestions for further work	

�� Basic modal languages

As basic modal formulas live inside fragments of classical languages� we need a few notions
from classical logic before we can specify our modal languages	 We use � � ��� � � � to denote



	� Basic modal languages �


relational� vocabularies of predicate logical languages	 For � a classical vocabulary� Str�� �
denotes the class of � �structures	 For A � Str�� � and P in � � PA denotes the extension of P
in A	
We assume that modal languages have modal operators � equipped with patterns ��

describing the semantics of � by means of a formula in classical logic	 The bulk of this paper
deals with basic modal languages	

De�nition ��� For � a classical vocabulary with unary predicate symbols� the basic modal
language over � is the �nitary modal language BML��
�� having proposition letters p�� p��
� � � corresponding to the unary predicate symbols in � � and also having n�ary modal operators
� with patterns

�� � �x��x� � � � �xn
�
Rxx� � � � xn � p�
x�� � � � � � pn
xn�

�
�

for every 
n� ���ary relation symbol R in � 	 In addition BML��
�� has the usual Boolean
connectives� and constants � and �	
We also need in�nitary basic modal languages	 Let � be a regular cardinal	 The basic

in�nitary modal language BML�� has proposition letters� modal operators� connectives and
constants as in BML��
��� but it also has conjunctions

V
and disjunctions

W
over sets

of formulas of cardinality less than �	 We write BML��
�� �
S
� BML��
��� and for �

singular� BML��
�� �
S
��� BML��
��	

De�nition ��� De�ne the rank of a modal formula� rank
�� as follows�

rank
p� � �

rank
��� � rank
��

rank

�
�� � sup
f rank
�� � � � � g�

rank
�
��� � � � � �n�� � � �maxf rank
�i� j � 	 i 	 ng�

Basic modal languages are interpreted on � �structures of the form A � 
A�R�� R�� � � � �
P�� P�� � � ��� where P�� P�� � � � interpret the proposition letters of the modal language	 We
will let valuations V take care of proposition letters� thus we will write 
W�R�� R�� � � � � V ��
where V 
pi� � Pi	
Using the patterns of a modal logic a translation ST can be de�ned that takes modal

formulas to formulas in the classical language in which those patterns live� �x an individual
variable x� and put

STx
p� � Px

STx
�� � 
x 
� x�

STx
�� � 
x � x�

STx
��� � �STx
��

STx
� � �� � STx
�� � ST x
��

ST x
�
��� � � � � �n�� � �x� � � � �xn
�
Rxx� � � � xn � STx�
��� � � � � � ST xn
�n�

�
�

where the semantics of � is based on R� and STxi
�i� is the standard translation of �i
with xi as its free variable	 Then� for all basic modal formulas �� 
A�R�� R�� � � � � V �� a j� �




� Bisimulations �

i� 
A�R�� R�� � � � � V � j� ST x
���a�	 This equivalence allows us to freely move back and
forth between modal formulas and certain classical formulas	 Also� as basic modal formu�
las are equivalent to their 
classical� ST �translations� they inherit important properties of
classical logic� for BML���formulas this means that they enjoy the usual compactness and
L�owenheim�Skolem properties 
when interpreted on models�	

For the remainder of this paper we will work with so�called pointed models 
A� a�� where A is
a � �structure as explained above� and a is a point in A� a is called the distinguished point of

A� a�	 There are several reasons to work with pointed models rather than plan � �structures	
Pointed models simply are the semantic units at which modal formulas are evaluated� and
second� most of the results and proofs below can be stated in a simpler form when pointed
models are used	

�� Bisimulations

De�nition ��� For � a classical vocabulary and A� B � Str�� �� we say that 
A� a�� 
B� b� are
� �bisimilar 

A� a� �� 
B� b�� if there exists a non�empty relation Z between the elements of
A and B 
called a � �bisimulation� and written Z � 
A� a� �� 
B� b�� such that

�	 Z links the distinguished points of 
A� a� and 
B� b�� Zab�

�	 for all unary predicate symbols P in � � Za�b� implies a� � PA i� b� � PB�


	 if Za�b�� a�� � � � � an � A and 
a�� a�� � � � � an� � RA� then there are b�� � � � � bn � B such
that 
b�� b�� � � � � bn� � RB and Zaibi� where � 	 i 	 n and R is an 
n� ���ary relation
symbol in � 
forth condition��

�	 if Za�b�� b�� � � � � bn � B and 
b�� b�� � � � � bn� � RB� then there are a�� � � � � an � A such
that 
a�� a�� � � � � an� � RA and Zaibi� where � 	 i 	 n and R is an 
n� ���ary relation
symbol in � 
back condition�	

It is easily veri�ed that isomorphism implies bisimilarity� and that the relational composition
and union of bisimulations is again a bisimulation� moreover� bisimilarity is an equivalence
relation on the class of all models	

Many familiar constructions on relational structures arise as special examples of bisimulations	
For disjoint � �structures 
Ai� ai� 
i � I� their disjoint union is the structure A which has the
union of the domains of Ai as its domain� while R

A �
S
iR

Ai 	 For each of the components
Ai there is a bisimulation Z � 
Ai� ai��� 
A� ai� de�ned by Zxy i� x � y	

A� a� is a generated submodel of 
B� b� whenever 
i� a � b� 
ii� the domain of A is a subset

of the domain of B� 
iii� RA is simply the restriction of RB to A� and 
iv� if a� � A and
RAa�b� � � � bn� then b�� � � � � bn are in A	 If 
A� a� is a generated submodel of 
B� b�� there is a
� �bisimulation Z � 
A� a� �� 
B� b� de�ned by Zxy i� x � y	
A mapping f � 
A� a� � 
B� b� is a p�morphism if 
i� f
a� � b� 
ii� it is a homomorphism

for all R � � � that is� RAaa� � � � an implies R
Bf
a�f
a�� � � � f
an�� and 
iii� if R

Bf
a�b� � � � bn
then there are a�� � � � � an such that R

Aaa� � � � an and f
ai� � bi	 If f � 
A� a� � 
B� b� is a
p�morphism� putting Zxy i� f
x� � y de�nes a bisimulation Z � 
A� a� �� 
B� b�	




� Bisimulations �

Just like partial isomorphisms in Abstract Model Theory� bisimulations too are naturally
built up by means of approximations	 Let A� B � Str�� �	 We de�ne a notion of � �bisimilarity

up to n by requiring that there exists a sequence of binary relations Z�� � � � � Zn between 
A� a�
and 
B� b� such that

