Chapter 7: Computation of the Camera Matrix P

Arco Nederveen

Eagle Vision

March 18, 2008
(1) Chapter 7: Computation of the camera Matrix P

- Basic Equations
- Geometric error
- Restricted camera estimation
- Radial distortion

Basic equations

- Chapter 7: Numerical methods for estimation of the camera matrix.
- Given point correspondences $\mathbf{X}_{i} \leftrightarrow \mathbf{x}_{i}$ between 3D points \mathbf{X}_{i} and 2D image points \mathbf{x}_{i} find the camera matrix P .
- Where P is a 3×4 matrix, such that $\mathbf{x}_{i}=\mathrm{P} \mathbf{X}_{i}$ for all i
- For each correspondence:

$$
\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \tag{1}\\
w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top} \\
-y_{i} \mathbf{X}_{i}^{\top} & x_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)
$$

Where each $\mathbf{P}^{i \top}$ is a 4-vector, the i-th row of P .

Basic equations

- Alternatively:

$$
\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\
w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)
$$

- A set of n correspondences results in $2 n \times 12$ matrix A.
- The projection matrix P is computed by solving. $\mathbf{A p}=\mathbf{0}$. Where \mathbf{p} contains the entries of P.
- Minimal solution: P has 12 entries and 11 degrees of freedom, therefore $5 \frac{1}{2}$ correspondences are needed.
- Overdetermined solution: Minimize algebraic or geometric error.

Basic equations

- Algebraic error: minimize $\|A \mathbf{p}\|$ with a normalization constraint. like $\|\mathbf{p}\|=1$ or $\left\|\hat{\mathbf{p}}^{3}\right\|=1$ where $\hat{\mathbf{p}}^{3}$ is the vector. $\left(p_{31}, p_{32}, p_{33}\right)^{\top}$ from P
- Algebraic error: the residual Ap.
- The DLT algorithm can be used to compute P in the same manner as computing H .

Basic equations

- Degenerate configurations:
- The camera and points all lie on a twisted cubic.
- The points lie on a union of a plane and a single straight line containing the camera center.
- Data normalization:
- 2D points: Centroid of data at origin and their RMS distance from the origin is $\sqrt{2}$.
- 3D points: If variation of depth of points is relatively small than position centroid of data on the origin and scale the RMS of the points to $\sqrt{3}$

Basic equations

- Using Line correspondences in the DLT algorithm
- Line in 3D can be represented by \mathbf{X}_{0} and \mathbf{X}_{1}
- The plane formed by back-projecting the image line \mathbf{l} is equal to $\mathrm{P}^{\top} 1$
- Than \mathbf{X}_{j} lies on this plane if:

$$
\mathrm{P}^{\top} 1_{j}=0 \text { for } j=0,1
$$

- Each choice for j gives a single linear equation which may be added to equation 1.

Geometric error

- If world points $\mathbf{X}_{\mathbf{i}}$ are exactly known and the 2D image points contain noise then the geometric error is given by:

$$
\sum_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)^{2}
$$

Where $\mathbf{x}_{\mathbf{i}}$ is the measured point and $\hat{\mathbf{x}}_{i}$ is the point $\mathrm{P} \mathbf{X}_{i}$.

- If the measurement noise is Gaussian then:

$$
\min _{\mathrm{P}} \sum_{i} d\left(\mathbf{x}_{\mathbf{i}}, \mathbf{P} \mathbf{X}_{i}\right)^{2}
$$

is the Maximum Likelihood estimate of P .

- To minimize the geometric a iterative method must be used. Such as used in the Gold Standard algorithm in table 7.1.

Geometric Error

- Example 7.1: Camera estimation from a calibration object.
- DLT algorithm compared to Gold Standard.
- Rule of thumb: point measurements should exceed the number of unknowns by a factor five.
- Table 7.1 shows the results: slight improvement with Gold
 Standard algorithm.

Errors in the world points

- Its possible world points cannot be determined with absolute accuracy.
- If this is the case the 3D geometric error is defined as:

$$
\sum_{i} d\left(\mathbf{X}_{i}, \hat{\mathbf{X}}_{\mathbf{i}}\right)^{2}
$$

Where $\hat{\mathbf{X}}_{i}$ is the closest point in space to \mathbf{X}_{i} that maps exactly onto \mathbf{x}_{i} via $\mathbf{x}_{i}=\mathrm{P} \hat{\mathbf{X}}_{i}$.

