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KR on the Web

ABS2000 Edge labelled graphs queried by regular path expressions

XML Node labelled sibling ordered trees queried by XPath

RDF triples and non wellfounded sets

• . . . but most web information is of course in the form of . . .
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KR on the Web

ABS2000 Edge labelled graphs queried by regular path expressions

XML Node labelled sibling ordered trees queried by XPath

RDF triples and non wellfounded sets

• . . . but most web information is of course in the form of . . . text

sometimes generated from a relational database.

• This talk: XML.
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Graphs and trees

• Edge labelled graphs can very directly encode ER diagrams.

• These can always be represented as trees

• Sometimes as just trees

• Cyclic information needs ID’s and IDREF’s.
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Consequences of the choice of your representation

• query processing costs

• needed expressive power for your

? query language

? constraint language

• robustness for changes in the data-structures
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Example: interviews

• Sigmod Record Distinguished DB Profiles

• Simple model:

An interview consists of a list of questions each followed by

a list of answers.

http://www.sigmod.org/interviews/
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exemelify this
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In practice

wget http://www.sigmod.org/sigmod/record/issues/0409/7.phil-bernstein-final.pdf
|
pdftohtml -xml
|
saxon MakeInterviewTree.xsl
>>
interview.xml

Quiztime

1. How will the output of pdftohtml look as a tree?

2. What will be the easiest (and fastest) tree transformation?

3. Which of the 4 tree models?
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In theory: TREE model

• Query: give me all QA pairs.
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In theory: TREE model

• Query: give me all QA pairs.

• In “hybrid DL”:

• for $q such that $q |= Q, return
($q, { a | a |= A u ∃.parent $q })
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In theory: TREE model

• In XPath 2.0:

• for $q in //Q return ($q,$q/A)
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In theory: TREE model

• In XPath 2.0:

• for $q in //Q return ($q,$q/A)
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XPath and Description Logic

• Specifying nodes from a different perspective

• In Description Logic you describe the node that you want as if you

are standing on the wanted node.

• In XPath you describe how to get there, as if you are standing at

the root.
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Same query on the practical FLAT model

• Query: return all A-nodes answering a give Q node

• Tree model: simple ALC-formula using the tree-order

• Flat tree model:
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Same query on the practical FLAT model

• Query: return all A-nodes answering a give Q node

• Tree model: simple ALC-formula using the tree-order

• Flat tree model:

? use the document-order or the sibling-order

? all A nodes after the given Q, but before the next Q

? 3 variables . . .

? not modally expressible . . .

? the wanted A-nodes must satisfy A ∧ since($q,¬Q)
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Lesson Learned

• Choice of representation influences what query-language may be

needed later-on.
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Constraining the models: theory vs practice

• XML constraint languages are based on tree-automata

• languages use regular expressions over node-labels.

• these describe the children of a node read from left to right
Flat model
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Constraining the models: theory vs practice

• XML constraint languages are based on tree-automata

• languages use regular expressions over node-labels.

• these describe the children of a node read from left to right
Flat model

interview -> (Q,A+)+
Tree model

interview -> Q+. Q -> A+

Data Actual question and answer text is stored in attribute nodes.



XPath: (P)DL on trees. 15

Constraining the models: theory vs practice:
robustness

• Example: Extend our constraints: every interview ends with a

bye-bye question which receives no answer.

• In all models this is expressible as a FO sentence: thus a regular

tree language.
New Flat model
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Constraining the models: theory vs practice:
robustness

• Example: Extend our constraints: every interview ends with a

bye-bye question which receives no answer.

• In all models this is expressible as a FO sentence: thus a regular

tree language.
New Flat model

Easy: interview -> (Q,A+)+,Q
New Tree model

Hard! Not expressible by a DTD. (Proof later)
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Bad!

• Difficult to accept and understand non-expressibility by

practitioners

• leads to underspecified documents

• leads to frustration and unsafe coupling
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New Tree model

• We need types to express the last answerless question.

