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Abstract

We describe a framework for offline extraction of certain types of informa-
tion from a document collection, and discuss its usage for answering factoid
questions. We implemented this approach as a part of the Dutch Question
Answering System developed at the University of Amsterdam. The evalua-
tion of the system using data from the CLEF 2003 Question Answering track
shows that our strategy yields a significant improvement in the performance
of our overall system.

1 Introduction

With recent advances in computer and Internet technology, people have access
to more information than ever before. Much of the information is available in
free text with little or no metadata, and there is a tremendous need for tools to
help organize, classify, and store the information, and to allow better access to
the stored information. Current information retrieval systems allow us to locate
documents that might contain the pertinent information, but most of them leave
it to the user to extract the useful information from a ranked list. This leaves the
(often unwilling) user with a relatively large amount of text to consume.

To address these issues, a number of recent initiatives are aimed at providing
highly focused information ‘pinpointing.’ For instance, in the TREC question
answering (QA) track [9] participants are given a large document set and a set
of questions; for each question, the system has to return an exact answer to the
question and a document that supports that answer.

QA has recently received attention from the information retrieval, informa-
tion extraction, machine learning, and natural language processing communi-
ties [3, 6, 10]. But the field itself is not new; in an overview paper from the mid
1960s, as many as 15 implemented and working systems for question answering are
described [8]. These early QA systems, however, were usually natural language
front-ends to highly structured data sources, whereas modern systems aimed at
addressing TREC-style QA operate on unstructured data (typically, collections of
newspaper articles). In this paper we report on preliminary experiments in which
we attempt to bring those two traditions together. Our motivation for this work is
three-fold. First, while information retrieval techniques are relatively successful at
providing near-instant access to the vast amount of data on the web, the precision
required of QA systems makes on-the-fly question answering from unstructured



data sources too slow and impractical. Second, for many types of factoid ques-
tions used for evaluation purposes, the semantic information that (likely) answers
these questions, occurs in very fixed patterns. For example, for questions like
“Waar ligt Basra?”(that we classify as a location question), typical answer pat-
terns are “Basra, slechts vier kilometer van de grens met Iran” and “Basra, in het
zuiden van Irak.” Our strategy is to exploit such regularities for offline extraction
of semantic data so as to make the data available for rapid and easy access. Third,
having access to such extracted data will allow us to more easily answer certain
types of questions than we would be able to if we only did on-the-fly processing;
examples include list questions such as “Noem Europese staatshoofden.”

The remainder of this paper is structured as follows. In Section 2 we describe
the experimental setting in which we evaluated our ideas, the CLEF 2003 Dutch
Question Answering task. In Section 3 we describe our system architecture and
contrast it with the canonical QA system architecture. Then, in Section 4 we pro-
vide details on the creation and use of various kinds of offline tabular data within
the QA scenario; we also assess its effectiveness. In our final section (Section 5)
we formulate conclusions and discuss future work.

2 Experimental Setting

This year, the Cross-Language Evaluation Forum (CLEF [2]), a forum dedicated
to the development of information retrieval systems for European languages, fea-
tured a Question Answering track for the first time; the languages evaluated were
Italian, Spanish and Dutch. For the Dutch systems, the corpus was composed of
newspaper articles from 1994–1995, taken from the Dutch daily newspapers Al-
gemeen Dagblad and NRC Handelsblad. The total corpus size was about 500MB
(72 million words). The question set included 200 factoid question, out of which
10% had no known answer in the corpus.

At CLEF, systems were allowed to return three ranked answers for each ques-
tion; an answer can either be a 50-byte string which contained the answer, or the
exact answer phrase. Each answer is required to be accompanied by justification:
an identifier for the document from which the answer originated. The University
of Amsterdam only submitted runs with exact answers. The CLEF evaluation
uses the standard MRR (mean reciprocal rank) scoring metric; however, since the
official CLEF assesments have not yet been delivered at this time, we will use a
simpler measure in this paper: the percentage of questions which had a correct
answer in one of the three answer candidates provided by the system.

