
XPath: (P)DL on trees. 1

XPath: (P)DL on trees.
Maarten Marx

ReasoningWeb2009

ReasoningWeb2009

XPath: (P)DL on trees. 2

Overview

1. Knowledge Representation on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions

XPath: (P)DL on trees. 3

KR on the Web

ABS2000 Edge labelled graphs queried by regular path expressions

XML Node labelled sibling ordered trees queried by XPath

RDF triples and non wellfounded sets

• . . . but most web information is of course in the form of . . .

XPath: (P)DL on trees. 3

KR on the Web

ABS2000 Edge labelled graphs queried by regular path expressions

XML Node labelled sibling ordered trees queried by XPath

RDF triples and non wellfounded sets

• . . . but most web information is of course in the form of . . . text

XPath: (P)DL on trees. 3

KR on the Web

ABS2000 Edge labelled graphs queried by regular path expressions

XML Node labelled sibling ordered trees queried by XPath

RDF triples and non wellfounded sets

• . . . but most web information is of course in the form of . . . text

sometimes generated from a relational database.

• This talk: XML.

XPath: (P)DL on trees. 4

Graphs and trees

• Edge labelled graphs can very directly encode ER diagrams.

• These can always be represented as trees

• Sometimes as just trees

• Cyclic information needs ID’s and IDREF’s.

XPath: (P)DL on trees. 5

Consequences of the choice of your representation

• query processing costs

• needed expressive power for your

? query language

? constraint language

• robustness for changes in the data-structures

XPath: (P)DL on trees. 6

Example: interviews

• Sigmod Record Distinguished DB Profiles

• Simple model:

An interview consists of a list of questions each followed by

a list of answers.

http://www.sigmod.org/interviews/

XPath: (P)DL on trees. 7

exemelify this

XPath: (P)DL on trees. 8

In practice

wget http://www.sigmod.org/sigmod/record/issues/0409/7.phil-bernstein-final.pdf
|
pdftohtml -xml
|
saxon MakeInterviewTree.xsl
>>
interview.xml

Quiztime

1. How will the output of pdftohtml look as a tree?

2. What will be the easiest (and fastest) tree transformation?

3. Which of the 4 tree models?

XPath: (P)DL on trees. 9

In theory: TREE model

• Query: give me all QA pairs.

XPath: (P)DL on trees. 9

In theory: TREE model

• Query: give me all QA pairs.

• In “hybrid DL”:

• for $q such that $q |= Q, return
($q, { a | a |= A u ∃.parent $q })

XPath: (P)DL on trees. 10

In theory: TREE model

• In XPath 2.0:

• for $q in //Q return ($q,$q/A)

XPath: (P)DL on trees. 10

In theory: TREE model

• In XPath 2.0:

• for $q in //Q return ($q,$q/A)

XPath: (P)DL on trees. 11

XPath and Description Logic

• Specifying nodes from a different perspective

• In Description Logic you describe the node that you want as if you

are standing on the wanted node.

• In XPath you describe how to get there, as if you are standing at

the root.

XPath: (P)DL on trees. 12

Same query on the practical FLAT model

• Query: return all A-nodes answering a give Q node

• Tree model: simple ALC-formula using the tree-order

• Flat tree model:

XPath: (P)DL on trees. 12

Same query on the practical FLAT model

• Query: return all A-nodes answering a give Q node

• Tree model: simple ALC-formula using the tree-order

• Flat tree model:

? use the document-order or the sibling-order

? all A nodes after the given Q, but before the next Q

? 3 variables . . .

? not modally expressible . . .

? the wanted A-nodes must satisfy A ∧ since($q,¬Q)

XPath: (P)DL on trees. 13

Lesson Learned

• Choice of representation influences what query-language may be

needed later-on.

XPath: (P)DL on trees. 14

Constraining the models: theory vs practice

• XML constraint languages are based on tree-automata

• languages use regular expressions over node-labels.

• these describe the children of a node read from left to right
Flat model

XPath: (P)DL on trees. 14

Constraining the models: theory vs practice

• XML constraint languages are based on tree-automata

• languages use regular expressions over node-labels.

• these describe the children of a node read from left to right
Flat model

interview -> (Q,A+)+
Tree model

XPath: (P)DL on trees. 14

Constraining the models: theory vs practice

• XML constraint languages are based on tree-automata

• languages use regular expressions over node-labels.

