Fundamental matrix & Trifocal tensor

- Computation of the Fundamental Matrix ${\rm F}$
- Introduction into the Trifocal tensor

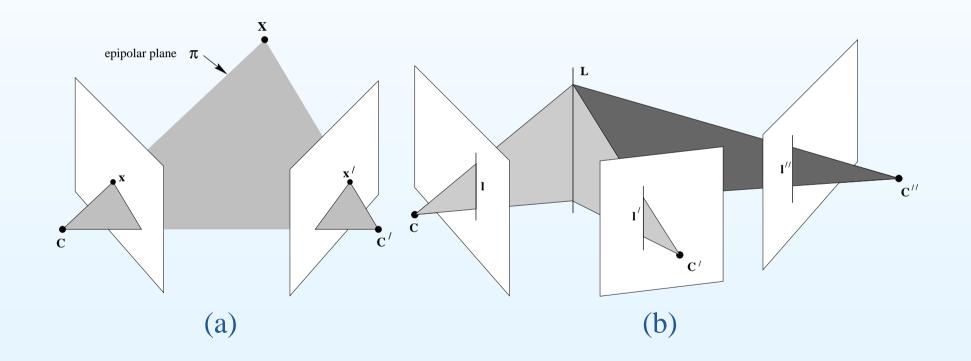


Figure 1: Two-view geometry(a), Tri-view geometry(b).

• The Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm

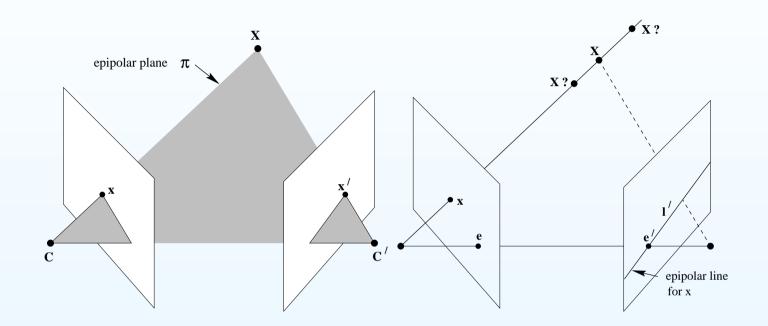
- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F

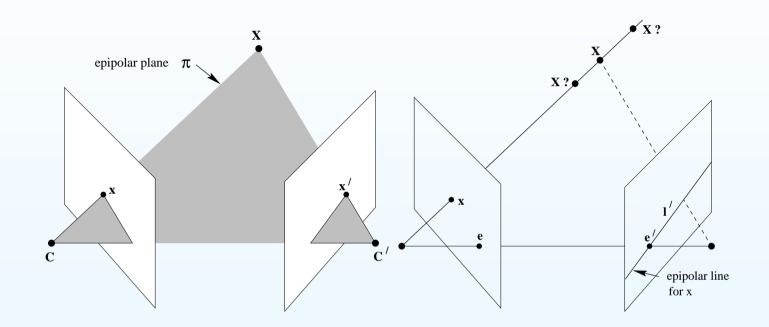
- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F
- Special cases of F-computation

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F
- Special cases of F-computation
- Using F for image rectification

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F
- Special cases of F-computation
- Using F for image rectification



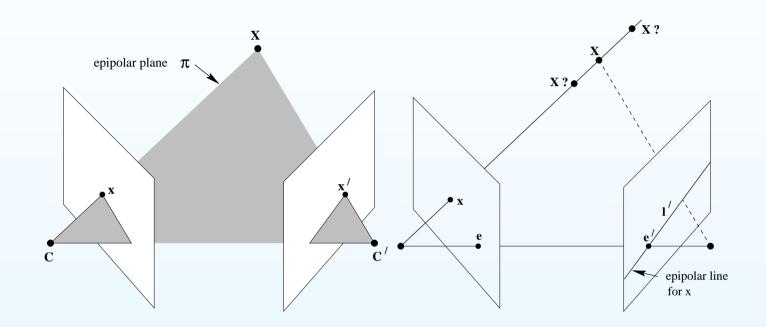
• F relates x to its epipolar line l' = Fx



- F relates x to its epipolar line l' = Fx
- Since x' must be on l' we have $x'^{\top}l' = 0$



- F relates x to its epipolar line l' = Fx
- Since x' must be on l' we have $x'^{\top}l' = 0$
- Thus $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$



- F relates x to its epipolar line l' = Fx
- Since x' must be on l' we have $x'^{\top}l' = 0$
- Thus $\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x} = \mathbf{0}$
- F is singular, of rank 2, det F = 0 and F has seven degrees of freedom.