3 System Architecture

The general architecture of a QA system, shared by many systems, can be summed
up as follows. A question is first associated with a question type, out of a predefined
set such as date-of-birth or currency. Then, a query is formulated for the
question’s expected answer, and issued to an information retrieval engine, which
then returns documents that are likely to contain the answer. Those documents
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Figure 1: The University of Amsterdam’s Dutch Question Answering System.

are sent to an answer extraction module, which identifies candidate answers, ranks
them, and selects the final answer. On top of this basic architecture, numerous
add-ons have been devised, ranging from logic-based methods to ones that rely
heavily on the redundancy of information on the World Wide Web [9].

During the design of our QA system, it became evident that there are a number
of distinct approaches for the task; some are beneficial for all question types, and
others only to a subset. It was therefore decided to implement a multi-stream
system: a system that includes a number of separate and independent subsystems,
each of which is a complete standalone QA system that produces ranked answers;
the system’s answer is then taken from the combined pool of candidates.

Scientifically, it is interesting to understand the performance of each stream
on specific question types and in general. On the practical side, our multi-stream
architecture allows us to modify and test a stream without affecting the rest of the
system. A general overview of our system is given in Figure 1. The system consists
of 5 separate QA streams and a final answer selection module that combines the
results of all streams and produces the final answers.

Question Answering Streams. We now provide a brief description of the five
streams of our QA system: Table Lookup, Pattern Match, English Tequesta, Dutch
Tequesta, and Web Answer.

The Table Lookup stream is the focus of this paper; see Section 4 for details. It
involves construction of specialized knowledge bases from the collection by prepro-
cessing it. When a question type is determined to be one of the pre-defined types
that have a possible answer in these tables, lookup is performed in the respective
knowledge base and answers which are found there are assigned high confidence.

In the Pattern Match stream, zero or more perl regular patterns are generated
for each question according to its type and structure. These patterns indicate
strings which contain the answer with high probability, and are then matched
against the entire document collection. Here’s a brief example:



Question 2. In welke stad is het Europese Parlement?
Generated pattern Europese Parlement\s+in\s+(\S+)

Match . . . voor het Europese Parlement in Straatsburg, dat . . .
Extracted Answer Straatsburg

Naturally, these patterns also match strings which are not answers; we therefore
count the number of times each candidate answer string matched, and rely on
actual answers to appear more frequently than other strings.

The English Tequesta stream translates the questions to English using a free
web service (WorldLingo, www.worldlingo.com). The auto-translated questions
are then fed to Tequesta, an existing QA system for English developed in the
University of Amsterdam [4], using the English CLEF corpus, and extended with
an Answer Justification module to anchor the answer in the Dutch corpus.

The Dutch Tequesta is an adaptation of English Tequesta to Dutch and used as
an independent stream, provided with the original Dutch newspaper corpus. The
modifications to the original system included replacing (English) language specific
components by Dutch counterparts; for instance, we trained TNT [1] to provide
us with Part-of-Speech tags using the Corpus Gesproken Nederlands [5], and a
named entity (NE) tagger for Dutch was also developed locally.

The Web Answer stream looks for an answer to a question in the World Wide
Web, and then finds justification for this answer in the collection. The question is
converted to a web query, by leaving only meaningful keywords and (optionally)
using lexical information from EuroWordNet. The query is sent to a web search
engine (for the experiments in this paper we used Google); if no relevant Web
documents are found, the query is translated to English and sent again. If the
query yields some results, words and phrases appearing in the snippets of the top
results are considered as possible answers, and ranked according to their relative
frequency over all snippets. The Dutch NE tagger and some heuristics were used to
enhance the simple counts for the terms (e.g., terms that matched a TIME named
entity were given a higher score if the expected answer type was a date). Finally,
justifications for the answer candidates are found in the local Dutch corpus.

While each of the above streams is a “small” QA system in itself, many com-
ponents were shared between the streams, including, for instance, an Answer Jus-
tification module that tries to ground externally found facts in the Dutch CLEF
corpus, and a Web Ranking module that uses search engine hit counts to rank the
candidate answers from our streams in a uniform way. Our Question Classifier,
which was a shared component as well, relies on pattern matching, making use of
the fact that the vast majority of questions of a certain type are formulated in a
few typical ways.

