Fundamental matrix \& Trifocal tensor

- Computation of the Fundamental Matrix F
- Introduction into the Trifocal tensor

Figure 1: Two-view geometry(a), Tri-view geometry(b).

Computation of the Fundamental Matrix F

- The Fundamental Matrix F

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F
- Special cases of F-computation

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F
- Special cases of F-computation
- Using F for image rectification

Computation of the Fundamental Matrix F

- The Fundamental Matrix F
- Normalized 8-point algorithm
- Normalized 7-point algorithm
- The Gold standard method
- Automatic computation of F
- Special cases of F-computation
- Using F for image rectification

The fundamental matrix

- F relates x to its epipolar line $\mathrm{l}^{\prime}=\mathrm{Fx}$

The fundamental matrix

- F relates x to its epipolar line $\mathrm{l}^{\prime}=\mathrm{Fx}$
- Since x^{\prime} must be on l^{\prime} we have $x^{\prime \top} l^{\prime}=0$

The fundamental matrix

- F relates x to its epipolar line $\mathrm{l}^{\prime}=\mathrm{Fx}$
- Since x^{\prime} must be on l^{\prime} we have $x^{\prime \top} l^{\prime}=0$
- Thus $\mathrm{x}^{\prime \top} \mathrm{Fx}=0$

The fundamental matrix

- F relates x to its epipolar line $\mathrm{l}^{\prime}=\mathrm{Fx}$
- Since x^{\prime} must be on l^{\prime} we have $x^{\prime \top} l^{\prime}=0$
- Thus $x^{\prime \top} \mathrm{Fx}=0$
- F is singular, of rank 2, det $\mathrm{F}=0$ and F has seven degrees of freedom.

8-point algorithm

$$
x=(x, y, 1) \quad x^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)
$$

Let f be the vector representation (row-major) of F then
$\mathrm{x}^{\prime \top} \mathrm{Fx}=0$ becomes $\left(x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right)^{\top} f=0$.
For n corresponding points we get the set of homogeneous equations:
$A f=\left[\begin{array}{ccccccccc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x_{n}^{\prime} x_{n} & x_{n}^{\prime} y_{n} & x_{n}^{\prime} & y_{n}^{\prime} x_{n} & y_{n}^{\prime} y_{n} & y_{n}^{\prime} & x_{n} & y_{n} & 1\end{array}\right] f=\mathbf{0}$.
The least-squares solution can be found using the SVD of A i.e. f is the singular vector of A with the smallest singular value.

Enforcing the singularity constraint

F found by solving the set of linear equations does not guarantee that F has rank 2 and thus is singular.

Enforcing the singularity constraint

To enforce rank 2 on F, replace F with F^{\prime} where F^{\prime} minimizes the Frobenius norm $\left\|\mathrm{F}-\mathrm{F}^{\prime}\right\|_{\text {Frobenius }}$.

$$
\|\mathrm{M}\|_{\text {Frobenius }}^{2}=\sum_{1}^{\min \{m, n\}} \sigma_{i}^{2}
$$

with σ_{n} being the singular values of M.
This can be solved with the SVD of F.
Given $\mathrm{F}=\mathrm{UDV}^{\top}$ and $\sigma_{1}>\sigma_{2}$ are the two largest singular values of F then:

$$
F^{\prime}=U\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right] V^{\top} .
$$

7-point algorithm

- Using the singularity constraint we can also compute F when A has rank seven and is made of seven point correspondences.
- In this case the solution to $\mathrm{Af}=0$ becomes two-dimensional. The solution is in the form:

$$
\mathrm{F}=\alpha \mathrm{F}_{1}+(1-\alpha) \mathrm{F}_{2}
$$

where F_{1} and F_{2} are the matrices corresponding to the generators of the right null-space f_{1} and f_{2}.

- Note that the singularity constraint enforces det $\mathrm{F}=0$ thus $\operatorname{det}\left(\mathrm{F}=\alpha \mathrm{F}_{1}+(1-\alpha) \mathrm{F}_{2}\right)=0$. This gives a cubic polynomial in α from which we can solve for α.
- From this we get one or three real solutions for α. Given these solutions, we can put them in $\mathrm{F}=\alpha \mathrm{F}_{1}+(1-\alpha) \mathrm{F}_{2}$ to retrieve the F's.

Normalization

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.

Normalization

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.

Normalization

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.
- Scale the points so that the RMS distance of the points from the origin is $\sqrt{2}$.