• Specialized DTD’s = MSO = regular tree languages

[Papakonstantinou, Vianu 00]

• NormalQ and EndQ are types of Q

• interview -> NormalQ+,EndQ

• NormalQ -> A+

• EndQ -> EMPTY
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New Tree model

• We need types to express the last answerless question.

• Specialized DTD’s = MSO = regular tree languages

[Papakonstantinou, Vianu 00]

• NormalQ and EndQ are types of Q

• interview -> NormalQ+,EndQ

• NormalQ -> A+

• EndQ -> EMPTY

• This is not expressible in XML Schema!
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Relax

• But it is expressible in Relax NG.

• In exactly the way given.

• Relax NG is a Schema Language by Clark and Murata.
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KR on the web: wrap up

• Most information on the web is in implicitly structured text.

• Asking complex queries to the web thus means to extract and

make this structure explicit.

• This often leads to rather flat (“reading text-ordered”) XML.

• KR languages are important to describe, constrain and validate

the XML,

• because these XML files are themselves often input to other

knowledge-extraction programs (tree-transformations, queries)
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Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity

ii. Complexity

5. Conclusions
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XML-tasks

[Schwentick 04] distinguishes the following four:

• Validation

• Transformation

• Navigation

• Querying

Every task must be described in some (logical) language.
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Usual research questions

Given some language L

• What tasks can I express in L? How well can I express them in L?

• Given an L expression and data, what are the computation costs

to perform the task?
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Usual research questions

Given some language L

• What tasks can I express in L? How well can I express them in L?

• Given an L expression and data, what are the computation costs

to perform the task?

• Each task may involve more specialized questions: e.g.

• Typechecking: given input conform I1 ∈ L1, given a

transformation T ∈ LT , will the output always be conform

I2 ∈ L2?

• [Milo, Suciu, Vianu, 00] Decidable for DTD and Core XSLT.
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This talk: focus on validation and navigation

Expressive power on trees

• relative to yardsticks as CQ, FO, MSO, tree automata

• semantic characterizations

• succinctness questions

• rewrite systems
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This talk: focus on validation and navigation

Expressive power on trees

• relative to yardsticks as CQ, FO, MSO, tree automata

• semantic characterizations

• succinctness questions

• rewrite systems

Complexity • Model checking: given a tree T and a formula F ,

does T satsify F?

• Static analysis: containment, equivalence, satisfiability of

expressions.
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Major techniques and strategies

• Similar research strategy as in DL: understand a language

landscape by asking the same question for many different

fragments.

• Where are the borders of decidability and tractability?

• Develop handy tools to show that something is not expressible in

some fragment.

• Techniques include

• Finite models

• Tree automata, regular tree languages

• tree decompositions
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XPath

• two sorted language, just as (P)DL

? path sort binary relation between nodes

? node sort set of nodes

• interpreted on a special class of models:

? finite, sibling ordered, node-labelled unranked trees

• XPath, like DL, is not a language, more a “style”, a “family”
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Operators on node sort are very familiar

• atomic tests

• test for being in the domain of a relation. (just like ∃R.F )

• closed under the booleans.

• (sometimes) n |= R=S iff ∃m. (n, m) ∈ R ∩ S.
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Operators on node sort are very familiar

• atomic tests

• test for being in the domain of a relation. (just like ∃R.F )

• closed under the booleans.

• (sometimes) n |= R=S iff ∃m. (n, m) ∈ R ∩ S.

• term-definable from w |= Rloop iff (w,w) ∈ R.

• R=S ≡ (R;S−1)loop
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Primitive relations are tree relations

• down,up,left,right

• their transitive closures: descendant, ancestor, . . .

• often syntactic sugar: following =

ancestor*/right+/descendant*

• stay relation with a test:
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Operators on path sort are also very familiar

• Regular operators: union, concatenation, Kleene closure

• Boolean operators: intersect and except

• Variables and binders: as in hybrid logic.