�	 Zn � 
 
 
 � Z� and Znab�

�	 for each i� if Zixy then x and y agree on all unary predicates�


	 for i� � 	 n the back�and�forth properties are satis�ed relative to the indices�


a� if Zi��xy and R
Axx� � � � xm� then for some y�� � � � � ym in B�

RByy� � � � ym� and for all j � �� � � � �m� Zixjyj �


b� if Zi��xy and R
Byy� � � � ym� then for some x�� � � � � xm in A�

RAxx� � � � xm� and for all j � �� � � � �m� Zixjyj	

Clearly� every � �bisimulation gives rise to a relations of bisimularity up to n� for every n	
But conversely� if there exist exist Z�� � � � � Zn� � � � satisfying the above back�and�forth con�
ditions� then Z �

T
i Zi need not de�ne a � �bisimulation � see Example �	� below for a

counterexample	
If� for some n� there is a bisimulation up to n between 
A� a� and 
B� b�� we write 
A� a� �n

�


B� b�� and say that 
A� a� and 
B� b� are � �bisimilar up to n	

We need two concepts for measuring certain aspects of models� in�degree and depth	

De�nition ��� �In�degree	 Let 
A� a� be a model� and c � A	 A path from a through c is
any sequence of sequences 	x�� 	x�� � � � � 	xn such that 
i� x�� � a� 
ii� for each i 
� 	 i 	 n� there
exists an Ri in the similarity type of A such that Ri	xi holds in A� 
iii� for each i 
� 
 i 	 n�
xi� is in an argument in 	x

i��� that is� xi� � fx
i��
� � xi��� � � �g� and 
iv� c is an argument in the

�nal tuple 	xn� that is c � fxn� � x
n
� � � �g	

The in�degree of c in 
A� a� is the number of paths from a through c	

The second notion we need measures the distance from a given element in a model to its
distinguished point	

De�nition ��� �Depth	 Let 
A� a� be a ��structure� the � �hulls Hn
� around a are de�ned

as follows

� H�
� 
A� a� � fag�

� Hn��
� 
A� a� � Hn

� 
A� a� � fb in A j for some R � � � u � Hn
� 
A� a� and v�� � � � � vn in A�

b is one of the vi and R
Auv� � � � vng	

So� the n�hull H�
� around a contains all elements in A that can be reached from a in at most

n relational steps	
For c in 
A� a�� the depth of c in 
A� a� is the smallest n such that c � Hn

� 
A� a�� if such n
exists	 Otherwise the depth if c is �	
For n � �� the model 
A � n� a� is the restriction of 
A� a� to points of depth n� it is de�ned

as the submodel of 
A� a� whose domain is Hn
A� a�	



�� Forcing properties of models �

Proposition ��
 Let 
A� a�� 
B� b� be two models such that every element has in�degree at

most �� and depth at most n� The following are equivalent�

�	 
A� a� �n
� 
B� b��

�	 
A� a� �� 
B� b�	

Proof� We only prove the implication from � to �	 Let Z� � 
 
 
 � Zn be given	 De�ne
Z � A�B by

Zxy i� depth
x� � depth
y� and 
x� y� � Zn�depth�x��

To see that this Z satis�es the forth condition� assume Zxy and RAxx� � � � xm	 Then
depth
x� � k 	 n � �� so it follows that there are y�� � � � � ym in B with RByy� � � � ym
and Zk��xiyi 
� 	 i 	 m�	 Now� to conclude the proof� it su ces to show that Zxiyi

� 	 i 	 m�� and to this end it su ces to show that depth
xi� � depth
yi�� but this follows
from depth
x� � depth
y� together with the fact that all states in A� B have in�degree at
most �	 a

�� Forcing properties of models

Below we will want to get models that have nice properties� such as a low in�degree for each
of its elements� or �nite depth for each of its elements	 To obtain such models the following
comes in handy	
Fix a vocabulary � 	 A property P of models is �b

� �enforceable� or simply enforceable� i�
for every 
A� a� � Str�� �� there is a 
B� b� � Str�� � with 
A� a� �b

� 
B� b� and 
B� b� has P	

Proposition 
�� The property �every element has �nite depth	 is enforceable�

Proof� Let A � Str�� �� and let 
B� a� be the submodel of A that is generated by H�
� 
A� a�	 In


B� a� every element has �nite depth	 Moreover� 
A� a� �b
� 
B� a�� as 
B� a� is a generated

submodel of 
A� a�	 a

Proposition 
�� Let 
A� a� a model� 
B� b� a generated submodel of A� The property �
A� a�
contains at least n copies of B	 is enforceable 
n � ���

Proof� Let A � Str�� �	 Let B be the generated submodel we want to copy	 
We can assume
that B is a proper submodel of A� otherwise A with a copy of B added to it is simply the
disjoint union of two copies of A	� It su ces to show that we can enforce the property of
containing one extra copy of B	
Let B� denote a disjoint copy of B	 Add B� to A by linking elements in B� to all and only

the elements in AnB to which the corresponding original elements inB are linked	 Let 
C� a�
be 
A� a� denote the result� and let Z denote the identity relation on A� so Z � 
A� a� �b

�


A� a�	 Extend Z to a bisimulation Z � � 
A� a� �b
� 
C� a� by linking elements in B

� to the
corresponding elements in the original B	 a

Proposition �	
 below generalizes the unraveling construction from standard modal logic
over a vocabulary with a single binary relation symbol R ���� to arbitrary vocabularies� this
generalization will be used frequently below	



�� Modal equivalence and bisimulations �

Proposition 
�� The property �every element has in�degree at most �	 is enforceable�

Proof� We may assume that 
A� a� is generated by a	 Expand � to a vocabulary �� that
has constants for all elements in A	 De�ne a path conjunction to be a �rst�order formula
that is a conjunction of closed atomic formulas 
over ��� taken from the smallest set X such
that 
i� a � a is in X� 
ii� Rac� � � � cn is in X for any R and c�� � � � � cn such that 
A� a� j�
Rac� � � � cn� and 
iii� if ��Rcc� � � � cn is inX and for some S and i� 
A� ci� j� Scid� � � � dm� then
� �Rcc� � � � cn � Scid� � � � dm is in X	 A path conjunction � � �� � Sdd� � � � dm is admissible
for a constant c in �� n � if c is one of the di occurring in the last conjunct of �	
De�ne a model B whose domain contains� for every constant c in �� n � � a copy c�� for

every � that is admissible for c	 De�ne RBcc� � � � cn to hold if each of the c�� � � � � cn is labeled
with the same path conjunction � � �� � Rcc� � � � cn	 And de�ne a valuation V � on B by
putting c� � V 
p� i� c � V 
p�	
Finally� de�ne a relation Z between A and B by putting Zxy i� y � x� for some path

conjunction �	 Then Z � 
A� a� �b
� 
B� aa�a�	 a

Following the above proof of Proposition �	
� let us call a �rst�order formula �
x� y� a path
formula of length n over � if it is of the form