Normalization

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.
- Scale the points so that the RMS distance of the points from the origin is $\sqrt{2}$.
- let T and T^{\prime} be these appropriate normalization (translation and scaling) matrices. Then estimate F on the points $\mathrm{x}_{i}=\mathrm{Tx}_{\mathrm{i}}$ and $\mathrm{x}_{i}^{\prime}=\mathrm{T}^{\prime} \mathrm{x}_{\mathrm{i}}^{\prime}$.

Normalization

- When computing the fundamental matrix (using the algorithms described thus far) normalizing the points is the key to good performance.
- Translate the points so that the centroid of the reference points is at the origin.
- Scale the points so that the RMS distance of the points from the origin is $\sqrt{2}$.
- let T and T^{\prime} be these appropriate normalization (translation and scaling) matrices. Then estimate F on the points $\mathrm{x}_{i}=\mathrm{Tx}_{\mathrm{i}}$ and $\mathrm{x}_{i}^{\prime}=\mathrm{T}^{\prime} \mathrm{x}_{\mathrm{i}}^{\prime}$.
- Transform the solution for F back to the unnormalized frame with $\mathrm{F}=\mathrm{T}^{\prime \top} \mathrm{FT}$.

The Gold standard method and reprojection

- Make an initial estimate of F using the normalized 8 -point algorithm.

The Gold standard method and reprojection

- Make an initial estimate of F using the normalized 8 -point algorithm.
- From this F extract two camera matrices $\mathrm{P}=[\mathrm{I} \mid \mathbf{0}]$ and $\mathrm{P}=\left[\left[\mathbf{e}^{\prime}\right]_{\times} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{e}^{\prime} obtained from F

The Gold standard method and reprojection

- Make an initial estimate of F using the normalized 8 -point algorithm.
- From this F extract two camera matrices $\mathrm{P}=[\mathrm{I} \mid 0]$ and $\mathrm{P}=\left[\left[\mathbf{e}^{\prime}\right]_{\times} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{e}^{\prime} obtained from F
- From the correspondences and F estimate the 3D positions of the real-world points relating to the imaged points.

The Gold standard method and reprojection

- Make an initial estimate of F using the normalized 8 -point algorithm.
- From this F extract two camera matrices $\mathrm{P}=[\mathrm{I} \mid \mathbf{0}]$ and $\mathrm{P}=\left[\left[\mathbf{e}^{\prime}\right]_{\times} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{e}^{\prime} obtained from F
- From the correspondences and F estimate the 3D positions of the real-world points relating to the imaged points.
- Given this 3D points project them back to both image planes using the estimate of the camera projection matrices (that were based on F).

The Gold standard method and reprojection

- Make an initial estimate of F using the normalized 8-point algorithm.
- From this F extract two camera matrices $\mathrm{P}=[\mathrm{I} \mid \mathbf{0}]$ and $\mathrm{P}=\left[\left[\mathbf{e}^{\prime}\right]_{\times} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{e}^{\prime} obtained from F
- From the correspondences and F estimate the 3D positions of the real-world points relating to the imaged points.
- Given this 3D points project them back to both image planes using the estimate of the camera projection matrices (that were based on F).
- The difference in the real points and the backprojected points is what we want to minimize by varying the camera matrices P and P^{\prime} and the coordinates of the 3D points (and thus also implicitly by varying F).

The Gold standard method

- Minimize a geometric distance (cost):
where d is differentiable in parameters relating to $\mathrm{F}, \mathrm{x}_{i}$ and x_{i}^{\prime} are the correspondence points and $\hat{\mathrm{x}}_{i}$ and $\hat{\mathrm{x}}_{i}^{\prime}$ are their reprojections given the current F .

The Gold standard method

- Minimize a geometric distance (cost):

$$
\sum_{i} d\left(\mathrm{x}_{i}, \hat{\mathrm{x}}_{i}\right)^{2}+d\left(\mathrm{x}_{i}^{\prime}, \hat{\mathrm{x}}_{i}^{\prime}\right)^{2}
$$

where d is differentiable in parameters relating to $\mathrm{F}, \mathrm{x}_{i}$ and x_{i}^{\prime} are the correspondence points and $\hat{\mathrm{x}}_{i}$ and $\hat{\mathrm{x}}_{i}^{\prime}$ are their reprojections given the current F .

The Gold standard method

- Minimize a geometric distance (cost):

$$
\sum_{i} d\left(\mathrm{x}_{i}, \hat{\mathrm{x}}_{i}\right)^{2}+d\left(\mathrm{x}_{i}^{\prime}, \hat{\mathrm{x}}_{i}^{\prime}\right)^{2}
$$

where d is differentiable in parameters relating to $\mathrm{F}, \mathrm{x}_{i}$ and x_{i}^{\prime} are the correspondence points and $\hat{\mathrm{x}}_{i}$ and $\hat{\mathrm{x}}_{i}^{\prime}$ are their reprojections given the current F.