• for $x in PATH1 return PATH2
• Meaning: ↓ y.PATH1/↓ x. @y/PATH2
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Immediate relations to known formalisms

• node and path-formulas of PDL

• almost all operators can be found in some DL-language

• Trees: CTL, tree logics of [Blackburn, de Rijke, Meijer-Viol ’96]

• without Kleene *, all languages are inside FO.
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Real life complications (1)

• Two syntaxes

• Unix path style:

/book//section[./paragraph[contains(.,’’XML’’)]]

• Official style:

/child::book/descendant::section[child::paragraph[contains(.,’’XML’’)]]

• Unix style only “up and down”. Official style: everything.
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Real life complications (2)

XPath has many uses and interpretations.

1. Path formula denotes binary relation

when used for navigation within other languages

2. path formula denotes set of nodes

• when used as a stand-alone query language

• Meaning of PATH is range of PATH.
• Natural with /PATH (all nodes reachable by PATH from the root)

3. Path formula denotes a set of trees

• XPath used as a constraint language

• “all trees having a PATH from the root”
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Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+
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Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+ Q and (not child::A or child::*[not A])

last Q without A
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Example

• Task Express the tree-like interview model in XPath.

• For N a node-formula (“modal formula”), N holds everywhere iff

the root starts path

.[not //*[not N]].

Q -> A+ Q and (not child::A or child::*[not A])

last Q without A Q and not right::Q and child::A
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Real life benefits

• Firefox and IE support XPath.

• Fast free XPath evaluators (Saxon, Libxslt)

• Good editors for XPath available

? syntax highlighting

? help with debugging

? evaluation on XML docs
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XPath practice

We define two information needs in terms of XPath.

1. a descendant with lots of specific ancestors along the way

2. question-answer pairs
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Practice 1

Q return all q descendants of current node
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Practice 1

Q return all q descendants of current node
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Q return all q descendants reachable trough p1, . . . , pn nodes

A1 .//p1//q intersect . . . intersect .//pn//q
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Practice 1

Q return all q descendants of current node

A descendant::q or .//q

Q return all q descendants reachable trough p1, . . . , pn nodes

A1 .//p1//q intersect . . . intersect .//pn//q

A2 big union for all permutions ρ of 1, . . . ,n of

.//pρ(1)//pρ(2)// . . . //pρ(n)//q
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Practice 2: question-answers pairs

• Flat (QA+)+ models

• Find an XPath expression $x/... which returns

? when $x is bound to a Q node

? all following A nodes until the next Q.

$x
. . . QAA Q AAAQAQAAAA . . .
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Kleene style
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Kleene style

$x/(right::A)+.

• (.)+ is the transitive closure operator.

• But (.)+ is not available (and not expressible) in W3C XPath

dialects (because that is just FO).
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Tarski style
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Tarski style

$x/( following− sibling :: A except
following− sibling :: Q/following− sibling :: A)

• Expressible in XPath with Booleans on path expressions [Hidders,

2003]
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Frege (or first-order) style
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Frege (or first-order) style

$x/following-sibling::A[ not
preceding-sibling::Q/preceding-sibling::Q[. is $x]]

• Uses variables bound to nodes

• Test . is $x is the hybrid logic variable test.
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Where are we?

1. KR on the Web

2. Logical research questions for XML

3. Getting familiar with XPath(s)

4. Zoom in

i. Expressivity
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Expressivity questions on trees

Rabin’s theorem sets a clear upper bound:

MSO = tree automata = regular tree languages = decidable.

Questions we will survey:

• expressivity relative to yardsticks

• succinctness

• semantic characterizations

Signature of the languages:

equality, unary predicates for nodes, child, descendant, right, right+
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Four XPath dialects

Four flavours of XPath strictly below MSO [ten Cate, M. 2007

survey]

Core XPath ≈ PDL without *

XPath 2.0 no vars ≈ Boolean modal logic ≈ Core XPath plus

booleans on paths

XPath 2.0 ≈ hybrid Boolean modal logic

Regular XPath PDL with the four one-step tree relations.
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Characterization of Core XPath

• On unary trees (= the line), this is Prior’s temporal logic with F
and P.

• Kamp’s theorem ’68 not enough to capture FO(x) on the line.