- If both the world and image coordinates contain errors the sum of world and image errors is minimized.

$$
\sum_{i}^{n} d_{\mathrm{Mah}}\left(\mathbf{x}_{i}, \mathrm{P} \hat{\mathbf{X}}_{i}\right)^{2}+d_{\mathrm{Mah}}\left(\mathbf{X}_{i}, \hat{\mathbf{X}}_{i}\right)^{2}
$$

Where $d_{\text {Mah }}$ represents the Mahalanobis distance.

Geometric interpretation of algebraic error

- Points \mathbf{X}_{i} in the DLT algorithm are normalized such that $\mathbf{X}_{i}=\left(X_{i}, Y_{i}, Z_{i}, 1\right)^{\top}$ and $\mathbf{x}_{\mathbf{i}}=\left(x_{i}, y_{i}, 1\right)^{\top}$
- The quantity minimized is then given by: $\sum_{i}\left(\hat{w}_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)\right)^{2}$ where $\hat{w}_{i}\left(\hat{x}_{i}, \hat{y}_{i}, 1\right)^{\top}=\mathrm{P} \mathbf{X}_{i}$
- But given, $\hat{w}_{i}= \pm\left\|\hat{\mathbf{p}}^{3}\right\| \operatorname{depth}(\mathbf{X} ; \mathrm{P})$ we see that \hat{w}_{i} can be seen as the depth of point \mathbf{X}_{i} from the camera in the direction of principle ray if $\left\|\hat{\mathbf{p}}^{3}\right\|^{2}=1$.

Geometric interpretation of algebraic error

- As seen in figure $7.2 \hat{w}_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)$ is proportional to $f d\left(\mathbf{X}^{\prime}, \mathbf{X}\right)$
- The algebraic distance being minimized is equal to $f \sum_{i} d\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)^{2}$

Transformation invariance

- Scaling and translation in either the image of world coordinates have no influence on minimizing $\|A \mathbf{p}\|$.

Estimation of an affine camera

- Affine camera is one for which the projection matrix has $(0,0,0,1)$ as last row.
- Given $\mathbf{X}_{i}=\left(X_{i}, Y_{i}, Z_{i}, 1\right)^{\top}$ and $\mathbf{x}_{\mathbf{i}}=\left(x_{i}, y_{i}, 1\right)^{\top}$ equation 1 reduces to:

$$
\left[\begin{array}{cc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} \\
\mathbf{X}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\binom{\mathbf{P}^{1}}{\mathbf{P}^{2}}+\binom{y_{i}}{-x_{i}}
$$

which shows that the squared algebraic error in this case equals the squared geometric error
$\|\mathbf{A} \mathbf{p}\|^{2}=\sum_{i}\left(x_{i}-\mathbf{P}^{1 \top} \mathbf{X}_{i}\right)^{2}+\left(y_{i}-\mathbf{P}^{2 \top} \mathbf{X}_{i}\right)=\sum_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)^{2}$.

- A linear estimation algorithm is given in algorithm 7.2.

Restricted camera estimation

- Matrix P with centre at finite point $P=K[R \mid-R \tilde{\mathbf{C}}]$. With

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

- With common assumptions:
- The skew s is zero.
- The pixels are square: $\alpha_{x}=\alpha_{y}$.
- The principal point $\left(x_{0}, y_{0}\right)$ is known.
- The complete camera calibration matrix K is known.

Restricted camera estimation

- Some assumptions can make it possible to estimate the restricted camera matrix with a linear algorithm.
- Example: fit a pinhole camera model $\left(s=0\right.$ and $\left.\alpha_{x}=\alpha_{y}\right)$ to a set of point measurements.
- Minimize geometric error.
- Parameterize the camera model using the remaining 9 parameters. ($x_{0}, y_{0}, \alpha, 6$ from R and $\tilde{\mathbf{C}}$ denoted collectively by \mathbf{q})
- Iterative minimization of geometric error.
- Minimizing algebraic error.
- Iterative minimization problem becomes smaller.
- Equivalent to minimizing $\|\mathrm{A} g(\mathbf{q})\|$.

