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Today’s diversity of research topics in modal logic is almost bewildering:
modal logic appears as

e a logic of necessity and possibility;

e a language for studying provability and expressibility in various
formal theories;

e alanguage for talking about relational (and topological) structures
and their uses in computer science, cognitive science, computa-
tional linguistics, .. .;

e a knowledge representation formalism;

e a language for talking about the behavior of programs;

e a fragment of first-order language balancing expressivity and com-
plexity;

e a formalism for representing linguistic meaning.

In the face of such multifariousness it is natural to ask, what is this
thing called modal logic? In this introduction we will give our answer
to that question by pointing to the roots of modal logic. In our view,
modal logic — hereafter: ML — has grown out of three areas: philoso-
phy, foundations of mathematics and computer science (CS), including
artificial intelligence (AI). We will explain this view in the next three
sections.

To say that ML has its roots in a certain area must not be taken
to imply that most workers in that area consider ML a good thing.
On the contrary! Mathematicians are often convinced that ML is part
of philosophy or philosophical logic and that it has little to do with
‘real’ mathematics. Philosophers for their part often feel that ML has
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become too mathematical to have much claim to philosophical interest.
And the interest in ML of researchers in computer science is usually of
a pragmatic nature, even though their discipline has given rise to many
systems of ML. We hope that the articles in this book will go some way
towards dispelling negative attitudes of this kind.

1 Philosophy

If we confine ourselves to formal logic (and ignore important predecessors
like Aristotle, Ockham, and Leibniz), then the first recognized systems
of ML were constructed by the philosopher C.I. Lewis in 1918 (see Lewis
1918, Lewis and Langford 1932). But the philosopher-logician Hugh Mc-
Coll already developed a formal system of ML in 1906 (see McColl 1906).

The beginning of the twentieth century was a very productive time
for logic. The foundations of mathematics were hit by the crisis of set-
theoretic paradoxes, and as a result they were exposed to revision, not
excluding the underlying classical logic. Compared to actual human rea-
soning, the model of reasoning provided by classical logic is rather stereo-
typical; it is not difficult to find problematic features. One such feature
that Lewis did not like was that classical logic gives rise to the so-called
‘paradoxes of material implication.” Why on Earth do we have to regard
propositions like

If the Moon is made of green cheese then 2 x 2 =4
as true? For we do have to regard it as true if we consider that 2 x 2 =4
and accept the classical laws
=W =), ¢—=v,0/Y.
Lewis’s idea was to consider the strict implication
‘it is necessary that’ (¢ — )

instead of the usual material implication ¢ — 1. To axiomatize the ne-
cessity operator, Lewis constructed first one modal calculus and then
four more, calling them simply S1-S5. Of these, S4 and S5 have be-
come famous; S4 — which was also discovered, independently, by Orlov
(1928)! — may be defined as classical logic (Cl) plus four postulates:

S4=Cl + O(p—v)— (Op— OY)
+ O — O0p
+ Op =
+ »/Bep.
1More precisely, Orlov based his system on a logic weaker than classical logic,

but the modal axioms and inference rules intended to axiomatize the operator ‘it is
provable’ (see below) were those of S4.
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Strict implication O(p — ) behaves better than material implication.
At least,

D(p = 0¥ — )
is not provable in Lewis’s systems. However, Lewis’s solution was not
completely satisfactory: he could not get rid of all paradoxical formulas.
E.g.,

D(Be = 0® — ¢))
is a theorem of S4. We will not go deeper into this branch of research in
philosophical logic; the reader can find more information in (Anderson
and Belnap 1975).

Lewis never tried to describe his semantic intuitions in a formal way.
The first semantics for modal logic — except for Lukasiewicz’s many-
valued logics — was the modal algebra developed by McKinsey and
Tarski (1944, 1946, 1948). While the philosophers found algebra useful as
a technical tool, their philosophy was not influenced by it. Yet, without
formal semantics, ML would never have flourished. The first philosophi-
cally important semantics was that of Carnap (1947), whose distinction
between extension and intension was inspired by Frege’s (1892) distinc-
tion between Bedeutung and Sinn. (Meaning is a possible translation of
both those German nouns, but English-speaking philosophers have more
or less settled for using reference for Bedeutung and sense for Sinn.)