• these describe the children of a node read from left to right
Flat model

interview -> (Q,A+)+
Tree model

interview -> Q+. Q -> A+

Data Actual question and answer text is stored in attribute nodes.

XPath: (P)DL on trees. 15

Constraining the models: theory vs practice:
robustness

• Example: Extend our constraints: every interview ends with a

bye-bye question which receives no answer.

• In all models this is expressible as a FO sentence: thus a regular

tree language.
New Flat model

XPath: (P)DL on trees. 15

Constraining the models: theory vs practice:
robustness

• Example: Extend our constraints: every interview ends with a

bye-bye question which receives no answer.

• In all models this is expressible as a FO sentence: thus a regular

tree language.
New Flat model

Easy: interview -> (Q,A+)+,Q
New Tree model

XPath: (P)DL on trees. 15

Constraining the models: theory vs practice:
robustness

• Example: Extend our constraints: every interview ends with a

bye-bye question which receives no answer.

• In all models this is expressible as a FO sentence: thus a regular

tree language.
New Flat model

Easy: interview -> (Q,A+)+,Q
New Tree model

Hard! Not expressible by a DTD. (Proof later)

XPath: (P)DL on trees. 16

Bad!

• Difficult to accept and understand non-expressibility by

practitioners

• leads to underspecified documents

• leads to frustration and unsafe coupling

XPath: (P)DL on trees. 17

New Tree model

• We need types to express the last answerless question.

• Specialized DTD’s = MSO = regular tree languages

[Papakonstantinou, Vianu 00]

• NormalQ and EndQ are types of Q

• interview -> NormalQ+,EndQ

• NormalQ -> A+

• EndQ -> EMPTY

XPath: (P)DL on trees. 17

New Tree model

• We need types to express the last answerless question.

• Specialized DTD’s = MSO = regular tree languages

[Papakonstantinou, Vianu 00]

• NormalQ and EndQ are types of Q

• interview -> NormalQ+,EndQ

• NormalQ -> A+

• EndQ -> EMPTY

• This is not expressible in XML Schema!

XPath: (P)DL on trees. 18

Relax

• But it is expressible in Relax NG.

• In exactly the way given.

• Relax NG is a Schema Language by Clark and Murata.

XPath: (P)DL on trees. 19

KR on the web: wrap up

• Most information on the web is in implicitly structured text.

• Asking complex queries to the web thus means to extract and

make this structure explicit.

• This often leads to rather flat (“reading text-ordered”) XML.

• KR languages are important to describe, constrain and validate

the XML,

• because these XML files are themselves often input to other

knowledge-extraction programs (tree-transformations, queries)

XPath: (P)DL on trees. 20

Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions

XPath: (P)DL on trees. 21

XML-tasks

[Schwentick 04] distinguishes the following four:

• Validation

• Transformation

• Navigation

• Querying

Every task must be described in some (logical) language.

XPath: (P)DL on trees. 22

Usual research questions

Given some language L

• What tasks can I express in L? How well can I express them in L?

• Given an L expression and data, what are the computation costs

to perform the task?

XPath: (P)DL on trees. 22

Usual research questions

Given some language L

• What tasks can I express in L? How well can I express them in L?

• Given an L expression and data, what are the computation costs

to perform the task?

• Each task may involve more specialized questions: e.g.

• Typechecking: given input conform I1 ∈ L1, given a

transformation T ∈ LT , will the output always be conform

I2 ∈ L2?

• [Milo, Suciu, Vianu, 00] Decidable for DTD and Core XSLT.

XPath: (P)DL on trees. 23

This talk: focus on validation and navigation

Expressive power on trees

• relative to yardsticks as CQ, FO, MSO, tree automata

• semantic characterizations

• succinctness questions

• rewrite systems

XPath: (P)DL on trees. 23

This talk: focus on validation and navigation

Expressive power on trees

• relative to yardsticks as CQ, FO, MSO, tree automata

• semantic characterizations

• succinctness questions

• rewrite systems

Complexity • Model checking: given a tree T and a formula F ,

does T satsify F?

• Static analysis: containment, equivalence, satisfiability of

expressions.

XPath: (P)DL on trees. 24

Major techniques and strategies

• Similar research strategy as in DL: understand a language

landscape by asking the same question for many different

fragments.

• Where are the borders of decidability and tractability?

• Develop handy tools to show that something is not expressible in

some fragment.