�
x� y� � �	x� 
 
 
 	xn
�
R�x	x� �

��
i

R�x�i 	x
�

�
� � � � �

��
i

Rnxn��i 	xn

��
�

where each of the Ri is a relation symbol in � 	 Two path formulas are called di
erent if
either they have di�erent lengths or they involve di�erent relation symbols	
For future purposes it is useful to observe that in a � �model 
A� a� every element has

in�degree at most � i� the model satis�es the following collection of �rst�order sentences�

f�y�
�
a� y� � 

a� y�� j �� 
 are di�erent path formulas over �g �

De�nition 
�
 A � �structure 
A� a� is called smooth if all elements in 
A� a� have �nite depth
and in�degree at most �� and for all R and every R�tuple 
x� x�� � � � � xn� in A� we have that
all xi have the same �nite depth	

Proposition 
�� Smoothness is enforceable�

Proof� By the the proofs of Propositions �	� and �	
	 a

�� Modal equivalence and bisimulations

In this section we determine the relationship between bisimilarity and modal equivalence	
For BML
�� a basic modal language over � � let 
A� a� �BML��� 
B� b� denote that 
A� a� and

B� b� satisfy the same BML
���formulas	

Proposition ��� Let � be a classical vocabulary� and let ML
�� be a basic modal language

over � � Then �b
� � �BML����

A similar relation holds between �nite approximations of bisimulations and restricted frag�
ments of modal languages	 We need the following notation	 We write 
A� a� �n

BML��� 
B� b�

for 
A� a� and 
B� b� verify the same BML
���formulas of rank at most n	



�� Modal equivalence and bisimulations �

Proposition ��� Let � be a classical vocabulary� and let BML
�� be any basic modal lan�

guage over � � Then �b�n
� � �n

BML����

Proposition ��� Let 
A� a�� 
B� b� be two �nite models such that every element has in�degree

at most �� and depth at most n� The following are equivalent�

�	 
A� a� �n
BML��� 
B� b��

�	 
A� a� �b�n
� 
B� b��


	 
A� a� �BML��� 
B� b��

�	 
A� a� �b
� 
B� b�	

Proof� The implication � � � is Proposition 
	�	 The implication � � � is immediate� and
the implication 
� � may be proved by an argument similar to the one in Theorem �	�	 To
complete the proof we need to show that � implies 
	 It su ces to observe that on models of
depth 	 n� every basic modal formula is equivalent to a formula of rank 	 n	 a

Example ��
 �Hennessy and Milner ���
	 The converse of the inclusion in Proposition
�	� does not hold� as is well�known from the general literature on bisimulations� there are
BML�equivalent models that are not bisimilar	
Let � be a vocabulary with just a single binary relation symbol R	 De�ne models A and

B as in Figure � below� where arrows denote R�transitions� Then 
A� a� �BML��� 
B� b�� but

B

b

A

au�
��
��
���
���
���
� � �

u�
��
��
���
���
���
� � �

ZZ�
ZZ�
ZZ�
ZZ� 	 	 	 	 	

Figure �� Equivalent but not bisimilar	


A� a� 
�b
� 
B� b�	 The �rst claim is obvious� to see that the second is true� observe that any

candidate bisimulation Z has to link points on the in�nite branch of B to points of A having
only �nitely many successors	 This violates the back�and�forth conditions	

To determine the exact relation between �b
� and �BML��� we need the following	

De�nition ��� A model A � Str�� � is said to be ��saturated if for every �nite subset Y
of A� every type !
x� of L����

��� where �� � � � f ca j a � Y g� that is consistent with
ThL��

A� a�a�Y � is realized in 
A� a�a�Y 	 By a routine argument the restriction to types in
a single free variable may be lifted to �nitely many	

Recall that an ultra�lter is countably incomplete if it is not closed under arbitrary intersection	

Lemma ��� �Keisler ��

	 Let � be countable� A � Str�� �� and let U be a countably incom�

plete ultra�lter over an index set I� The ultrapower
Q
U A is ��saturated�



�� Modal equivalence and bisimulations �

Theorem ��� �Bisimulation Theorem	 Let A� B � Str�� �� 
A� a� �BML��� 
B� b� i



A� a� and 
B� b� have � �bisimilar ultrapowers�

Proof� The direction from right to left is obvious	 For the converse� assume 
A� a� �BML���


B� b�	 We construct elementary extensions A� � A and B� � B� and a bisimulation between
A
� and B� that relates a and b	
First� let �� � � �f c g� and expand A and B to ���structures A� and B� by interpreting

c as a in A�� and as b in B�	 Let I be an in�nite index set� by Chang and Keisler ���
Proposition �	
	�� there is a countably incomplete ultra�lter U over I	 By Lemma �	� the
ultrapowers

Q
U 
A� a� �� 
A

�� a�� and
Q
U 
B� b� �� 
B

�� b�� are ��saturated	 Observe that
both a� in A� and b� in B� realize the set of BML
���formulas realized by a in A	
De�ne a relation Z on the universes of A� and B� by putting

Zxy i� for all BML
���formulas �� 
A�� x� j� � i� 
B�� y� j� �	

We verify that Z is a � �bisimulation	 First� as a and b verify the same BML
���formulas� Z
must be non�empty	 The condition on unary predicates is trivially met	 To check the forth
condition� assume Za�b�� a�� � � � � an � A

�� and Ra�a� � � � an in A
�	 De�ne

"i
xi� �� fST 
��
xi� j � � BML
��� A�� ai j� � g 
� 	 i 	 n��

Then
S
i"i
xi� � fRb�x� � � � xn g is �nitely satis�able in 
B

�� b�� b��	 To see this� assume
�i
xi� � "i
xi� is �nite	 Then


A�� a�� a�� j� fRx�x� � � � xn g �
S
i�i
xi��a� � � � an��

As Za�b� and �x� � � � �xn 
Rx�x� � � � xn�
V
��
x��� � � ��

V
�n
xn�� is really a modal formula�

it follows that for some b�� � � � � bn in 
B
�� b��


B�� b�� b�� j� fRx�x� � � � xn g �
S
i�i
xi��b� � � � bn��

Hence� by saturation� 
B�� b�� b�� j�
S
i"i
xi� � fRb�x� � � � xn g�b� � � � bn� for some b�� � � � � bn

in B�	 But then we have Zaibi and Rb�b� � � � bn 
� 	 i 	 n�� as required	 The back condition
is checked similarly	
As A� and B� are reducts to the original vocabulary � of the ultrapowers