But the semantics that has been most important philosophically is
of course the possible worlds semantics. While the origins of the latter
are still discussed, there is no doubt that the enormous impact of the
possible worlds semantics is due to Kripke (1959, 1963); it is only fitting
that ‘Kripke semantics’ has become synonymous with ‘possible worlds
semantics.” However, historians point out that several other logicians had
similar ideas, independently, at about the same time: Kanger (1957a,
1957b), Hintikka (1962). The discussion about priority loses some of
its importance when it is recognized that, from a mathematical point
of view, the possible worlds semantics can be retrieved from the Stone
representation theorem for Boolean algebras with operators that is given
in a much earlier paper by Jénsson and Tarski (1951): there you find —
though not by name — both possible worlds and accessibility relations.
That logic is not discussed in their paper, and that neither Jonsson nor
Tarski seems to have realized the philosophical significance of their work
is another matter.

Von Wright’s (1951) deontic logic and Prior’s (1957) tense logic are
prime examples of ML in the 1950s, as is Hintikka’s (1962) epistemic
logic in the 1960s. Montague grammar (Montague 1974) is a much less
orthodox example of ML. Whereas previous philosophers had been en-
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gaged in conceptual analysis, at least primarily, Montague’s later work
fused conceptual analysis with analysis of natural language. While the
scope of Montague’s theory goes far beyond that of previous modal lo-
gicians, it should still be possible to fit all more traditional MLs into his
system. In that sense one might see Montague grammar as a develop-
ment, extreme but natural, of the Frege-Carnap-Kripke line.

2 Foundations of Mathematics

After Lewis, hundreds, if not thousands, of other systems of philosoph-
ical logic were constructed to represent and analyze various kinds of
necessity and related notions. However, they attracted little attention
from mathematicians and mathematical logicians. (As George Boolos
(1993) said, “Because of the metaphysical character of the notions of
necessity and possibility, their remoteness from sensory experience, and
uncertain application of the terms ‘necessary’ and ‘possible’, modal logic
has always been a subject more or less on the periphery of logic.”)

In 1933, however, Godel, in a two-page abstract (Godel 1933), pre-
sented work on modal logic whose importance was realized only much
later. While Lewis had been interested in logical necessity, Godel was
interested in necessity as provability. To understand why, let us return
once again to the beginning of the twentieth century. Another very se-
rious and ambitious attempt to revise classical logic and mathematics
was undertaken by the Dutch mathematician Brouwer (1907, 1908). His
criticism was aimed at the non-constructive character of classical logic.
Here is a well-known example of a non-constructive proof.

Theorem. There exists an irrational number x such that xV2 is rational.

Proof. The number \/ﬁ\/5 is either rational or irrational. If it is rational
then let z = /2. Otherwise, let z = \/5\/5 H
This proof neither provides us with a number x as required, nor does
it show us a way of constructing one. Brouwer didn’t like such proofs,
regarding them as dangerous games with infinity that might lead to para-
dox — or even worse: as meaningless. To avoid this, we need another
logic, one that singles out and describes the laws of ‘constructive’ rea-
soning in the sense that if we want to prove that something exists, then
we have to provide an algorithm constructing this something. He called
this logic intuitionistic (in reference to Kant’s notion of ‘pure intuition’).
The main principle of Brouwer’s intuitionism asserts that the truth
of a mathematical statement can be established only by producing a
constructive proof of the statement. So the intended meaning of the
intuitionistic logical connectives is defined in terms of (canonical) proofs
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and constructions:

e A proof of ¢ A 1) consists of a proof of ¢ and a proof of .

e A proof of ¢ V 9 is given by presenting either a proof of ¢ or a
proof of .

e A proof of ¢ — 1 is a construction which, given a proof of ¢,
returns a proof of .

e | has no proof.

This interpretation — given by Brouwer’s younger colleague Heyting
and also, earlier and independently, by Kolmogorov — can hardly be
regarded as a precise semantic definition suitable for constructing in-
tuitionistic logic. Nevertheless, the Brouwer-Heyting-Kolmogorov inter-
pretation calls into question the validity of the Law of Excluded Middle
@ V-, and, indeed, the intuitionists reject this classically valid principle.