8-point algorithm

$$x = (x, y, 1)$$
 $x' = (x', y', 1)$

Let f be the vector representation (row-major) of F then

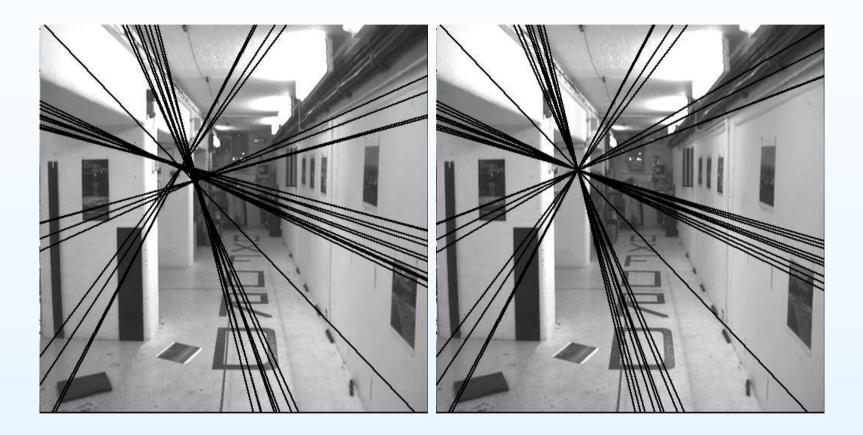
 $\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x} = 0$ becomes $(x'x, x'y, x', y'x, y'y, y', x, y, 1)^{\top} f = 0.$

For *n* corresponding points we get the set of homogeneous equations:

 $Af = \begin{bmatrix} x'_1x_1 & x'_1y_1 & x'_1 & y'_1x_1 & y'_1y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_nx_n & x'_ny_n & x'_n & y'_nx_n & y'_ny_n & y'_n & x_n & y_n & 1 \end{bmatrix} f = \mathbf{0}.$

The least-squares solution can be found using the SVD of A i.e. f is the singular vector of A with the smallest singular value.

Enforcing the singularity constraint



F found by solving the set of linear equations does not guarantee that F has rank 2 and thus is singular.

Enforcing the singularity constraint

To enforce rank 2 on F, replace F with F' where F' minimizes the Frobenius norm $\|F - F'\|_{Frobenius}$.

$$\|\mathbf{M}\|_{Frobenius}^2 = \sum_{1}^{\min\{m,n\}} \sigma_i^2$$

with σ_n being the singular values of M.

This can be solved with the SVD of F. Given $F = UDV^{\top}$ and $\sigma_1 > \sigma_2$ are the two largest singular values of F then:

$$F' = U \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^{\top}.$$

7-point algorithm

- Using the singularity constraint we can also compute F when A has rank seven and is made of seven point correspondences.
- In this case the solution to Af = 0 becomes two-dimensional. The solution is in the form:

 $\mathbf{F} = \alpha \mathbf{F}_1 + (1 - \alpha) \mathbf{F}_2$

where F_1 and F_2 are the matrices corresponding to the generators of the right null-space f_1 and f_2 .

- Note that the singularity constraint enforces det F = 0 thus $det(F = \alpha F_1 + (1 \alpha)F_2)=0$. This gives a cubic polynomial in α from which we can solve for α .
- From this we get one or three real solutions for α . Given these solutions, we can put them in $F = \alpha F_1 + (1 \alpha)F_2$ to retrieve the F's.

• When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.
- Scale the points so that the RMS distance of the points from the origin is $\sqrt{2}$.

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.
- Scale the points so that the RMS distance of the points from the origin is $\sqrt{2}$.
- let T and T' be these appropriate normalization (translation and scaling) matrices. Then estimate F on the points $x_i = Tx_i$ and $x'_i = T'x'_i$.

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.
- Scale the points so that the RMS distance of the points from the origin is $\sqrt{2}$.
- let T and T' be these appropriate normalization (translation and scaling) matrices. Then estimate F on the points
 x_i = Tx_i and x'_i = T'x'_i.
- Transform the solution for F back to the unnormalized frame with $F = T'^{\top}FT$.

• Make an initial estimate of F using the normalized 8-point algorithm.

- Make an initial estimate of F using the normalized 8-point algorithm.
- From this F extract two camera matrices P = [I|0] and $P = [[e']_{\times} |e']$ with e' obtained from F

- Make an initial estimate of ${\rm F}$ using the normalized 8-point algorithm.
- From this F extract two camera matrices P = [I|0] and $P = [[e']_{\times} |e']$ with e' obtained from F
- From the correspondences and F estimate the 3D positions of the real-world points relating to the imaged points.