Q
U 
A� a� andQ

U 
B� b�� respectively� this shows that A and B have � �bisimilar ultrapowers	 a

The Bisimulation Theorem should be compared to a weak version of the Keisler�Shelah
Theorem in �rst�order logic� two �rst�order models are elementary equivalent i� they have
partially isomorphic ultrapowers 
Van Benthem and Doets ����� the original strong version of
the result replaces �partially isomorphic� with �isomorphic� 
Chang and Keisler ��� Theorem
�	�	����	
Now that we know that �nitary modal equivalence between two models means bisimilarity

�somewhere else�� the obvious next question is� for which modal language L does �L coincide
with �b

�#

Theorem ��� The relations �b
� and �BML����� coincide�
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Proof� The inclusion �b
� � �BML����� is immediate by an inductive argument	 For the

converse� we adopt an argument due to Hennessy and Milner ����	 We show that the relation
Z de�ned by Zab whenever a and b satisfy the same BML��
���formulas is a � �bisimulation	
Assume it is not	 If a� and b� disagree on some proposition letter� then they can�t have
the same BML��
���theory	 Hence� for some R and a�� � � � � an we have Ra�a� � � � an�
while for all b�� � � � � bn in B Rb�b� � � � bn implies that for some i ai and bi disagree on some
formula in BML��
��	 Let X � f 
b�� � � � � bn� � Rb�b� � � � bn g	 Clearly X 
� �� and for every

b�� � � � � bn� � X there is an i such that for some �i ai j� �i and bi 
j� �i 
� 	 i 	 n�	 Put
�i ��

V
�i 
letting the empty conjunction denote ��	 Then� for �R the modal operator

whose semantics is based on R� we have a� j� �R
��� � � � ��n�� but b� 
j� �R
��� � � � ��n��
contradicting Za�b�	 a

For countable structures a sharper form of Theorem �	� is possible� Van Benthem and
Bergstra ��� show that� for vocabularies � not containing symbols of arity � �� countable
structures are characterized up to bisimilarity by a single BML���
���formula� the gener�
alization to arbitrary vocabularies is due to Holger Sturm 
personal communication�	 The
reader should compare this result with Scott�s Isomorphism Theorem saying that countable
structures are characterized up to isomorphism by a single L����sentence 
Scott ��$��	

Theorem ��� �Van Benthem � Bergstra �

	 Let � be a countable vocabulary� For ev�

ery countable structure A � Str�� � there is a formula � in BML���
�� such that for all a in

A� all countable B and all b in B� we have 
A� a� �b
� 
B� b� i
 
B� b� j� ��

We conclude the section with two brief comments on related work	 First� De Rijke ����
proves a Lindstr�om Theorem for basic modal logic� basic modal logic is the strongest logic
whose formulas are invariant for bisimulations and preserved under ultrapowers over �	 Sec�
ond� Goldblatt ���� and Hollenberg ��
� describe so�called Hennessy�Milner classes of models�
these are classes K on which modal equivalence and bisimilarity coincide� by the proof of the
Bisimulation Theorem �	� the ��saturated models form such a class	

�� Definability

As stated before� the standard translation ST embeds our basic modal languages into frag�
ments of classical languages	 Combined with known de�nability results and techniques for
the classical background languages� this fact allows for easy proofs of de�nability results for
basic modal languages	 The general strategy here is to �bisimulate� results and proofs from
classical logic� for instance by replacing ��� ��p and � with �	 As a corollary we �nd that
basic � �bisimulations cut out precisely the basic modal fragment of �rst�order logic	
We need some further de�nitions	 A class of 
pointed� models K is called an L�elementary

class 
or� K is EC in L� if K � f 
A� a� j 
A� a� j� �� for some L�formula � g	 We write K
is EC	 in L if it is the intersection of classes that are EC in L	 For K a class of models
K denotes the complement of K� Pr
K� denotes the class of ultraproducts of models in K�
Po
K� denotes the class of ultrapowers of models in K� and Bb
K� is the class of all models
that are basically bisimilar to a model in K	

Proposition ��� Let I be an index set� U an ultra�lter over I�
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�	 If for all i� 
Ai� ai� �
b
� 
Bi� bi�� then

Q
U 
Ai� ai��

b
�

Q
U 
Bi� bi��

�	 If 
A� a� �b
� 
B� b�� then

Q
U 
A� a� �

b
�

Q
U 
B� b��

Proof� �	 Assume that Zi � 
Ai� ai� �
b
� 
Bi� bi�	 For x in

Q
U 
Ai� ai� and y in

Q
U 
Bi� bi�

de�ne Zxy i� f i � I j Zix
i�y
i� g � U 	 Then Z de�nes a basic bisimulation
Q
U 
Ai� ai� �

b
�Q

U 
Bi� bi� linking the distinguished points a and b of
Q
U 
Ai� ai� and

Q
U 
Bi� bi�� respectively�

where for all i in I� a
i� � ai� b
i� � bi	
�	 This is immediate from item �	 
Alternatively� the diagonal map d � a � fa� where fa

is the constant map with value a� induces a bisimulation 
A� a� �b
�

Q
U 
A� a�	 Likewise� one

has 
B� b� �b
�

Q
U 
B� b�� hence 
A� a� �

b
� 
B� b� yields

Q
U 
A� a� �

b
�

Q
U 
B� b�	� a

Corollary ��� Let K be a class of � �models�

�	 PrBb
K� � BbPr
K�� hence K is closed under basic bisimulations and ultraproducts i


K � BbPr
K��

�	 PoBb
K� � BbPo
K�� hence K is closed under basic bisimulations and ultrapowers i


K � BbPo
K��

Proof� �	 Assume 
A� a� � PrBb
K�	 Then there are an index set I� models 
Ai� ai� and

Bi� bi� 
i � I� such that 
Bi� bi� � K� 
Ai� ai��

b
� 
Bi� bi�� and 
A� a� �

Q
U 
Ai� ai�� for some

ultra�lter U over I	 Trivially�
Q
U 
Bi� bi� � Pr
K�	 By Proposition �	�� item �� 
A� a� �Q

U 
Ai� ai� �
b
�

Q
U 
Bi� bi�	 Hence� 
A� a� � BbPr
K�	 As a consequence� if BbPr
K� � K�

then� as both Bb and Pr are idempotent� applying Bb or Pr does not take us outside K� this
is clear for Bb� and for Pr we have PrBbPr
K� � BbPrPr
K� � BbPr
K� � K	
�	 The proof is similar to the proof of item �� use Proposition �	�� item �	 a

Theorem ��� �De�nability Theorem	 Let L denote BML
��� and let K be a class of

� �models� Then

�	 K is EC	 in L i
 K � BbPr
K� and K � BbPo
K��

�	 K is EC in L i
 K � BbPr
K� and K � BbPr
K��

Proof� �	 The only if direction is easy	 For the converse� assume K is closed under ultraprod�
ucts and basic bisimulations� while K is closed under ultrapowers	 Let