Intuitionistic logic was first constructed in the form of a calculus by
Heyting (1930). Actually, from a formal point of view, Heyting’s logic
may be viewed as a subsystem of classical logic, collapsing into the latter
if the Law of Excluded Middle is added. But the problem of finding
a good semantics for intuitionistic logic remained open. This was an
attractive problem and became connected with the notion of algorithm
that was being developed in those days. Prominent mathematicians like
Kolmogorov (1925, 1932), Godel (1932, 1933), Tarski (see McKinsey and
Tarski, 1948), and Stone (1937) were interested in intuitionistic logic.
But this introduction is not about intuitionism; it is about modal logic.

Godel (1933) proposed to interpret intuitionistic logic in classical
logic by means of extending the latter with an explicit modal operator ‘it
is provable’ and formalizing the informal interpretation above. What are
the logical laws describing provability? Godel formulated them precisely:

O(p = ¢) = (Op — O9y), Bp — OOy, Hp = ¢, ¢/0p.
In other words, the resulting provability logic was none other than S4.
Then Godel defined a translation T taking intuitionistic formulas into
modal ones by putting
T(p) = Op, where p is a proposition letter;
T(L) =04,
T AY) =T(p) AT(¥);
T(eVY) =T(e) VT(¥);
T(e = ¢) =0(T(p) = T(¥)).
The intuitionistic connectives are transformed by T into the correspond-

ing classical ones, but they are understood now in the context of ‘prov-
ability.” This translation turns out to be an embedding of intuitionistic
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logic into S4 in the sense that
Int b o iff S4+ T(p),

and so we really get a classical proof-interpretation of intuitionistic logic.
Yet, that was not precisely what G6del wanted. What kind of provability
is axiomatized by S47 Some vague informal notion of provability? No,
he wanted a notion of formal provability, within a decent logical system,
like Peano Arithmetic PA. Let us recall some basic facts about PA.

All syntactical constructions of the arithmetic language (terms, for-
mulas, proofs, etc.) can be effectively codified by natural numbers; the
code T¢7 of an arithmetic formula ¢ is called the Gédel number of ¢.2
Godel constructed a formula Bew(z) (from beweisbar — provable) with
a single free variable x such that, for every natural number n,

PA I Bew(n) iff n =7¢7 and PA F ¢ for some arithmetic formula ¢.

In other words, Bew("¢7) asserts that the formula ¢ is provable in PA.

Now, what if we interpret the provability operator O of S4 as the
provability predicate Bew of PA? To be more precise, we consider an
arbitrary map * from modal formulas to arithmetic sentences such that

e 1*is0=1;
* (pOY) =p"0yY*, for ® € {A,V, =}
* (Op)* = Bew(Tp™");

and ask: what modal formulas reflect the laws of arithmetic provability?
But then we have got a problem: 01 — 1 is an axiom of S4, and so
by necessitation we have S4 + O(OL — L1). If we read this in PA then
we’ll get:

Bew (T Bew(™0 = 17)7),
i.e., it is provable in PA that PA is consistent. But this contradicts
Godel’s Second Theorem!

So what is the true modal logic of provability? Is there any reason-
able provability interpretation of S4? These questions raised by Godel
attracted serious mathematicians to modal logic and brought a number
of interesting results. Here we will briefly sketch only one of them: a
result obtained by Solovay (1976). He studied a modal calculus which is

2For simplicity we do not distinguish here between natural numbers and the arith-
metic terms representing them.



THE ORIGINS OF MODERN MODAL LoGIC / xvii

now known as the Godel-Lob logic:
GL=Cl + O(p— )~ (Op - Oy)
+ Op — O0p
+ O(Op — p) — Op
+ ¢/0p.

Solovay proved that this modal propositional calculus adequately de-
scribes the properties of the predicate Bew(z) which are provable in
PA in the sense that, for every modal formula ¢, GL F ¢ iff, for all
arithmetic interpretations *, PA  ¢*. This discovery has led to an in-
teresting analysis of provability in formal arithmetic and other theories
(see e.g. Boolos 1993). One quotation from a paper by Albert Visser is
particularly apposite (Visser 1998):

“A miracle happens. In one hand we have a class of mar-
velously complex theories in predicate logic, ...like PA or
ZF. In the other we have certain propositional modal theo-
ries of striking simplicity. We translate the modal operators
of the modal theories to certain specific, fixed, defined pred-
icates of the predicate logical theories. These special predi-
cates generally contain an astronomical number of symbols.
We interpret the propositional variables by arbitrary predi-
cate logical sentences. And see: the modal theories are sound
and complete for this interpretation. They codify precisely
the schematic principles in their scope. Miracles do happen