- Make an initial estimate of F using the normalized 8-point algorithm.
- From this F extract two camera matrices P = [I|0] and $P = [[e']_{\times} |e']$ with e' obtained from F
- From the correspondences and F estimate the 3D positions of the real-world points relating to the imaged points.
- Given this 3D points project them back to both image planes using the estimate of the camera projection matrices (that were based on F).

- Make an initial estimate of F using the normalized 8-point algorithm.
- From this F extract two camera matrices P = [I|0] and $P = [[e']_{\times} |e']$ with e' obtained from F
- From the correspondences and F estimate the 3D positions of the real-world points relating to the imaged points.
- Given this 3D points project them back to both image planes using the estimate of the camera projection matrices (that were based on F).
- The difference in the real points and the backprojected points is what we want to minimize by varying the camera matrices P and P' and the coordinates of the 3D points (and thus also implicitly by varying F).

• Minimize a geometric distance (cost):

where *d* is differentiable in parameters relating to F, x_i and x'_i are the correspondence points and \hat{x}_i and \hat{x}'_i are their reprojections given the current F.

• Minimize a geometric distance (cost):

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2},$$

where *d* is differentiable in parameters relating to F, x_i and x'_i are the correspondence points and \hat{x}_i and \hat{x}'_i are their reprojections given the current F.

• Minimize a geometric distance (cost):

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2},$$

where *d* is differentiable in parameters relating to F, x_i and x'_i are the correspondence points and \hat{x}_i and \hat{x}'_i are their reprojections given the current F.

• Because the cost is differentiable we can locally approximate it with a linear function.

• Minimize a geometric distance (cost):

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2},$$

where *d* is differentiable in parameters relating to F, x_i and x'_i are the correspondence points and \hat{x}_i and \hat{x}'_i are their reprojections given the current F.

- Because the cost is differentiable we can locally approximate it with a linear function.
- This means we can use Gauss-Newton, gradient descent or preferably Levenberg-Marquardt to iteratively find a solution.

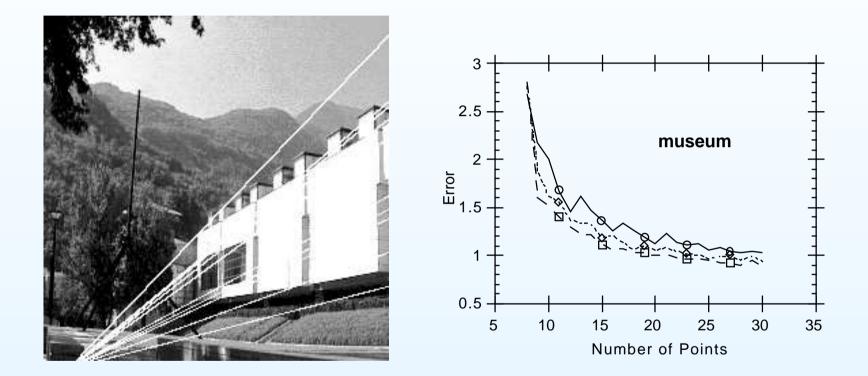
• Minimize a geometric distance (cost):

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2},$$

where *d* is differentiable in parameters relating to F, x_i and x'_i are the correspondence points and \hat{x}_i and \hat{x}'_i are their reprojections given the current F.

- Because the cost is differentiable we can locally approximate it with a linear function.
- This means we can use Gauss-Newton, gradient descent or preferably Levenberg-Marquardt to iteratively find a solution.

A comparison

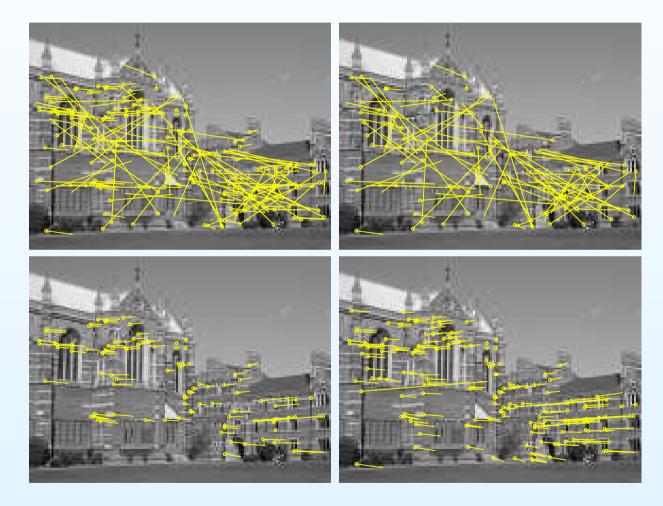


$$\frac{1}{N}\sum_{i} d(x_{i}', Fx_{i})^{2} + d(x_{i}, F^{T}x_{i}')^{2}$$

From Hartley and Zisserman Multiple View Geometry, Presented by Gijs Dubbelman – p.11/3

Automatic computation of F

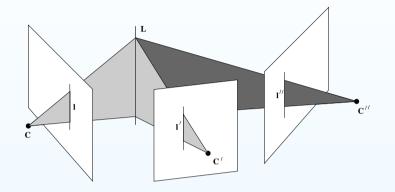
Look at Hartley and Zisserman page 291 Algorithm 11.4.