T � ThL
K� � f� j 
A� a� j� �� for all 
A� a� � K g�

Then K j� T 	 Let 
B� b� j� T 	 Let % � ThL
B� b�� and de�ne I � f� � % � j�j 

� g	 For each i � f��� � � � � �n g � I there is a model 
Ai� ai� of i	 By standard model�
theoretic arguments there exists an ultraproduct

Q
U 
Ai� ai� which is a model of %	 As

Pr
K� � K�
Q
U 
Ai� ai� � K	 But� if 
A� a� j� %� then 
A� a� �L 
B� b�� so

Q
U 
Ai� ai� �L


B� b�	 By the Bisimulation Theorem there is an ultra�lter U � such that
Q
U �

Q
U 
Ai� ai�� �

b
�Q

U �
B� b�	 Hence� the latter is in K� and� by the closure condition on K� this implies 
B� b� �
K	 Therefore� K is the class of all models of T � and so K is EC	 in L	
�	 Again� the only if direction is easy	 AssumeK� K satisfy the stated conditions	 Then both

are closed under ultrapowers� hence� by item �� there are sets of L�formulas T�� T� witnessing
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that K is EC	 in L� and that K is EC	 in L� respectively	 Obviously� T� � T� j� �� so by
compactness for some ��� � � � � �n � T�� ��� � � � � �m � T�� we have

V
i �i j�

W
j ��j	 Then K is

the class of all models of
V
i �i	 a

The de�nability results for �rst�order logic that correspond to Theorem �	
 say that a class
of models K is EC	 in �rst�order logic i� K � IPr
K� and K � IPo
K�� and similarly for
EC classes in �rst�order logic	

Corollary ��
 �Separation Theorems	 Let L denote BML
��� Let K� L be classes of

� �models such that K � L � ��

�	 If BbPr
K� � K� BbPo
L� � L� then there exists a class M that is EC	 in L with

K � M and L �M � ��

�	 If BbPr
K� � K� BbPr
L� � L� then there exists a class M that is EC in L with
K � M and L �M � ��

Proof� �	 Let K� be the class of all � �models 
A� a� such that for some 
B� b� � K� 
A� a� �L

B� b�	 De�ne L� similarly	 Then K � K

�� L � L
� and K

� and L
� are both closed under �L	

Our �rst claim is that K��L� � �	 For suppose 
A� a� � K
��L�� then there exist 
B� b� � K�


C� c� � L such that 
B� b� �L 
A� a� �L 
C� c�	 By the Bisimulation Theorem 
B� b� and 
C� c�
have basically � �bisimilar ultrapowers

Q
U
B� b� and

Q
U 
C� c�	 As K� L are closed under Bb

and Po� this implies
Q
U 
B� b� � K � L� contradicting K � L � �	

Let T � ThL
K
��	 Then K

� is the class of models of T 	 As K � K
� and K

� � L � �� we are
done	
�	 This may be proved analogously to �	 Use the assumption that BbPr
L� � L to conclude

that L� is EC	 in L� and then apply a compactness argument as in the proof of Theorem �	
�
part �	 a

The Separation Theorems are �bisimilar� to corresponding results in �rst�order logic	 Observe
that the Craig Interpolation Theorem is a special case of �	��

Theorem ��� If K� L are EC in BML
� �� for some � � � � � and K � L � �� then there is a

class M that is EC in BML
�� with K � M and M � L � ��

The De�nability Theorem �	
 is di cult to apply in practice� as ultrapowers are rather
abstract objects	 The following Fra�&ss�e type result supplies a more manageable criterion for
EC classes	

Theorem ��� Let � be a �nite vocabulary� and let K be a class of � �models� Then K is EC

in BML
�� i
� for some n � N� K is closed under basic � �bisimulations up to n�

Proof� The only if direction is clear	 If K is closed under basic � �bisimulations up to n� let

A� a� � K� and de�ne ��A�a� to be the conjunction of all BML�formulas of rank at most n that
are true at a	 
Observe that over a �nite vocabulary there are only �nitely many basic modal
formulas of any given rank�	 Modulo equivalence there are only �nitely many such formulas
��A�a� for 
A� a� � K� let � be their disjunction	 Then � de�nes K	 For let 
B� b� j� �� then


B� b� �n
BML 
A� a� for some 
A� a� � K	 By a routine induction� 
B� b� �b�n

� 
A� a�� hence

B� b� � K	 a
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To conclude our list of results on de�nability we give a theorem that characterizes the modal
fragment of �rst�order logic	 For the standard modal languageML
�� a semantic description
of the corresponding �rst�order fragment in terms of bisimulations was �rst given by Van
Benthem ��� Theorem �	$�	
We need a de�nition	 Let �
x� be a �rst�order formula over � � �
x� is called invariant for

basic � �bisimulations if for all 
A� a�� 
B� b� � Str�� �� all basic � �bisimulations Z � 
A� a� �b
�


B� b�� and all x � A� y � B we have that Zxy implies A j� ��x� i� B j� ��y�	

Theorem ��� �Fragment Theorem	 Let �
x� be a �rst�order formula over � � The fol�

lowing are equivalent�

�	 �
x� is equivalent to �the ST �translation of� a modal formula in BML
���

�	 �
x� is invariant under basic � �bisimulations�


	 for some n � N� � is invariant under basic � �bisimulations up to n�

Proof� We only prove the implication � � �	 Let K be the class of models of �
x�	 Then K

and K 
being de�ned by ��
x�� are closed under ultraproducts	 As � is invariant under �b
� �

it follows that K � BbPr
K� and K � BbPr
K�	 By Theorem �	
 K must be EC in BML
��	
This means that � is equivalent to 
the translation of� some modal formula �	 a

�� Preservation

Preservation results formed the backbone of model theory for �rst�order logic until the early
sixties	 More recently there has been a renewed interest in preservation results with the
growing importance of restricted fragments and restricted model classes	 The best known
examples of preservation results in �rst�order logic include

� �Lo�s�s Theorem� A �rst�order formula is preserved under submodels i� it is equivalent
to a universal �rst�order formula 
Chang and Keisler ��� Theorem 
	�	���	

� The Chang��Lo�s�Suszko Theorem� A �rst�order formula is preserved under unions of
chains i� it is equivalent to a �universal�existential� �rst�order formula 
Chang and
Keisler ��� Theorem 
	�	
��	

� Lyndon�s Theorem� A �rst�order formula is preserved under homomorphisms i� it is
equivalent to a positive �rst�order formula 
Chang and Keisler ��� Theorem 
	�	���	

To further substantiate our main claim that bisimulations form the basic tools for the model
theory of modal logic� we will prove modal versions of each of the above preservation results	