• Techniques include

• Finite models

• Tree automata, regular tree languages

• tree decompositions

XPath: (P)DL on trees. 25

Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions

XPath: (P)DL on trees. 26

XPath

• two sorted language, just as (P)DL

? path sort binary relation between nodes

? node sort set of nodes

• interpreted on a special class of models:

? finite, sibling ordered, node-labelled unranked trees

• XPath, like DL, is not a language, more a “style”, a “family”

XPath: (P)DL on trees. 27

Operators on node sort are very familiar

• atomic tests

• test for being in the domain of a relation. (just like ∃R.F)

• closed under the booleans.

• (sometimes) n |= R=S iff ∃m. (n, m) ∈ R ∩ S.

XPath: (P)DL on trees. 27

Operators on node sort are very familiar

• atomic tests

• test for being in the domain of a relation. (just like ∃R.F)

• closed under the booleans.

• (sometimes) n |= R=S iff ∃m. (n, m) ∈ R ∩ S.

• term-definable from w |= Rloop iff (w,w) ∈ R.

• R=S ≡ (R;S−1)loop

XPath: (P)DL on trees. 28

Primitive relations are tree relations

• down,up,left,right

• their transitive closures: descendant, ancestor, . . .

• often syntactic sugar: following =

ancestor*/right+/descendant*

• stay relation with a test:

XPath: (P)DL on trees. 29

Operators on path sort are also very familiar

• Regular operators: union, concatenation, Kleene closure

• Boolean operators: intersect and except

• Variables and binders: as in hybrid logic.

• for $x in PATH1 return PATH2
• Meaning: ↓ y.PATH1/↓ x. @y/PATH2

XPath: (P)DL on trees. 30

Immediate relations to known formalisms

• node and path-formulas of PDL

• almost all operators can be found in some DL-language

• Trees: CTL, tree logics of [Blackburn, de Rijke, Meijer-Viol ’96]

• without Kleene *, all languages are inside FO.

XPath: (P)DL on trees. 31

Real life complications (1)

• Two syntaxes

• Unix path style:

/book//section[./paragraph[contains(.,’’XML’’)]]

• Official style:

/child::book/descendant::section[child::paragraph[contains(.,’’XML’’)]]

• Unix style only “up and down”. Official style: everything.

XPath: (P)DL on trees. 32

Real life complications (2)

XPath has many uses and interpretations.

1. Path formula denotes binary relation

when used for navigation within other languages

2. path formula denotes set of nodes

• when used as a stand-alone query language

• Meaning of PATH is range of PATH.
• Natural with /PATH (all nodes reachable by PATH from the root)

3. Path formula denotes a set of trees

• XPath used as a constraint language

• “all trees having a PATH from the root”

XPath: (P)DL on trees. 33

Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+

XPath: (P)DL on trees. 33

Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+ Q and (not child::A or child::*[not A])

XPath: (P)DL on trees. 33

Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+ Q and (not child::A or child::*[not A])

last Q without A

XPath: (P)DL on trees. 33

Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+ Q and (not child::A or child::*[not A])

last Q without A Q and not right::Q and child::A

XPath: (P)DL on trees. 34

Real life benefits

• Firefox and IE support XPath.

• Fast free XPath evaluators (Saxon, Libxslt)

• Good editors for XPath available

? syntax highlighting

? help with debugging

? evaluation on XML docs

XPath: (P)DL on trees. 35

XPath practice

We define two information needs in terms of XPath.

1. a descendant with lots of specific ancestors along the way

2. question-answer pairs

XPath: (P)DL on trees. 36

Practice 1

Q return all q descendants of current node

XPath: (P)DL on trees. 36

Practice 1

Q return all q descendants of current node

A descendant::q or .//q

XPath: (P)DL on trees. 36

Practice 1

Q return all q descendants of current node

A descendant::q or .//q

Q return all q descendants reachable trough p1, . . . , pn nodes

XPath: (P)DL on trees. 36

Practice 1

Q return all q descendants of current node

A descendant::q or .//q

Q return all q descendants reachable trough p1, . . . , pn nodes

A1 .//p1//q intersect . . . intersect .//pn//q

XPath: (P)DL on trees. 36

Practice 1

Q return all q descendants of current node

A descendant::q or .//q

Q return all q descendants reachable trough p1, . . . , pn nodes

A1 .//p1//q intersect . . . intersect .//pn//q

A2 big union for all permutions ρ of 1, . . . ,n of

.//pρ(1)//pρ(2)// . . . //pρ(n)//q

XPath: (P)DL on trees. 37

Practice 2: question-answers pairs

• Flat (QA+)+ models

• Find an XPath expression $x/... which returns

? when $x is bound to a Q node

? all following A nodes until the next Q.