4 A Closer Look at the Table Lookup Stream

Before we report on the impact of tabular data, we take a closer look at how the
data was obtained.



Extraction. We hand-crafted a small number of regular expressions able to
extract information about country currencies, leaders, roles, capitals, inhabitants,
abbreviations, and locations. We chose these categories because likely answers to
questions asking for such information tend to occur in a small number of fixed
patterns. Furthermore, our main aim was to determine the viability of the idea
of using knowledge bases generated from the text collection to answer questions;
for this reason we opted to work with a small set of hand-crafted high precision
extraction patterns. However, in a later stage of this work we plan to investigate
machine learning techniques for automatically extracting patterns; such techniques
have been used extensively in the field of information extraction [7].

In Table 1 we list the categories for which we created knowledge bases, plus
the number of facts per category. The “Adjective-location” category concerns
geographic information of the following type “Bhopal, stad, in India, NH19940125-
0036”, where the first field indicates a location, the second its type, the third a
country or region in which it is located, and the fourth the identifier for the
document from which it was extracted. “Locations” contains similar information,
but without the type; “Leaders” has information of the following kind “Beieren,
minister van milieu, Peter Gauweiler, NH19940217-0003”, and “Roles” generalizes
this to also include other roles besides government-related ones.

Type # Facts extracted # Unique facts extracted

Abbreviations 14575 6095
Adjective-location 2328 957
Capitals 1922 465
Currencies 41 26
Inhabitants 39 38
Leaders 10740 2456
Locations 4931 4202
Roles 9717 8954

Table 1: Facts extracted from the Dutch CLEF 2003 corpus.

Due to space limitations we can’t provide details on the extraction process for each
of the above classes; we briefly discuss some typical cases. Abbreviation questions
include questions asking for an abbreviation and questions asking for an expansion
of an abbreviation. To collect abbreviation-expansion pairs we made a single pass
through the document collection to identify strings of capitals in brackets; upon
finding one we extracted sequences of capitalized non-stopwords preceding it (with
about as many words as the length of the capitalized string).

While extracting abbreviation-expansion information requires no background
knowledge, the “adjective-location” category does. Using EU-guidelines for trans-
lators on official adjective-to-country/location mappings, we extracted phrases
such as “Mexicaanse vulkaan Popocatepetl” to produce facts such as “Popocate-
petl,vulkaan,in Mexico,NH19940718-0041”.

We used more background knowledge to populate the roles table: from the
Dutch part of EuroWordNet we compiled a list of about 900 professions; syntac-
tic appositions of the form “<name>, <clause-involving-a-profession>, were



then extracted to obtain descriptions of the people identified using <name>. A sam-
ple fact extracted in this manner is “Ally Derks, oprichter en directeur van het
International Documentary Filmfestival Amsterdam (IDFA), NH19941207-0070”.

None of the regular expressions used for extraction were meant to be exhaustive
of all possible varieties of patterns in which the information being extracted occurs.
They are straightforward, but reasonably high precision implementations meant to
extract a large proportion of the patterns in the text. After the initial harvesting
step, various cleaning up steps were applied to filter out noise. Again, in future
work we plan to use machine learning techniques (trained on a small sample of
manually extracted facts), but for the current proof-of-concept stage of our offline
extraction for QA work, we simply devised some rules by hand to reduce noise.

Look up. The generated tables are simple text files, rather than structured
databases; in addition, the actual “key” for the lookup in them is not directly
given, and has to be analyzed from the format of the question. We therefore use
the following method for the lookup: after identifying relevant knowledge base files
using the question type, we try to locate lines in tables that match the question
focus. If these are not found, we look for lines that contain as many terms from the
focus as possible, giving priority to capitalized words. If matching lines are found,
the candidate answers are extracted and ranked according to their frequencies.