Restricted camera estimation

- The reduced measurement matrix.
- Possible to replace matrix A with a square 12×12 matrix Â such that $\|A \mathbf{p}\|=\mathbf{p}^{\top} \mathrm{A}^{\top} \mathbf{A p}=\|\hat{A} \mathbf{p}\|$.
- By SVD: Let $A=U D V^{\top}$ be the SVD of A, and define $\hat{A}=D V^{\top}$. Then

$$
A^{\top} A=\left(V D U^{\top}\right)\left(U D V^{\top}\right)=(V D)\left(D V^{\top}\right)=\hat{A}^{\top} \hat{A}
$$

- Given a set of n world to image correspondence, $\mathbf{X}_{\mathbf{i}} \leftrightarrow \mathbf{x}_{\mathbf{i}}$, the problem of finding a constrained camera matrix P that minimizes the sum of algebraic distances $\sum_{i} d_{\text {alg }}\left(\mathbf{x}_{\mathbf{i}}, \mathrm{P} \mathbf{X}_{i}\right)^{2}$ reduces to the minimization of a function $\mathbb{R}^{9} \rightarrow \mathbb{R}^{12}$, independent of the number n correspondences.

Restricted camera estimation

- Initialization of the iteration
- Use a linear algorithm such as DLT to find initial camera matrix.
- Clamp fixed parameters
- Set variable parameter to their values obtained by decomposition of initial camera matrix
- The values obtained from the DLT can differ significant from the real values. Therefore use soft constraints and add extra terms to the cost function. E.g. if $s=0$ and $\alpha_{x}=\alpha_{y}$ the geometric error becomes:

$$
\sum_{i} d\left(\mathbf{x}_{i}, \mathrm{P} \mathbf{X}_{i}\right)^{2}+w s^{2}+w\left(\alpha_{x}-\alpha_{y}\right)^{2}
$$

Restricted camera estimation

- Exterior orientation
- All internal parameters of the camera are known.
- Only position and orientation of the camera unknown.
- Six degrees of freedom remain and can be determined with three points.
- Experimental evaluation (table 7.2)
- Same results
- Algrabraic method is quicker (12 errors vs. $2 n=396$)

Restricted camera estimation

- Covariance estimation
- Similar to 2D homography case.
- Assuming all errors are in the image measurements the residual error is equal to:

$$
\epsilon_{\mathrm{res}}=\sigma(1-d / 2 n)^{1 / 2}
$$

With d the number of camera parameters being fitted. (Example 7.1: $\epsilon=0.365$ results in $\sigma=0.37$).

Restricted camera estimation

- Covariance ellipsoid for an estimated camera.
- Backpropogate covariance of the point measurements back to camera models. Which results in:

$$
\Sigma_{\text {camera }}=\left(\mathrm{J}^{\top} \Sigma_{\text {points }}^{-1} \mathrm{~J}\right)^{-1}
$$

With J Jacobian of measured points.

- Error bounds of ellipsoid can now be computed.

$$
(\mathbf{C}-\overline{\mathbf{C}})^{\top} \Sigma_{\mathbf{C}}^{-1}(\mathbf{C}-\overline{\mathbf{C}})=k^{2}
$$

Where $k^{2}=F_{n}^{-1}(\alpha)$ from the inverse cumulative χ_{n}^{2} with confidence level α and n the number of variables.

Radial distortion

- Assumed that a linear model is accurate for imaging.
- Not the case for real lenses.
- Radial distortion

radial distortion

linear image

Radial distortion

- Radial distortion is modeled by:

$$
\binom{x_{d}}{y_{d}}=L(\tilde{r})\binom{\tilde{x}}{\tilde{y}}
$$

- (\tilde{x}, \tilde{y}) is the ideal position
- $\left(x_{d}, y_{d}\right)$ actual image position
- \tilde{r} is the radial distance $\sqrt{\tilde{x}^{2}+\tilde{x}^{2}}$ from the centre of distortion
- $L(\tilde{r})$ is a distortion factor

Radial distortion

- Correction of the coordinates in pixel coordinates is given by:

$$
\begin{aligned}
\hat{x} & =x_{c}+L(r)\left(x-x_{c}\right) \\
\hat{y} & =y_{c}+L(r)\left(y-y_{c}\right)
\end{aligned}
$$

Where (x, y) are the measured coordinates, (\hat{x}, \hat{y}) corrected coordiates, $\left(x_{c}, y_{c}\right)$ the center of radial distortion, and $r^{2}=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}$.

- $L(r)$ is approximated by a Taylor expansion $L(r)=1+\kappa_{1} r+\kappa_{2} r^{2}+\kappa_{3} r^{3}+\ldots$

Radial distortion

- Principal point is taken as the centre of radial distortion.
- $L(r)$ may be computed by minimizing a cost based on a the deviation from a linear mapping.
- Parameters κ_{i} can be computed together with P during minimization of the geometric error.
- Alternatively one can use known straight lines to guide minimization process.
- Example 7.3 and 7.4 show an example of radial distortion compensation and the effect on the residual error (Table 7.3).