- Because the cost is differentiable we can locally approximate it with a linear function.

The Gold standard method

- Minimize a geometric distance (cost):

$$
\sum_{i} d\left(\mathrm{x}_{i}, \hat{\mathrm{x}}_{i}\right)^{2}+d\left(\mathrm{x}_{i}^{\prime}, \hat{\mathrm{x}}_{i}^{\prime}\right)^{2}
$$

where d is differentiable in parameters relating to $\mathrm{F}, \mathrm{x}_{i}$ and x_{i}^{\prime} are the correspondence points and $\hat{\mathrm{x}}_{i}$ and $\hat{\mathrm{x}}_{i}^{\prime}$ are their reprojections given the current F .

- Because the cost is differentiable we can locally approximate it with a linear function.
- This means we can use Gauss-Newton, gradient descent or preferably Levenberg-Marquardt to iteratively find a solution.

The Gold standard method

- Minimize a geometric distance (cost):

$$
\sum_{i} d\left(\mathrm{x}_{i}, \hat{\mathrm{x}}_{i}\right)^{2}+d\left(\mathrm{x}_{i}^{\prime}, \hat{\mathrm{x}}_{i}^{\prime}\right)^{2}
$$

where d is differentiable in parameters relating to $\mathrm{F}, \mathrm{x}_{i}$ and x_{i}^{\prime} are the correspondence points and $\hat{\mathrm{x}}_{i}$ and $\hat{\mathrm{x}}_{i}^{\prime}$ are their reprojections given the current F .

- Because the cost is differentiable we can locally approximate it with a linear function.
- This means we can use Gauss-Newton, gradient descent or preferably Levenberg-Marquardt to iteratively find a solution.

A comparison

$$
\frac{1}{N} \sum_{i} d\left(x_{i}^{\prime}, F x_{i}\right)^{2}+d\left(x_{i}, F^{T} x_{i}^{\prime}\right)^{2}
$$

Automatic computation of F

Look at Hartley and Zisserman page 291 Algorithm 11.4.

Using F for image rectification

Look at Hartley and Zisserman page 307 Algorithm 11.12.3

The Trifocal tensor

- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.

The Trifocal tensor

- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.

The Trifocal tensor

- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.
- It is uniquely defined by the internal and external camera properties.

The Trifocal tensor

- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.
- It is uniquely defined by the internal and external camera properties.
- However, it can be computed directly from image correspondence without knowledge of the internal and external camera matrices.

From Hartley and Zisserman Multiple View Geometry, Presented by Gijs Dubbelman - p.14/3

The Trifocal tensor

- For three camera's the trifocal tensor is what the Fundamental matrix is for two camera's.
- It captures the complete (projective)geometric relations between the three views.
- It is uniquely defined by the internal and external camera properties.
- However, it can be computed directly from image correspondence without knowledge of the internal and external camera matrices.

From Hartley and Zisserman Multiple View Geometry, Presented by Gijs Dubbelman - p.14/3

The Trifocal tensor

- Image lines back project to scene planes.

The Trifocal tensor

- Image lines back project to scene planes.
- In general three planes do not intersect in a single line.

The Trifocal tensor

- Image lines back project to scene planes.
- In general three planes do not intersect in a single line.
- Thus, the fact that three image lines correspond to the same scene line, provides a geometric constraint.

The Trifocal tensor

- Image lines back project to scene planes.
- In general three planes do not intersect in a single line.
- Thus, the fact that three image lines correspond to the same scene line, provides a geometric constraint.

The Trifocal tensor

Three corresponding image lines: $1 \leftrightarrow l^{\prime} \leftrightarrow l^{\prime \prime}$
Camera matrices (3x4) for the three views:

$$
\mathrm{P}=[\mathrm{I} \mid 0], \quad \mathrm{P}^{\prime}=\left[\mathrm{A} \mid \mathrm{a}_{4}\right], \quad \mathrm{P}^{\prime \prime}=\left[\mathrm{B} \mid \mathrm{b}_{4}\right]
$$

$\mathrm{a}_{4}=\mathrm{e}^{\prime}$ and $\mathrm{b}_{4}=\mathrm{e}^{\prime \prime}$ are the epipoles arising from the first camera center C thus: $\mathrm{e}^{\prime}=\mathrm{P}^{\prime} \mathrm{C}$ and $\mathrm{e}^{\prime \prime}=\mathrm{P}^{\prime \prime} \mathrm{C}$