”

Thus, the second root of ML is in the foundations of mathematics, where
ML proved to be a suitable tool for studying the notions of provability,
interpretability of one system in another, and others. Moreover, the tool
is so powerful that it can produce new arithmetic results like the fol-
lowing recent characterization of primitive recursive functions found by
Beklemishev (1997). Consider a theory formulated as PA, but with the
induction schema only applicable to I, formulas without parameters,
i.e., formulas with the prefix V3. If this theory proves that some program
terminates for all inputs, then the function computed by that program
has to be primitive recursive. In other words: provably total computable
functions coincide with the primitive recursive ones.
We conclude this section by mentioning some very recent work:

e Visser’s, de Jongh’s and their students’ and collaborators’ inves-
tigations into provability in intuitionistic arithmetic (see, for in-
stance, Iemhoff’s paper in this volume);
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e Artemov’s proof-interpretation of S4 (see his paper below);

e Barwise and Moss’s use of ML for the analysis of the foundations
of set-theory (see the paper of their PhD student Baltag in this
volume).

3 Computer Science

The third root of ML grew in CS and AI. After the discovery of the
possible-worlds semantics in the late 1950s it didn’t take long to realize
that the language of propositional modal logic provides a good alterna-
tive to that of first-order logic if we want to talk about various relational
structures, for instance labelled transition systems representing the be-
havior of computer programs, or relational structures like (N, <) repre-
senting flows of time. Temporal logics are perhaps the most popular kind
of modal logics used in program specification and verification (see e.g.
Manna and Pnueli 1992, 1995), temporal databases (see e.g. Abiteboul
et al. 1996, Chomicki 1994), distributed and multi-agent systems (see
e.g. Fagin et al. 1995), and other fields. A less known example is the
use of S4 for qualitative spatial representation and reasoning (see e.g.
Bennett 1996, Renz and Nebel 1999), which is possible due to another
remarkable feature of S4 discovered by McKinsey and Tarski (1946): the
S4-box can be interpreted as the interior operator of topological spaces,
and S4 is sound and complete with respect to this interpretation.

Dynamic logics were a new type of modal logics, the beginnings of
which took place in the depths of theoretical computer science. In 1967,
Robert W. Floyd had written a paper attempting “to provide an ade-
quate basis for formal definitions of the meanings of programs in appro-
priately defined programming languages, in such a way that a rigorous
standard is established for proofs about computer programs, including
proofs of correctness, equivalence, and termination.” In the same year,
C.A.R. Hoare took this idea further. He noted that computer program-
ming “is an exact science in that all the properties of a program and
all the consequences of executing it in any given environment can, in
principle, be found out from the text of the program itself by means of
purely deductive reasoning.” He also noted the difficulty caused by the
proliferation of programming languages: the “exact choice of axioms will
to some extent depend on the choice of programming language.” Hoare
(1967) aims for as much generality as seemed possible to him.

The fundamental new primitive in Hoare’s paper is a three-place
operator -{-}-. The idea is that ¢{a}y obtains if ¢ is a precondition,
« is a program and v is a description of the result of executing « in
a situation when ¢ obtains. In Hoare’s words (notation modified), the
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notation p{a} is interpreted, “If the assertion ¢ is true before initiation
of a program «, then the assertion v will be true on its completion
...provided that the program successfully terminates”. Hoare proposes
a small number of rules appropriate for his new primitive, among them
the following:

If F p{a}y and - ¢ — 6, then - p{a}b.
If F p{a}y and - 0 — ¢, then F 6{a}.

If - p{a}y and F ¥{B}0, then F p{a; 5}6.
If - (o A0){a}, then - p{while 6 do a} (=6 A ).

Here, a ; 3 is the program composed of the programs a and (3, in that
order (o immediately followed by ), while while 6 do « is an iterative
program that tests the condition 6, omits « if @ is false but, if 6 is
true, executes o and then again tests the condition 6, and so on. Thus
an execution of whilef do «, always repetitive, terminates when 6 is
false, if it terminates at all. In other words, a terminating execution of
while 6 do « consists of a finite number (zero or more) of executions of
«a with 6 being false on termination.