$x
. . . QAA Q AAAQAQAAAA . . .

XPath: (P)DL on trees. 38

Kleene style

XPath: (P)DL on trees. 38

Kleene style

$x/(right::A)+.

• (.)+ is the transitive closure operator.

• But (.)+ is not available (and not expressible) in W3C XPath

dialects (because that is just FO).

XPath: (P)DL on trees. 39

Tarski style

XPath: (P)DL on trees. 39

Tarski style

$x/(following− sibling :: A except
following− sibling :: Q/following− sibling :: A)

• Expressible in XPath with Booleans on path expressions [Hidders,

2003]

XPath: (P)DL on trees. 40

Frege (or first-order) style

XPath: (P)DL on trees. 40

Frege (or first-order) style

$x/following-sibling::A[not
preceding-sibling::Q/preceding-sibling::Q[. is $x]]

• Uses variables bound to nodes

• Test . is $x is the hybrid logic variable test.

XPath: (P)DL on trees. 41

Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions

XPath: (P)DL on trees. 42

Expressivity questions on trees

Rabin’s theorem sets a clear upper bound:

MSO = tree automata = regular tree languages = decidable.

Questions we will survey:

• expressivity relative to yardsticks

• succinctness

• semantic characterizations

Signature of the languages:

equality, unary predicates for nodes, child, descendant, right, right+

XPath: (P)DL on trees. 43

Four XPath dialects

Four flavours of XPath strictly below MSO [ten Cate, M. 2007

survey]

Core XPath ≈ PDL without *

XPath 2.0 no vars ≈ Boolean modal logic ≈ Core XPath plus

booleans on paths

XPath 2.0 ≈ hybrid Boolean modal logic

Regular XPath PDL with the four one-step tree relations.

XPath: (P)DL on trees. 44

Characterization of Core XPath

• On unary trees (= the line), this is Prior’s temporal logic with F
and P.

• Kamp’s theorem ’68 not enough to capture FO(x) on the line.

• [Etessami, Vardi and Wilke ’97]: expressive power is exactly

FO2(x), with an exponential succinctness gap.

• “any two nodes that agree on p1, . . . , pn also agree on p0”

• linear constraint in FO2, exponential in TL.

• Generalizes to sibling-ordered trees and Core XPath.

XPath: (P)DL on trees. 45

Core XPath plus booleans on paths

• Kamp’s thm on unary trees: FO(x)= FO3(x).

• [M. 2005]: Generalizes to XML-trees and paths: FO(x,y) =

FO3(x,y)

• Tarski’s thm: FO3(x, y) = Tarski relation algebras.

• on trees: Tarski relation algebras = Core XPath plus booleans on

paths

• Core XPath plus booleans on paths = FO(x,y) on XML trees.

XPath: (P)DL on trees. 46

Regular XPath

• Captures FO(x, y) (because it captures “since and until”).

• [ten Cate 06] With additional loop it captures FO∗(x, y).

T, x |= Rloop iff T, (x, x) |= R.

• [ten Cate, Segoufin 08] With additional subtree relativization it

captures FO extended with monadic TC.

T, x |= Wφ iff Tx, x |= φ.

• [ten Cate, Segoufin 08] Both are strictly less expressive than MSO.

XPath: (P)DL on trees. 47

Summary

XPath dialect Core XPath 1.0 (Variable-free

Core XPath 2.0
≡ Core XPath 2.0 (Regular XPath≈

Equivalent

FO-dialect
∃FOmon¬

tree FOtree FOtree FO∗
tree

(exponential

succinctness gap)

(at least exponential

succinctness gap)

(no succinctness gap:

linear translations)

(non-elementary

succinctness gap)

≡ Core XPath 2.0 (Regular XPath≈

FOtree FO∗
tree

(no succinctness gap:

linear translations)

(non-elementary

succinctness gap)

XPath: (P)DL on trees. 48

Semantic characterizations

• class of trees C is definable in L iff C is closed under . . .

• Useful for inexpressivity results.