The Trifocal tensor

The lines: $1 \leftrightarrow l^{\prime} \leftrightarrow l^{\prime \prime}$ back project to the planes:

$$
\begin{gathered}
\pi=\mathrm{P}^{\top} \mathrm{l}=\binom{1}{0}, \pi^{\prime}=\mathrm{P}^{\prime \top} \mathrm{l}^{\prime}=\binom{\mathrm{A}^{\top} \mathrm{l}^{\prime}}{\mathrm{a}_{4}^{\top} \mathrm{l}^{\prime}}, \\
\pi^{\prime \prime}=\mathrm{P}^{\prime \prime \top} \mathrm{l}^{\prime \prime}=\binom{\mathrm{B}^{\top} \mathrm{l}^{\prime \prime}}{\mathrm{b}_{4}^{\top} \mathrm{l}^{\prime \prime}} .
\end{gathered}
$$

The Trifocal tensor

The planes π, π^{\prime} and $\pi^{\prime \prime}$ coincide in the line L
This can be expressed algebraically with:

$$
\mathrm{M}=\left[\pi, \pi^{\prime}, \pi^{\prime \prime}\right], \quad \operatorname{det}(\mathrm{M})=0
$$

The Trifocal tensor

Since $\operatorname{det}(M)=0$ The columns must be linearly dependent.
Thus, $\mathrm{m}_{1}=\alpha \mathrm{m}_{2}+\beta \mathrm{m}_{3}$

The Trifocal tensor

Since the bottom left element of $\mathrm{M}=0$ it follows that:

$$
\alpha=k\left(\mathrm{~b}_{4}^{\top} \mathrm{l}^{\prime \prime}\right) \text { and } \beta=-k\left(\mathrm{a}_{4}^{\top} \mathrm{l}^{\prime}\right)
$$

The Trifocal tensor

For the top three vectors of M this gives:

$$
\mathrm{l}=\left(\mathrm{b}_{4}^{\top} \mathrm{l}^{\prime \prime}\right) \mathrm{A}^{\top} \mathrm{l}^{\prime}-\left(\mathrm{a}_{4}^{\top} \mathrm{l}^{\prime}\right) \mathrm{B}^{\top} \mathrm{l}^{\prime \prime}=\left(\mathrm{l}^{\prime \prime \top} \mathrm{b}_{4}\right) \mathrm{A}^{\top} \mathrm{l}^{\prime}-\left(\mathrm{l}^{\top} \mathrm{a}_{4}\right) \mathrm{B}^{\top} \mathrm{l}^{\prime \prime}
$$

The Trifocal tensor

For the i-th element of we have:

$$
\begin{aligned}
& l_{i}=l^{\prime \prime \top}\left(\mathrm{b}_{4} \mathrm{a}_{\mathrm{i}}^{\top}\right) \mathrm{l}^{\prime}-\mathrm{l}^{\prime \top}\left(\mathrm{a}_{4} \mathrm{~b}_{\mathrm{i}}^{\top}\right) \mathrm{l}^{\prime \prime} \\
& \mathrm{l}_{\mathrm{i}}=l^{\prime \top}\left(\mathrm{a}_{\mathrm{i}} \mathrm{~b}_{4}^{\top}\right) \mathrm{l}^{\prime \prime}-\mathrm{l}^{\prime \top}\left(\mathrm{a}_{4} \mathrm{~b}_{\mathrm{i}}^{\top}\right) \mathrm{l}^{\prime \prime}
\end{aligned}
$$

The Trifocal tensor

The Trifocal tensor

The set of the three matrices $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ constitute the trifocal tensor in matrix notation.

$$
\begin{gathered}
l^{\top}=\left(l_{\mathrm{i}}=\mathrm{l}^{\prime \top} \mathrm{T}_{1} 1^{\prime \prime}, l_{\mathrm{i}}=l^{\top \top} \mathrm{T}_{2} \mathrm{l}^{\prime \prime}, l_{\mathrm{i}}=\mathrm{l}^{\prime \top} \mathrm{T}_{3} 1^{\prime \prime}\right)= \\
\mathrm{l}^{\prime^{\top}}\left[\begin{array}{ccc}
T_{1} & T_{2} & T_{3}
\end{array}\right] \mathrm{l}^{\prime \prime}
\end{gathered}
$$

Line-Line-Line correspondence

Point-Line-Line correspondence

Point-Line-Point correspondence

Point-Point-Point correspondence

Extracting the fundamental matrix

$$
\mathrm{F}_{21}=\left[\mathrm{e}^{\prime}\right]_{\times}\left[\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right] \mathrm{e}^{\prime \prime}
$$

Retrieving the camera matrices

$$
\mathrm{P}^{\prime}=\left[\left[\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right] \mathrm{e}^{\prime \prime} \mid \mathrm{e}^{\prime}\right]
$$

Retrieving food