Dynamic logic began when Vaughan Pratt saw that Hoare’s ideas
cried out for a modal logical analysis. Pratt gave a more formal treat-
ment than that of Hoare, and he also widened the scope to include non-
deterministic automata. It is not quite clear how sharply Hoare wanted
to distinguish between propositions and programs, but in Pratt’s theory
they belong to distinct categories. To this semantic distinction corre-
sponded a syntactic distinction between formulas and terms. The opera-
tions on formulas included the Boolean connectives, and the operations
on terms included Kleene’s regular operations (sum, concatenation and
the Kleene star):

a+p ‘aorf

a;f ‘first «, then 3,

a* ‘a some number of times.’
But there were also two more complex kinds of operators. First, if ¢
represents a proposition, then @7 represents the test program with re-

spect to ¢: if it is executed, the machine terminates if ¢ obtains and
fails otherwise. Thus the test program checks that rather than whether:

@?  ‘check that ¢’.

Second, if a represents any program, then [a] and {«) are unary propo-
sitional operators:

[a]p  ‘after every terminating execution of «, ¢,
(a)p ‘after some terminating execution of «, ¢’.
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It is easy to give a formal semantics that reflects, in a precise yet natural
manner, the informal intuition just presented. What is interesting from
the point of view of modal logic is that each term is interpreted as an
accessibility relation. This means that ordinary modal logic, like ordinary
tense logic, can be seen as a very special case of dynamic logic. Note that
Hoare’s rules are readily translated into Pratt’s language by putting

elaty =aer Aoy
in addition to requiring
(@) = [l
to be generally valid (the latter because of Hoare’s determinism). Also

more standard concepts can be simulated in this language, for example,
if ¢ then do a, else do § by

(¥?50) + ((—9)?;8)
and while ¢ do a by
(¥?30)" 5 (mp)?.
One philosophically interesting fact about Pratt’s modelling is that it
gives a coherent, perfectly respectable, set-theoretical representation of
action, a concept many philosophers wish to explain away.

In this connection it may be appropriate to mention the logic of com-
mon knowledge (see Fagin et al. 1995). If there are n agents 0,...,n—1,
for some positive number n, then, for each i < n, let K; be a box opera-
tor with the intuitive reading ‘agent i knows that.” It is easy to define the
notion ‘Everybody knows that’: Ep =go¢ KoV ---V Kp_1p. But com-
mon knowledge is not so easily pinned down: when everybody knows,
and everybody knows that everybody knows, and everybody knows that
everybody knows that everybody knows, and so on. So let C' be a new
primitive operator bearing this intuitive interpretation. It turns out that
the characteristic axiom schemata of the logic of common knowledge are

Cp— o Cp — Ep

Co—CCp (pNC(p— Ep))— Co.
If this is compared to the characteristic axiom schemata of dynamic
logic, the resemblance is obvious:

[a*]p — ¢ [a*]e — [ele

[a*]e = [e*]la*]e (o Ala”](e = [alp)) = [a*]p.
Epistemic logics with modal operators of the form ‘agent i knows’ or
‘agent i believes’ are also applied for analyzing multi-agent systems. But
these are to a certain extent applications and further developments of a
known formalism rather than a genuine root. So maybe we had better
tell another story about knowledge representation in Al
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The idea of using first-order logic as the language for representing knowl-
edge and reasoning about it appeared to be extremely promising in the
1950s and 1960s. This is no surprise, because the language is

® very expressive;
e formal (suitable for encoding);
e it has a semantics;

e there are sound and complete proof systems (means for formal
reasoning).

The only weak point:
e it is not effective (in fact, undecidable).

In the 1960s and 1970s, numerous attempts were made to use first-
order logic in systems of Al, verification of programs, and automated
theorem proving. One can argue to which extent and in which fields these
attempts were successful. However, many researchers in Al were deeply
disappointed in the logical approach and tried to find other ways of
treating knowledge, more structural, visual, object-oriented, and without
using logic.

One of them — semantic networks — was proposed by Quillian and
Raphael in 1968 (see Brachman and Levesque 1985). Roughly, a semantic
network is a directed graph in which nodes represent entities and arcs
represent binary relations between entities like in the simple example in
Figure 1.