• Real-life languages (W3C standards) often have practical

constraints with unexpected theoretical effects

• DTD’s: must be deterministic

(a+b)*a(a+b) is not expressible by a DTD [Brüggemann-Klein

Wood 98]

• XML schema’s must be single-typed specialized DTD’s [Murata,

Lee, Mani ’01]

XPath: (P)DL on trees. 49

Characterization of single type SDTD

• [Martens, Neven, Schwentick 05] For T a regular tree language, T

is definable by a single type SDTD iff T is closed under

ancestor-guarded subtree exchange.

XPath: (P)DL on trees. 50

(QA+)+Q is not definable on hierarchical models

• Interviews ending in a Q without an A.

• We could not find a DTD specifying this in the hierarchical model.

• Now we can prove it:

XPath: (P)DL on trees. 51

Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions

XPath: (P)DL on trees. 52

Complexity questions: evaluation

• Model checking. Validation, querying

Input Tree, node(s), formula. Output Boolean

• PSPACE complete for FO. PTIME for fixed variable FO.

Fragment Evaluation complexity

Core XPath PTime (linear) [Gottlob, Koch, Pichler 02]

Core XPath 2 no vars PTime (quadratic) (from FO)

Core XPath 2 Pspace (from FO)

Regular XPath PTime (linear) (from PDL)

Regular XPath+ PTime (linear) [Gottlob Koch 04]

TMNF tests (=MSO)

XPath: (P)DL on trees. 53

Complexity: Static analysis

• Satisfiability, equivalence, . . .

• Decidable for MSO. Non-elementary hard already for FO on unary

trees [Rabin; Meyer]

• Complexity overview [ten Cate, Lutz, 2007]

? Satisfiability.

? Lower bound is EXPTIME, already for Core XPath

? Small language extensions may yield large leaps in complexity

XPath: (P)DL on trees. 54

XPath: (P)DL on trees. 55

Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions

XPath: (P)DL on trees. 56

XML language research and (P)DL: close relations

• both rooted in KR

• trees as fundamental models

• strong emphasis on working systems

• huge tables with acronyms and complexity classes ;-)

XPath: (P)DL on trees. 57

strong Description Logic–XML interplay

• KR aspects

• Data integration and mediation [Halevy, Rome school] (certain

answers are hard to compute)

• Design, maintenance, reuse, integration of ontologies is daily

headache for XML/web-engineers

• DL’s research on modularity of TBoxes [Manchester school] seems

useful.

XPath: (P)DL on trees. 58

Thank you

XPath: (P)DL on trees. 59

Thank you

XPath: (P)DL on trees. 60

Thank you

	1. XPath: (P)DL on trees.
	2. Overview
	3. KR on the Web
	4. Graphs and trees
	5. Consequences of the choice of your representation
	6. Example: interviews
	7. exemelify this
	8. In practice
	9. In theory: TREE model
	10. In theory: TREE model
	11. XPath and Description Logic
	12. Same query on the practical FLAT model
	13. Lesson Learned
	14. Constraining the models: theory vs practice
	15. Constraining the models: theory vs practice: robustness
	16. Bad!
	17. New Tree model
	18. Relax
	19. KR on the web: wrap up
	20. Where are we?
	21. XML-tasks
	22. Usual research questions
	23. This talk: focus on validation and navigation
	24. Major techniques and strategies
	25. Where are we?
	26. XPath
	27. Operators on node sort are very familiar
	28. Primitive relations are tree relations
	29. Operators on path sort are also very familiar
	30. Immediate relations to known formalisms
	31. Real life complications (1)
	32. Real life complications (2)
	33. Example
	34. Real life benefits
	35. XPath practice
	36. Practice 1
	37. Practice 2: question-answers pairs
	38. Kleene style
	39. Tarski style
	40. Frege (or first-order) style
	41. Where are we?
	42. Expressivity questions on trees
	43. Four XPath dialects
	44. Characterization of Core XPath
	45. Core XPath plus booleans on paths
	46. Regular XPath
	47. Summary
	48. Semantic characterizations
	49. Characterization of single type SDTD
	50. (QA+)+Q is not definable on hierarchical models
	51. Where are we?
	52. Complexity questions: evaluation
	53. Complexity: Static analysis
	55. Where are we?
	56. XML language research and (P)DL: close relations
	57. strong Description Logic--XML interplay
	58. Thank you
	59. Thank you
	60. Thank you