Submodels

De�nition ��� A formula in BML
�� is existential if it has been built using 
negated�
proposition letters� �� �� �� � and modal operators � only	 A formula in BML
�� is
universal if it has been built using 
negated� proposition letters� �� �� �� � and duals � of
modal operators � in BML
�� only	
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De�nition ��� Let 
A� a�� 
B� b� be two models for the same vocabulary	 
A� a� is a submodel

of 
B� b� if a � b� and for every R� RA is the restriction of RB to the 
appropriate� domain
s�
of A	 A basic modal formula is preserved under submodels if 
B� b� j� � implies 
A� a� j� �

whenever 
A� a� is a submodel of 
B� b�	

To prove a basic modal version of �Lo�s�s Theorem we need a technical lemma	 The following
triple arrow notation will be useful	 For % a set of BML
���formulas� 
A� a� V
 
B� b�
abbreviates� for all � � %� 
A� a� j� � implies 
B� b� j� �� in particular we will useVE� where
�E� denotes the set of all existential formulas	
Recall that a model is smooth if if each of its elements has �nite depth and in�degree at

most �� and for all R and every R�tuple 
x� x�� � � � � xn�� we have that all xi have the same
�nite depth 
see De�nition �	��	

Lemma ��� Let 
A� a� and 
B� b� be � �structures such that 
A� a� is smooth� 
B� b� is ��
saturated� and 
A� a� VE 
B� b�� Then there exists 
B�� b�� �b

� 
B� b� such that 
A� a� is
embeddable in 
B�� b���

In a diagram the Lemma claims�


A� a� VE 
B� b�

�

��� ����b
�


A� a� �� 
B�� b���

In a somewhat di�erent form� and restricted to the standard modal language� Lemma �	
 is
due to Van Benthem �
�	

Proof of Lemma 
��� We de�ne a �forth simulation� F between 
A� a� and 
B� b�� that is� a
relation F that links two points only if they agree on all proposition letters� and that satis�es
the forth condition�

if Fvw� RAvv� � � � vn� then there are w�� � � � � wn in B with
RBww� � � � wn and Fviwi 
� 	 i 	 n�	

We de�ne a function F from 
A� a� to 
B� b� by induction on the depth of elements in 
A� a�	
This function will be a forth simulation� and as such it will satisfy 
A� x� VE 
B� Fx�	 Put
Fa � b	 Assume that F has been de�ned for all elements of depth 
 n	 Let x in 
A� a�
have depth n	 By the smoothness of 
A� a� there are unique elements y of depth n� �� and
x�� � � � � xn of depth n such that x is one of x�� � � � � xn� and such that for some R we have
RAyx� � � � xn	 We de�ne F for each of x�� � � � � xn	 Let Ei be the set of existential modal
formulas satis�ed by xi	 By 
A� y� VE 
B� F y� and saturation there are x

�
�� � � � � x

�
n in B

with x�i j� Ei and R
BF 
y�x�� � � � x

�
n 
� 	 i 	 n�	 Put Fxi � x�i 
� 	 i 	 n�	

The next step is to extend F to a full bisimulation between a supermodel 
B�� b�� of 
A� a�
and 
B� b�	 De�ne 
B�� b�� 
as in Figure �� to be the disjoint union of 
A� a� and 
B� b� in
which we identify the two distinguished points of 
A� a� and 
B� b�� and with the following
extension of the relations�

if x � 
A� a�� Fx � y and Ryv� � � � vn� then Rxv� � � � vn	
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�

�

�

�
B�� b��


B� b�


A� a� �

�

�

	
u�

�
�
	

Figure �� Combining 
A� a� and 
B� b�	

Observe that a and b agree on all proposition letters� thus their identi�cation is well�de�ned	
De�ne a relation Z between the domain of 
B�� b�� and the domain of 
B� b� as follows� for x
in A we put Zxy whenever Fx � y� and for x in B we put Zxx	 Then Z � 
B�� b���b

� 
B� b��

� Z�related points agree on all proposition letters�

� Assume v in B�� w in B and Zvw	 If RB
�

vv� � � � vk� then either v�� � � � � vk all live in A�
or they all live in B	 In the �rst case our forth simulation F will �nd w�� � � � � wk with
Zviwi 
� 	 i 	 k� and RBww� � � � wk	 In the second case we have two possibilities� if v
in B� then v � w� RBvv� � � � vk and Zvivi	 The other possibility is that v is not in B�
but then Fv � w and RBwv� � � � vk� and by construction Zviwi� as required	

� Assume v in B�� w in B and Zvw	 Assume also that RBww� � � � wk	 If v in A� then by
construction Fv � w� and RB

�

vw� � � � wk and Zwiwi	 If v is in B� then we must have
v � w� RB

�

vw� � � � wk and Zwiwi� and we are done	

Thus Z � 
B�� b���b
� 
B� b�	 As 
A� a� lies embedded as a submodel in 
B

�� b��� this completes
the proof	 a

Theorem ��
 ��Lo�s�s Theorem	 A basic modal formula is preserved under submodels i
 it

is equivalent to a universal basic modal formula�

Proof� Aside from an application of Lemma �	
 this is a routine argument	 First� it is easy
to check that if � is equivalent to a universal formula� then it is preserved under submodels	
Second� if � is so preserved� let CONSU 
�� be the set of universal consequences of �	 By

compactness it su ces to show CONSU 
�� j� �	 So assume 
A� a� j� CONSU 
��� we may
assume that 
A� a� is smooth	 Let E be the set of all existential formulas � with 
A� a� j� �	
Then� by compactness� E � � has a model 
B� b�� which may be assumed to be ��saturated	
By Lemma �	
 
B� b� j� E�� implies that some supermodel 
B�� b�� of 
A� a� has 
B�� b�� j� �	
By preservation under submodels 
A� a� j� �	 a

Unions of chains

De�nition ��� A formula in BML
�� is universal existential if it has been built using
existential formulas� �� �� and dual modal operators � only	 A formula is existential universal
if it has been built using universal formulas� �� �� and modal operators � only	
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We write 
A� a� VUE 
B� b� for� 
B� b� satis�es all universal existential formulas satis�ed by

A� a�� and similarly for VEU	

De�nition ��� A chain of � �structures is a collection 

Ai� ai� � i � I� such that for all i� j�
if i 
 j� then 
Ai� ai� is a submodel of 
Aj � aj�	 A bisimilar chain is a chain 

Ai� ai� � i � I�
in which for all i 	 j � I� 
Ai� ai��

b
� 
Aj � aj�	

The union of the chain 

Ai� ai� � i � I� is the model A �
S
i�I
Ai� ai� whose universe is

the set
S
i�I � and whose relations are the unions of the corresponding relations of 
Ai� ai��

RA �
S
RAi 	

Lemma ��� Let 

Ai� ai� � i � �� be a bisimilar chain of � �structures such that fo all i � ��


Ai� ai� �� 
Ai��� ai���� Then� for each j� 
Aj � aj� �
b
�

S
i��
Ai� ai��

Lemma ��� Assume 
C� c� is a smooth model that lies embedded as a submodel in 
D� d��
Then there exists 
E� e� �b

� 
D� d� such that 
C� c� lies embedded as a submodel in 
E� e� and

E� e� is smooth�

Proof� First� take the submodel of 
D� d� that is generated by d� and then apply the �unrav�
eling� construction of Proposition �	
 to the result	 As 
C� c� is smooth neither operation will
a�ect 
C� c�	 a

Lemma ��� Let 
A� a� and 
B� b� be � �structures such that 
A� a� is smooth� 
B� b� is ��
saturated� and 
A� a� VEU 
B� b�� Then there exists a smooth model 
B�� b�� �b

� 
B� b� such
that 
A� a� is embeddable in 
B�� b�� and 
A� a�VU 
B

�� b���

In a diagram the Lemma claims�


A� a� VEU 
B� b�

�

��� ����b
�


A� a� ��

VU

B�� b���

Proof of Lemma 
��� This is similar to the proof of Lemma �	
	 De�ne a function F that is
a forth simulation from 
A� a� to 
B� b� such that Fa � b and 
A� x�VEU 
B� Fx�	 Extend F
to a full bisimulation between 
A� a� and a supermodel 
B�� b�� �b

� 
B� b� of 
A� a� that has

A� a� �� 
B�� b��� as in the proof of �	
	 By Lemma �	� we may take 
B�� b�� to be smooth	
To complete the proof we need to show that 
A� a� VU 
B

�� b��	 This is almost trivial� for a
universal formula � we have that 
A� a� j� � implies 
B� b� j� �� as 
A� a� VEU 
B� b�	 Since

B�� b���b

� 
B� b�� this implies 
B
�� b�� j� �	 a

Lemma ���� Assume 
A� a� is a model of the universal existential consequences of �� Then
there exists an ��saturated model 
B� b� such that

�	 
B� b� j� ��

�	 
A� a� is in embeddable in 
B� b�� and


	 
A� a�VU 
B� b�	
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Proof� Consider the set T of all existential universal modal formulas � such that 
A� a� j� �	
Then� by a simple compactness argument� T � f�g has a model 
C� c�� which we may assume
to be ��saturated	 Applying Lemma �	$� we �nd that 
A� a� can be extended to a model

B� b� of � that satis�es all the universal formulas satis�ed by 
A� a�	 Moreover� we can take

B� b� to be ��saturated	 a

Theorem ���� �Chang��Lo�s�Suszko Theorem	 A basic modal formula is preserved under
unions of chains i
 it is equivalent to a universal existential formula�

Proof� Again� the argument is 
bi��similar to the standard argument proving the result for
�rst�order logic	 We only prove the hard direction	 Assume � is preserved under unions of
chains	 Let CONSUE 
�� denote the set of universal existential consequences of �	 It su ces
to prove that CONSUE 
�� j� �	 So assume 
A�� a�� j� CONSUE 
��� we may of course
assume that 
A�� a�� is smooth and ��saturated	 We prove that 
A�� a�� j� �	 To this end
we construct a bisimilar chain 

Ai� ai� � i 
 �� of smooth� ��saturated models� ��saturated
extensions 
Bi� bi� � 
Ai� ai�� and embeddings gi � 
Bi� bi�� 
Ai��� ai��� as in the following
diagram�


B�� b�� 
B�� b��
�

��
�� HHHj

g� �

��
�� HHHj

g�


A�� a�� �b
� 
A�� a�� �b

� 
A�� a�� � � �


�	��

We will require that for each i 
 ��


Bi� bi� j� � and 
Bi� bi�VE 
Ai� ai�	 
�	��

The diagram is constructed as follows	 Suppose 
Ai� ai� has been de�ned	 As 
A�� a�� �
b
�


Ai� ai� we have 
Ai� ai� j� CONSUE 
��	 By Lemma �	�� there exists an ��saturated extension

Bi� bi� of 
Ai� ai� satisfying 
�	��	 As 
Ai� ai� is smooth� we may assume 
Bi� bi� to be smooth
and ��saturated by Lemma �	�	 Applying Lemma �	
� we �nd a model 
Ai��� ai��� bisimilar
to Ai� ai� and an embedding gi � 
Bi� bi� �� 
Ai��� ai��� such that gi is the identity on Ai� we
may assume that the model 
Ai��� ai��� is both smooth and ��saturated	
In the diagram 
�	�� we can replace each 
Bi� bi� by its image under gi� and so assume that

the maps are inclusions	 Then
S
i��
Ai� ai� and

S
i��
Bi� bi� are the same structure 
C� c�	

As � is preserved under unions of chains� 
Bi� bi� j� � 
for all i� implies 
C� c� j� �	 By
Lemma �	� 
A�� a���

b
� 
C� c�� hence 
A�� a�� j� �	 a

Homomorphisms

De�nition ���� A formula � in BML
�� is positive i� it has been built up using only ��
�� proposition letters� �� �� as well as modal operators � and their duals �	 A formula �
is negative i� it has been built up from �� �� negated proposition letters� �� �� as well as
modal operators � and their duals �	

De�nition ���� Let 
A� a�� 
B� b� be two � �structures	 A homomorphism f � 
A� a�� 
B� b�
is a mapping with f
a� � b� that preserves all relations and proposition letters	 A basic modal
formula � is preserved under surjective homomorphisms if 
A� a� j� � implies 
B� b� j� �

whenever 
B� b� is a homomorphic image of 
A� a�	



�� Preservation 	�

Some more notation� 
A� a� VP 
B� b� is short for� for all positive formulas �� 
A� a� j� �

implies 
B� b� j� �	

Lemma ���
 Let 
A� a�� 
B� b� be ��saturated � �structures with 
A� a�VP 
B� b�� and such
that both in 
A� a� and 
B� b� all elements have in�degree at most �� Then there exist � �

structures 
A�� a�� �b
� 
A� a� and 
B�� b�� �b

� 
B� b� with a surjective homomorphism f �

A�� a��� 
B�� b���

In a diagram the Lemma asserts the existence of the following con�guration�


A� a� VP 
B� b�

�b
�

��� ����b
�


A�� a��
f
�� 
B�� b���

Proof of Lemma 
���� The strategy of the proof is to move to smooth models where we can
inductively de�ne a surjective homomorphism from a model bisimilar to 
A� a� onto a model
bisimilar to 
B� b�	 To ensure surjectivity we have to blow up the model bisimilar to 
A� a�	
Let 
A��� a� be the submodel of 
A� a� generated by a� and let 
B�� b� be the submodel

of 
B� b� generated by b	 Then both 
A��� a� and 
B�� b� are smooth	 By induction on the
depth of elements we will add jB�j� many copies of all 
tuples of� elements in 
A��� a�	 We
show how to do this by adding copies of elements of depth � in 
A��� a� to obtain a model