Of course, researchers in Al familiar with logic understood that this
formalism can be embedded into the language of first-order logic. For
instance, Deliyanni and Kowalski (1979) defined an extended form of
semantic networks which can be regarded as a syntactic variant of the
clausal form of logic. Anyway, semantic networks became popular, prob-
ably for three reasons. First, they are intuitive and simple. Second, they
can be used to represent structured knowledge exhibiting a hierarchi-
cal order (as in the above figure). And third, they correspond to only a
fragment of first-order logic, which can be more effectively implemented.
The only disadvantage was that semantic networks did not have any
reasonable formal semantics, a feature for which they were severely crit-
icized. (In the depicted network, it is not clear, for instance, whether all
members of the class Child are children of Eve or only some of them.)
A solution was found by the end of the 1970s when Brachman con-
structed a system called KL-ONE and defined a knowledge representation
language that was very close to semantic networks, on the one hand,
and possessed a Tarski-type semantics, on the other (see Brachman and
Schmolze 1985). A variant of this language, proposed by Schmidt-Schaufl
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Homo_sapiens

Mother

\/

is [Child ] is

y has
loves

° -0
FEve Adam

FIGURE 1 A semantic network.

and Smolka (1991) and known as ALC, has the following primitive sym-
bols:

e concept names: Co,Cq,... (for sets or concepts);
e role names: Ry, Ry,... (for binary relations between objects);
e object names: ag,a,... (for objects);

e the booleans: A, =, T,
e quantifiers over roles dR;, VR;.

Complex concepts are defined inductively as follows: all concept names
as well as T are (atomic) concepts, and if C, D are concepts, R is a
role name, then C A D, =C, 3R.C and YR.C are concepts. If C and D
are concepts, R a role name and a, b object names, then expressions of
the form C' = D, aRb, a : C are formulas. Languages of this sort were
called KL-ONE type languages, terminological logics, concept description
languages or description logics. Here are some examples of what you can
express in ALC.

(Child — Jhas.Mother A Jhas.Father) =
Fortune_hunter = Male A Vloves.(—Female V Rich)
Eve loves Adam

Ewve : Jhas.Child
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A model of ALC is a structure of the form
I=(AR},....,C§,....a},...),

where A is a non-empty set of objects, the domain of I, R! are binary
relations on A interpreting the role names, C} subsets of A interpret-
ing the concept names, and a! are objects in A interpreting the object
names. The value C! of a concept C' and the truth-relation I |= ¢ are
defined inductively in the following way:

1. TT=Aand ¢T =}, for C = C;;
(CAD)I =CTnDI;
(-C) =A-CT
r € (AR;.C)Liff Jy (zRIy Ay € C);
z € (VR;.C)L iff Vy (zRly — y € CY);
I &= C=Diff C! = DI;
IEa:Ciffal €07

8. I EaR;biff (a!,b') € RL.
A lot of real working knowledge representation systems based on de-
scription logics of this type and supplied with rather effective sound and
complete reasoning procedures were constructed in the 1980s and 1990s.
Description logic has become one of the main topics of each big confer-
ence in Al. But what is the connection with ML? Let us have a closer
look at the definition of models and think of I as a Kripke frame with
worlds A and accessibility relations R;; let us think of concept names
as propositional variables, of IR; and VR; as $; and O, interpreted by
the relation R;. Then we immediately understand that what we have is
simply a terminological variant of a poly-modal language interpreted on
the usual poly-modal Kripke frames. For

z = iff Jy (xRiy Ay = p);
z = Qp iff Vy (zRiy — y = p).

This fact was noticed first by K. Schild (1991). Trying to find a formalism
that is better than first-order logic we come to the language of ML!

N OUk

In Sections 1 and 2, ML was explicitly called for: there was a need for
a language with modal operators ‘it is necessary’ or ‘it is provable.’ In
this section (and in other applications in CS and AI) ML emerges as a
sort of compromise between expressive power and complexity when we
are talking about relational structures. On the one hand, the choice of
ML as a knowledge representation formalism shows that it has enough
expressive power when relational structures are concerned. And on the
other hand, standard MLs turn out to be decidable. For instance, the
satisfiability problem for the basic systems of ML is PSPACE-complete.
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The decidability of standard modal logics is an interesting phenome-
non. Researchers in computational logic in general and theorem proving
in particular always wanted to single out natural, sufficiently expressive
and decidable fragments of first-order logic. But not many fragments of
this sort are known. Quite recently, Andréka, van Benthem and Németi
(1998) started a new line of investigations aimed to single out well-
behaved ‘modal’ features of first-order logic.