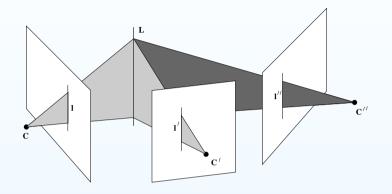
Using F for image rectification

Look at Hartley and Zisserman page 307 Algorithm 11.12.3

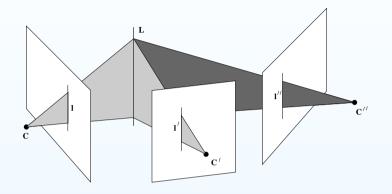
The Trifocal tensor



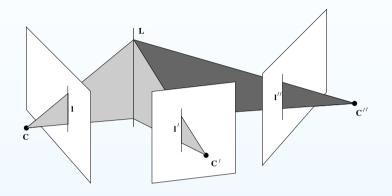
• For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.



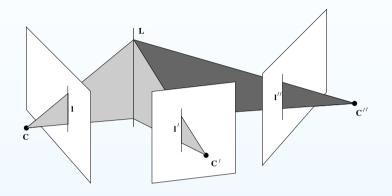
- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.



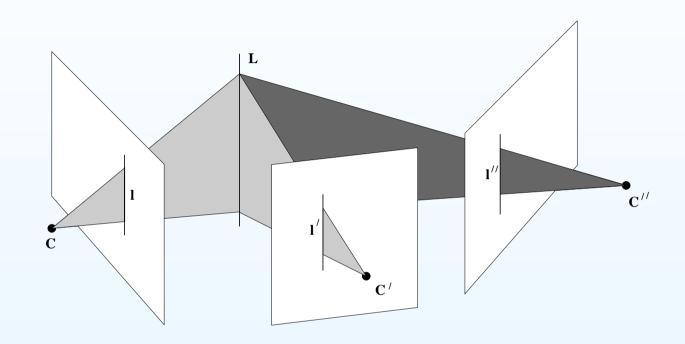
- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.
- It is uniquely defined by the internal and external camera properties.



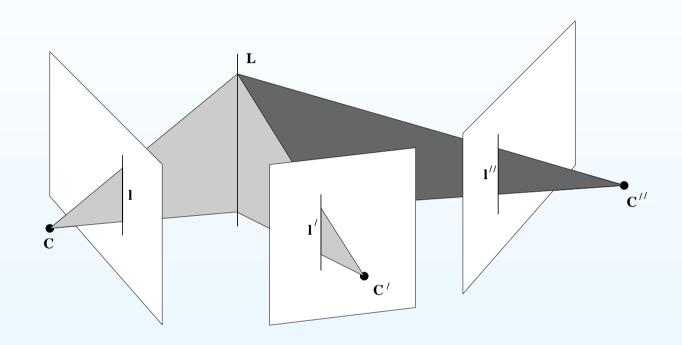
- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.
- It is uniquely defined by the internal and external camera properties.
- However, it can be computed directly from image correspondence without knowledge of the internal and external camera matrices.



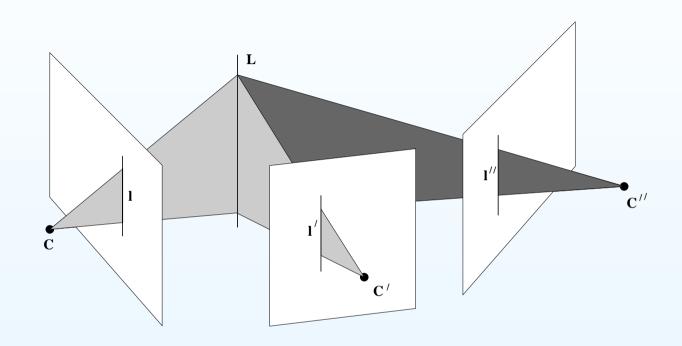
- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.
- It is uniquely defined by the internal and external camera properties.
- However, it can be computed directly from image correspondence without knowledge of the internal and external camera matrices.