• [Etessami, Vardi and Wilke ’97]: expressive power is exactly

FO2(x), with an exponential succinctness gap.

• “any two nodes that agree on p1, . . . , pn also agree on p0”

• linear constraint in FO2, exponential in TL.

• Generalizes to sibling-ordered trees and Core XPath.
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Core XPath plus booleans on paths

• Kamp’s thm on unary trees: FO(x)= FO3(x).

• [M. 2005]: Generalizes to XML-trees and paths: FO(x,y) =

FO3(x,y)

• Tarski’s thm: FO3(x, y) = Tarski relation algebras.

• on trees: Tarski relation algebras = Core XPath plus booleans on

paths

• Core XPath plus booleans on paths = FO(x,y) on XML trees.
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Regular XPath

• Captures FO(x, y) (because it captures “since and until”).

• [ten Cate 06] With additional loop it captures FO∗(x, y).

T, x |= Rloop iff T, (x, x) |= R.

• [ten Cate, Segoufin 08] With additional subtree relativization it

captures FO extended with monadic TC.

T, x |= Wφ iff Tx, x |= φ.

• [ten Cate, Segoufin 08] Both are strictly less expressive than MSO.
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Summary

XPath dialect Core XPath 1.0 ( Variable-free

Core XPath 2.0
≡ Core XPath 2.0 ( Regular XPath≈

Equivalent

FO-dialect
∃FOmon¬

tree FOtree FOtree FO∗
tree

(exponential

succinctness gap)

(at least exponential

succinctness gap)

(no succinctness gap:

linear translations)

(non-elementary

succinctness gap)

≡ Core XPath 2.0 ( Regular XPath≈

FOtree FO∗
tree

(no succinctness gap:

linear translations)

(non-elementary

succinctness gap)
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Semantic characterizations

• class of trees C is definable in L iff C is closed under . . .

• Useful for inexpressivity results.

• Real-life languages (W3C standards) often have practical

constraints with unexpected theoretical effects

• DTD’s: must be deterministic

(a+b)*a(a+b) is not expressible by a DTD [Brüggemann-Klein

Wood 98]

• XML schema’s must be single-typed specialized DTD’s [Murata,

Lee, Mani ’01]
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Characterization of single type SDTD

• [Martens, Neven, Schwentick 05] For T a regular tree language, T

is definable by a single type SDTD iff T is closed under

ancestor-guarded subtree exchange.
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(QA+)+Q is not definable on hierarchical models

• Interviews ending in a Q without an A.

• We could not find a DTD specifying this in the hierarchical model.

• Now we can prove it:
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Complexity questions: evaluation

• Model checking. Validation, querying

Input Tree, node(s), formula. Output Boolean

• PSPACE complete for FO. PTIME for fixed variable FO.

Fragment Evaluation complexity

Core XPath PTime (linear) [Gottlob, Koch, Pichler 02]

Core XPath 2 no vars PTime (quadratic) (from FO)

Core XPath 2 Pspace (from FO)

Regular XPath PTime (linear) (from PDL)

Regular XPath+ PTime (linear) [Gottlob Koch 04]

TMNF tests (=MSO)
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Complexity: Static analysis

• Satisfiability, equivalence, . . .

• Decidable for MSO. Non-elementary hard already for FO on unary

trees [Rabin; Meyer]

• Complexity overview [ten Cate, Lutz, 2007]

? Satisfiability.

? Lower bound is EXPTIME, already for Core XPath

? Small language extensions may yield large leaps in complexity
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XML language research and (P)DL: close relations

• both rooted in KR

• trees as fundamental models

• strong emphasis on working systems

• huge tables with acronyms and complexity classes ;-)
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strong Description Logic–XML interplay

• KR aspects

• Data integration and mediation [Halevy, Rome school] (certain

answers are hard to compute)

• Design, maintenance, reuse, integration of ontologies is daily

headache for XML/web-engineers

• DL’s research on modularity of TBoxes [Manchester school] seems

useful.
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Thank you
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Thank you
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Thank you
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