Let us first look at ML from the point of view of first-order logic. It is
well-known that there is a translation of modal formulas into first-order
ones:

ST(p;)) = Pi(z)
ST(L) = 1L
ST(Y®x) = ST(W)®ST(x), for ® € {A,V,—}

ST(0y) = Vy (zRy = ST(){y/x}),
where y is an individual variable not occurring in ST'(¢). The first-order
formula ST(y) is called the standard translation of . Starting from this
translation, Andréka, van Benthem and Németi defined the following
class of first-order formulas:

Iy (G(z,9) A ¢(T,7)).

Here, T, 3 stand for finite sequences of individual variables and G(Z,7) is
an atomic formula, called a guard, containing all free variables of ¢(Z, 7).
The fragment containing such formulas, called the guarded fragment of
first-order logic, turned out to be decidable. Andréka, van Benthem and
Németi explain the good computational behavior of the guarded frag-
ment in terms of its special syntactic features, and especially in terms
of restricted quantification. Vardi (1997) and Grédel (1999) provide an
alternative explanation in terms of the so-called tree model property.

Interestingly, the proof of the decidability of the guarded fragment is
based upon the idea of viewing first-order logic as a (multi-dimensional)
modal logic: not only the modal operators can be regarded as (bounded)
quantifiers, but also the first-order quantifiers themselves can be treated
as modal operators. Briefly, first-order models are represented as Kripke
models of the form M = (A4, {R.}zcvar, ), where ‘worlds’ in A are all
possible assignments to the variables in var, aR,b holds iff assignments
a and b differ only on variable z, and I gives truth-values to predicates
at every world. Then 9 = Jzp[a] iff there is b € A such that aR,b and
M |= p[b]. This semantical approach was developed by Tarski, Halmos,
Quine and their followers (see e.g. Henkin et al. 1971, 1985; Halmos
1962; Quine 1972; Németi 1991). Thus we have been brought to one
more important connection of ML — this time with algebraic logic.
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4 Conclusion

We have tried to elucidate the question what ML is by pointing to its
roots. Here are some partial answers that came up during our exposition:

e ML is a branch of mathematical and philosophical logic studying
formal models of correct reasoning which involves various concepts
of a modal kind such as ‘necessity’ and ‘possibility’.

e ML is a tool for investigating natural language semantics in general
and, in particular, the meaning of philosophically, linguistically
and cognitively relevant notions and constructions.

e ML constructs special purpose languages suitable for talking about
relational and topological structures (transition systems, member-
ship in set theories, relations between objects in knowledge bases,
topological spaces, etc.) and is concerned with the balance between
expressive power and complexity of such languages.

Obviously, looking at the roots of ML is at most half of the story. To
fully appreciate the field in all its diversity one should also consider
current developments as well as hints of what’s to come. The current
volume certainly provides a broad view of the state of the art in ML,
while glimpses of upcoming themes can also be discerned: ML and game
theory, a renewed interest in proof methods, more attention to applica-
tions and experiments, .... Above all, what this volume demonstrates
is that ML is very much alive. No doubt ML will continue to develop
independently of any effort to try to determine what it ‘really’ is.

This Volume

The first two Advances in Modal Logic (AiML) workshops in Berlin
(1996) and Uppsala (1998) attracted 100 contributed and 15 invited pa-
pers. This volume contains a selection of papers presented at Advances
in Modal Logic 1998 (AiML’98), the second installment of the only in-
ternational workshop series aimed at presenting an up-to-date picture
of the state of the art in modal logic (and modal-like logics) and its ap-
plications. AiML’98 was held at Uppsala University, Uppsala, Sweden,
on October 16-18, 1998.

The contributions to this volume were selected after a two-stage ref-
ereeing process, with one round occurring before the workshop and the
second after the workshop. In each round each paper was refereed by at
least two referees.

There is one contribution to this volume that we would like to single
out. During AIML’98 the Best Paper Award was given to Alexandru
Baltag for his paper STS: A Structural Theory of Sets; the paper is
included as the first contribution to this volume.
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Many people provided invaluable help in bringing about AiML’98
and this volume... you know who you are. We want to thank you all
for doing a wonderful job! Finally, for all things modal, we would like to
refer you to www.aiml.net.

Michael Zakharyaschev
Krister Segerberg
Maarten de Rijke
Heinrich Wansing
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