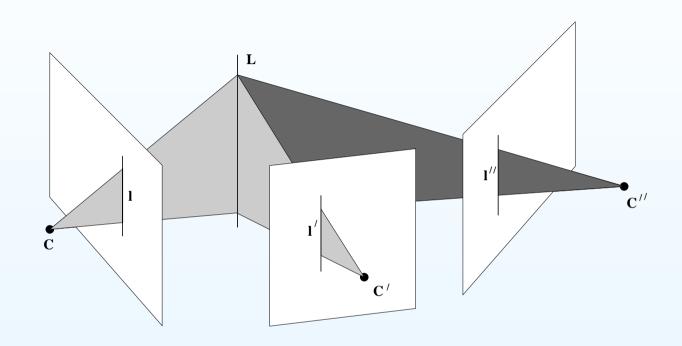
• Image lines back project to scene planes.



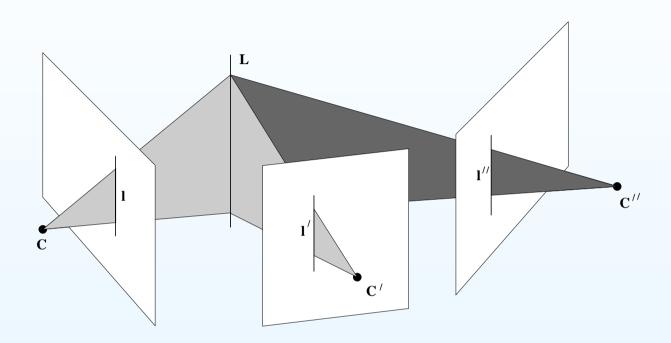
- Image lines back project to scene planes.
- In general three planes do not intersect in a single line.



- Image lines back project to scene planes.
- In general three planes do not intersect in a single line.
- Thus, the fact that three image lines correspond to the same scene line, provides a geometric constraint.



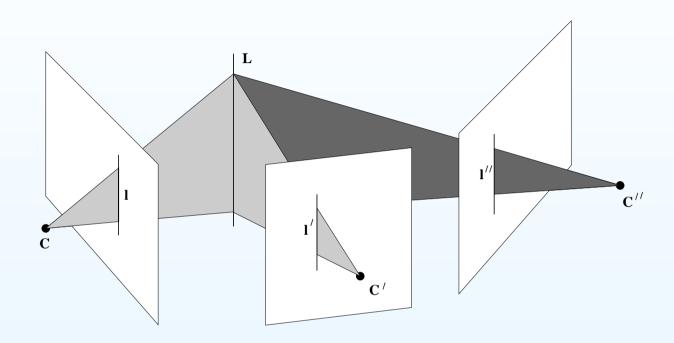
- Image lines back project to scene planes.
- In general three planes do not intersect in a single line.
- Thus, the fact that three image lines correspond to the same scene line, provides a geometric constraint.



Three corresponding image lines: $l \leftrightarrow l' \leftrightarrow l''$

Camera matrices (3x4) for the three views: $P = [I | 0], P' = [A | a_4], P'' = [B | b_4]$

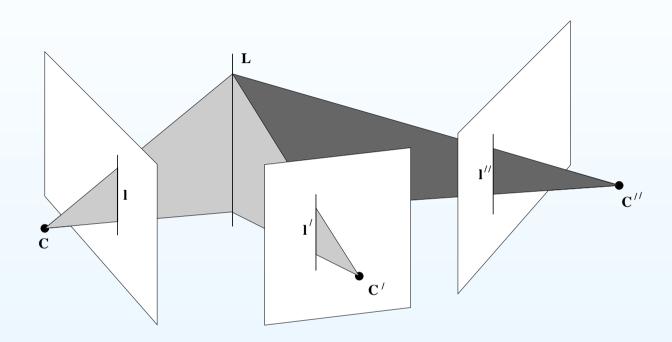
 $a_4 = e'$ and $b_4 = e''$ are the epipoles arising from the first camera center *C* thus: e' = P'C and e'' = P''C



The lines: $1 \leftrightarrow 1' \leftrightarrow 1''$ back project to the planes:

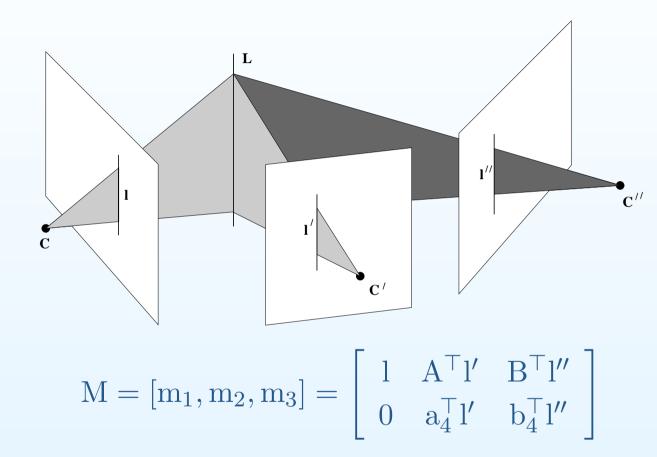
$$\pi = \mathbf{P}^{\top}\mathbf{l} = \begin{pmatrix} \mathbf{l} \\ \mathbf{0} \end{pmatrix}, \ \pi' = \mathbf{P}'^{\top}\mathbf{l}' = \begin{pmatrix} \mathbf{A}^{\top}\mathbf{l}' \\ \mathbf{a}_{4}^{\top}\mathbf{l}' \end{pmatrix},$$
$$\pi'' = \mathbf{P}''^{\top}\mathbf{l}'' = \begin{pmatrix} \mathbf{B}^{\top}\mathbf{l}'' \\ \mathbf{b}_{4}^{\top}\mathbf{l}'' \end{pmatrix}.$$

From Hartley and Zisserman Multiple View Geometry, Presented by Gijs Dubbelman – p.17/3



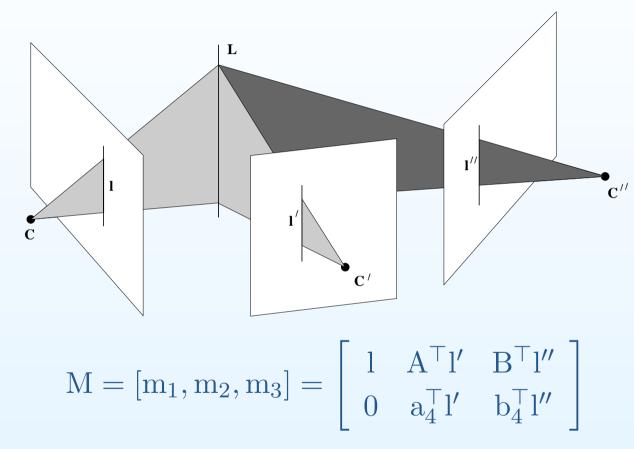
The planes π, π' and π'' coincide in the line L

This can be expressed algebraically with: $M = [\pi, \pi', \pi''], \quad det (M) = 0$



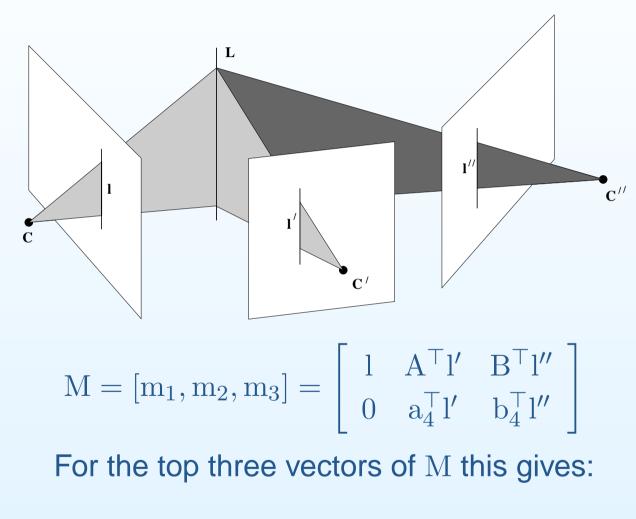
Since det(M) = 0 The columns must be linearly dependent.

Thus, $m_1 = \alpha m_2 + \beta m_3$

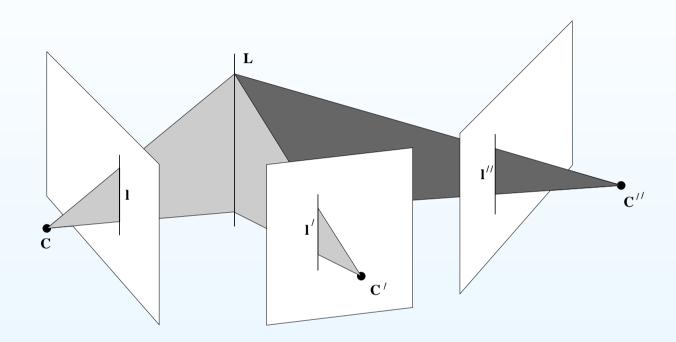


Since the bottom left element of M = 0 it follows that:

$$\alpha = k(\mathbf{b}_4^\top \mathbf{l}'')$$
 and $\beta = -k(\mathbf{a}_4^\top \mathbf{l}')$