The Impact of Using Tabular Data. In order to determine the effect of using
tabular data, we evaluated the performance of our system in three different ways:
with all five streams, with all streams except for Table Lookup and with Table
Lookup alone. An official CLEF assessment exists only for the entire five-stream
system; the rest of the evaluations were done by us manually, in a compatible
way to the CLEF evaluations. Like the official CLEF evaluation, we considered a
question answered correctly if at least one of the top three answers given by the
system was correct. We refer here to the lenient (non-strict) results (although for
answers obtained from the Table Lookup stream it is guaranteed that the document
given as justification indeed contains the answer).

Table 2 lists the number of correctly answered questions for two sets of ques-
tions: both the whole set of 200 questions, and the 187 questions that contain
answers in the collection. In the first case the performance is somewhat better
— mainly because our system always includes NIL (no answer) in the top three
answers, and thus according to our evaluation scheme, questions without answer
in the collection are always answered correctly.

Only Without
# Questions Table Lookup Table Lookup All five streams

200 (all) 54 (27%) 64 (32%) 89 (45%)
187 (with answer) 41 (22%) 51 (27%) 76 (41%)

Table 2: Evaluation: the number of questions answered correctly.

Looking at the bottom row in Table 2, we see that the Table Lookup stream
provides correct answers for 22% of the questions, and, more importantly, 14% of



the questions was only answered correctly by the Table Lookup stream (i.e., not
by any of the other four streams).

So where did the Table Lookup stream prove to be especially helpful? And
how significant was the contribution? Table 3 gives a breakdown in terms of
the question categories for which the system with the Table Lookup stream gives
correct answers, while the system without Table Lookup fails.

# Questions Category Example

8 Capitals Wat is de hoofdstad van Zuid-Afrika?
7 Inhabitants Hoeveel inwoners heeft Sydney?
5 Roles/Leaders Wie is de voorzitter van de Europese Commissie?
4 Abbreviations Waar staat GATT voor?
3 Locations In welke stad is het Europese Parlement?
1 Currencies Hoe heet de Chinese munteenheid?

Table 3: Categories of the questions for which the Table Lookup stream helps.

Summing up the entries in column 1 of Table 3, we see that the Table Lookup
stream correctly answers 28 questions not answered correctly by the other streams.
In total, 72 questions looked for answers that could (in principle) be present in our
tables. Table 4 gives the performance analysis for these questions: the number of
questions that were correctly vs. incorrectly answered by the Table Lookup stream
alone and all five streams vs. the four streams without Table Lookup.

Table Lookup All five streams

fo
u
r

st
re

a
m

s correct incorrect
correct 13 8

incorrect 29 22

correct incorrect

19 2
28 23

Table 4: Breakdown of Table Lookup results.

On the types of questions on which it could potentially make a difference, the Table
Lookup stream made a significant difference (using the sign test, with p < 0.01).
It is worth noting that the Table Lookup stream still leaves lots of room for im-
provement: only 42 out of 72 relevant questions were answered correctly by the
Table Lookup stream (58.3%); note that 6 of the missing answers were found by
the other four stream (at the expense of 1 previously correct answer), leading to
a total of 47 out 72 relevant questions answered correctly (65.3%).

The most common errors encountered in the incorrect answers produced by
the Table Lookup stream were:

• We failed to extract the required information. E.g. the sentence “. . . Australië’s
formele staatshoofd, de Britse koningin Elizabeth. . . ” didn’t produce the
entry (Australië, formele staatshoofd, de Britse koningin Elizabeth) in the
Leaders table, because there was no pattern for this type of phrase.

• Some of the heuristics used for retrieving information from the tables did
not always work. For this reason, e.g., for question “Wie is de president van



Rusland?” the system answered “Rusland.”

Addressing these errors is part of our ongoing work.

5 Conclusion

In this paper we explored the use of offline generated lookup tables for answering
certain types of factoid questions. The idea was implemented in a Table Lookup
stream as part of our participation in the CLEF Dutch QA evaluation exercise.
We found that the Table Lookup stream made a significant difference, providing
correct answers for 58% of all relevant questions. Our ongoing and future work
concerns adapting the ideas described here to the AQUAINT corpus used for the
TREC QA evaluation, applying machine learning techniques to identify suitable
patterns for populating tables and to clean up the output of those patterns. In
addition, we want to extend our patterns to include additional question categories,
such as age and date of birth or death.
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