A�� a� �

b
� 
A

��� a�	
De�ne � on the elements of depth � in 
A��� a� by putting x � y i� for some R and x��

� � � � xn we have that both x and y are among x�� � � � � xn and R
A
��

ax� � � � xn	 By smoothness
this is well de�ned	 For each ��equivalence class X � fx� � � � xn g let CX be the submodel
of 
A��� a� that is generated by X	 Now� for each CX take jB

�j� many disjoint copies of CX �
and add them to 
A��� a�� for each copy C�X� of CX relate the generating points x

�
�� � � � � x

�
n to

a the way the originals x�� � � � � xn are related to a	 Let 
A�� a� be the resulting model	 Then

A��� a� �b

� 
A�� a�	 Repeat this construction for all depths n to obtain models


A� a� �b
� 
A

��� a�
�

�b
�


A�� a�
�

�b
�


A�� a� 
 
 


De�ne 
A�� a� �
S

Ai� a�	 Then 
A

�� a��b
� 
A� a�� and 
A

�� a� has at least jB�j� many copies
of each of its submodels generated by tuples x�� � � � � xn such that R

A
�

xx� � � � xn for some R
and x	

Next we de�ne a function F from 
A�� a� to 
B�� b� by induction on the depth of elements in
such a way that 
A�� x�VP 
A� Fx�	 For each n we �rst make sure that all elements of depth
n in 
B�� b� are in the range of F 	 After that we give F values to points of depth n in 
A�� a�
that are not yet in the domain of F 	
Here we go	 Put Fa � b	 Assume that n � �� and that F has been de�ned for all depths

less than n in such a way that all elements of 
B�� b� of depth less than n are already in the
range of F 	 Let y in 
B�� b� have depth n� and choose z of depth n� �� y�� � � � � yn of depth
n and R such that RB

�

zy� � � � yn and y is one of the yi 
� 	 i 	 n�	 Let Ni be the set of all
negative modal formulas satis�ed by yi in 
B

�� b�	 Then 
B� yi� j� Ni	 By assumption there



�� Concluding remarks and historical notes 	�

exists x� in A� with Fx� � z� and 
A�� x�� VP 
B
�� z�	 Let x in A�� be such that x� is a copy

of x if x� is in A� n A��� and x � x� otherwise	 Then 
A�� x�� �b
� 
A

��� x� �b
� 
A� x�	 Hence�


A� x�VP 
B� z�	 By a saturation argument there are x��� � � � xn in A with R
Axx� � � � xn and

xi j� Ni 
� 	 i 	 n�	 Then x�� � � � � xn are in A
��	 Now let x��� � � � � x

�
n be copies of x�� � � � �

xn such that R
A
�

x�x�� � � � x
�
n and such that x

�
�� � � � � x

�
n are not yet in the domain of F 
this is

possible as we have added jB�j� many copies to A���� and put Fx�i � xi 
� 	 i 	 n�	
Once we have included all elements of depth n in 
B�� b� in the range of F � we de�ne what

F should do with elements of depth n in 
A�� a� by using a saturation argument as before�
but this time using sets Pi of positive modal formulas� rather than sets Ni of negative modal
formulas	
Obviously� the function F thus de�ned is a homomorphism and a surjection	 Hence we are

done	 a

Theorem ���� �Lyndon�s Theorem	 A basic modal formula is preserved under surjective

homomorphisms i
 it is equivalent to a positive modal formula�

Proof� We only prove the hard direction� assume � is preserved under surjective homomor�
phisms	 Let CONSP 
�� be the set of positive formulas � with � j� �	 It su ces to show that
CONSP 
�� j� �	 Assume 
B� b� j� CONSP 
��	 Let N be the set of all negative formulas
true at b in B	 Let 
A� a� j� N � �	 Then 
A� a� VP 
B� b�	 We may of course assume that
both 
A� a� and 
B� b� are ��saturated� and that all elements in 
A� a�� 
B� b� have in�degree
at most �	
By Lemma �	�� there are 
A�� a�� �b

� 
A� a� and 
B
�� b���b

� 
B� b�� as well as a homomor�
phism f � 
A�� a�� �� 
B�� b��	 Now� 
A� a� j� � implies 
A�� a�� j� �� by preservation under
surjective homomorphisms this implies 
B�� b� j� �� which gives 
B� b� j� �� as required	 a

	� Concluding remarks and historical notes

This paper has developed the model theory of the class of basic modal languages in parallel
with the basic model theory of �rst�order logic� using bisimulations as its key tool	 By means
of a Bisimulation Theorem� according to which two models are equivalent in basic modal
logic i� they have bisimilar ultrapowers� a series of de�nability and separability results were
obtained� in addition� we were able to prove preservation results for universal� universal
existential and positive basic modal formulas that by using bisimulations in an essential way	
The paper only covered some rudimentary model theory� and it only did so for basic modal

languages and some extensions � a lot remains to be done	

�	 First� our Fragment Theorem in x� only characterizes 
�nitary� basic modal languages
as a fragments of �rst�order languages	 What about characterizations of in�nitary basic
modal languages as fragments of the corresponding in�nitary classical languages#

�	 For one well�known �rst�order preservation result we have not been able yet to obtain
a modal counterpart� namely for the result that identi�es �rst�order Horn sentences as
the ones that are preserved under reduced products	


	 In a recent manuscript Johan van Benthem characterizes the 
�rst�order� formulas
de�ning operations on relations that preserve bisimilarity	 What is the connection



References 	�

between this �safety result� and the de�nability and characterization results obtained
here#

�	 Both bisimilarity and modal equivalence cut up the universe of all model into equiva�
lence classes	 This raises the following question� when does an equivalence relation on
the class of all models come from a modal language#

�	 Although the above constitute a number of interesting questions� the really big question
is� what makes the central equation of this paper work in the �rst place# How should
we understand the �take a �rst�order result� and bisimulate it� strategy of this paper#
As a connection between two suitable categories# As a kind of duality principle#

We end on a short historical note� modal logic bisimulations have been around since Van
Benthem ���� there they are called p�relations	 In the computational tradition bisimulations
date back at least to Park ����	 In essence bisimulations are trimmed down versions of the
Ehrenfeucht games found in �rst�order logic ���	 Further references� both on modal and on
computational aspects can be found in Van Benthem and Bergstra ���	
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