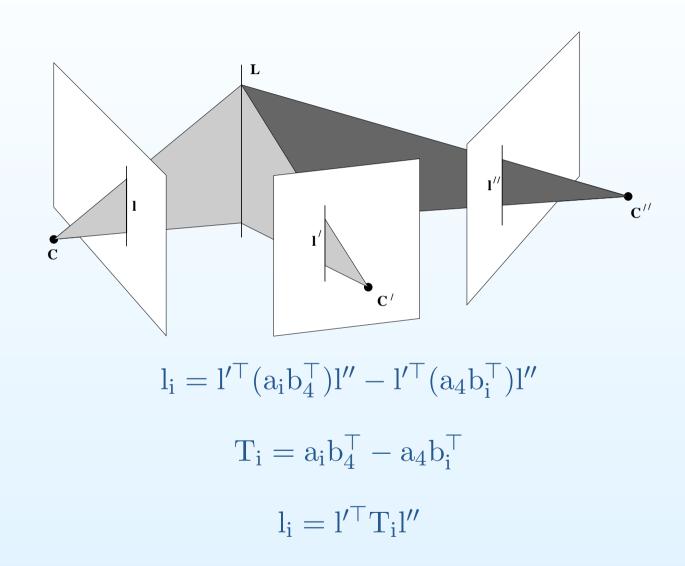


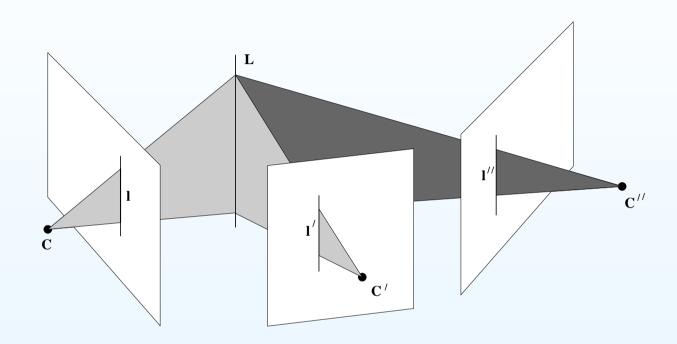
$$l = (b_4^{\top} l'') A^{\top} l' - (a_4^{\top} l') B^{\top} l'' = (l''^{\top} b_4) A^{\top} l' - (l'^{\top} a_4) B^{\top} l''$$



For the *i*-th element of we have:

$$\begin{split} l_i &= l''^\top (b_4 a_i^\top) l' - l'^\top (a_4 b_i^\top) l'' \\ l_i &= l'^\top (a_i b_4^\top) l'' - l'^\top (a_4 b_i^\top) l'' \end{split}$$

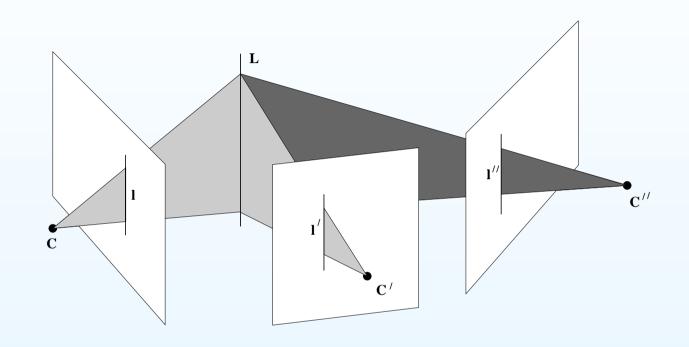




The set of the three matrices T_1, T_2, T_3 constitute the trifocal tensor in matrix notation.

$$l^{\top} = (l_{i} = l'^{\top} T_{1} l'', l_{i} = l'^{\top} T_{2} l'', l_{i} = l'^{\top} T_{3} l'') = l'^{\top} \begin{bmatrix} T_{1} & T_{2} & T_{3} \end{bmatrix} l''$$

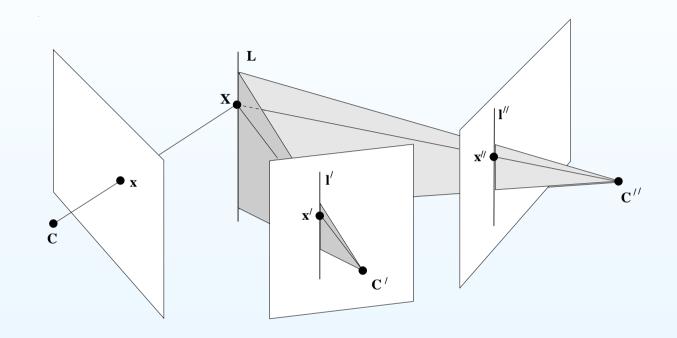
Line-Line correspondence



 $\mathbf{l}^{\top} = \mathbf{l}'^{\top} \begin{bmatrix} T_1 & T_2 & T_3 \end{bmatrix} \mathbf{l}''$

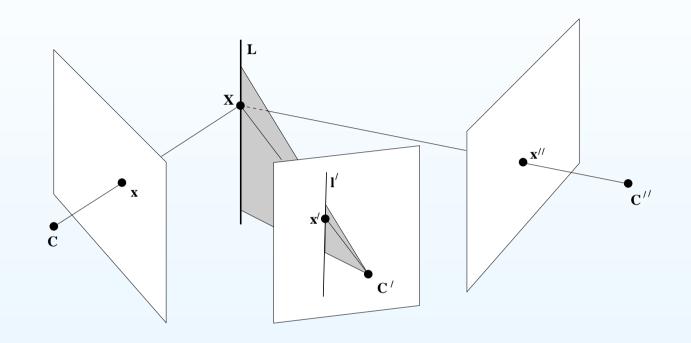
From Hartley and Zisserman Multiple View Geometry, Presented by Gijs Dubbelman – p.25/3

Point-Line-Line correspondence



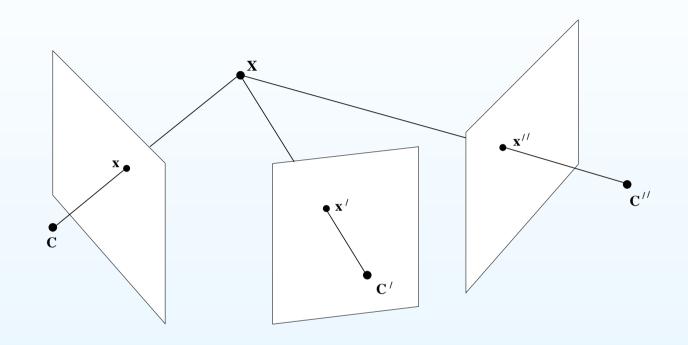
 $\mathbf{l}'^{\top} \left(\sum_{i} x^{i} \mathbf{T}_{i}\right) \mathbf{l}'' = 0$

Point-Line-Point correspondence



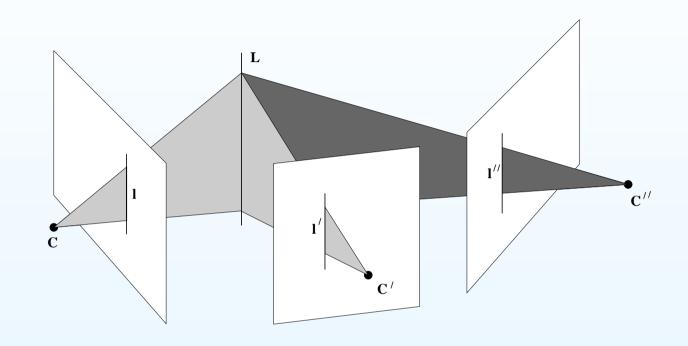
 $\mathbf{l}'^{\top} \left(\sum_{i} x^{i} \mathbf{T}_{i}\right) [x'']_{\times} = \mathbf{0}^{\top}$

Point-Point-Point correspondence



 $[x']_{\times} \left(\sum_{i} x^{i} \mathbf{T}_{i}\right) [x'']_{\times} = \mathbf{0}_{3 \times 3}$

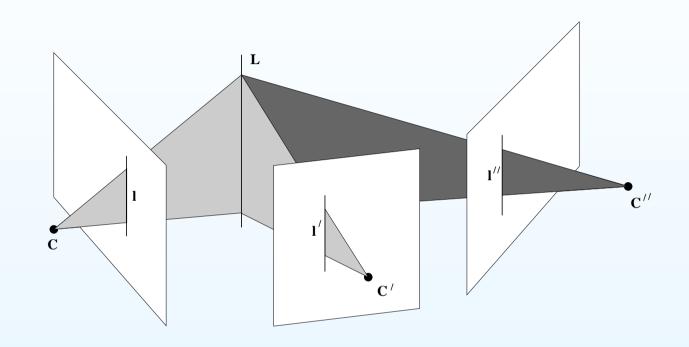
Extracting the fundamental matrix



 $F_{21} = [e']_{\times} [T_1, T_2, T_3]e''$

From Hartley and Zisserman Multiple View Geometry, Presented by Gijs Dubbelman – p.29/3

Retrieving the camera matrices



 $P' = [[T_1, T_2, T_3]e'' | e']$

Retrieving food

