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DISTRIBUTION PROOF OF WIENER'S 
TAUBERIAN THEOREM' 

JACOB KOREVAAR 

1. Introduction. Let f be an LI function whose Fourier transform 
f is free of (real) zeros. We will refer to such a function f as a Wiener 
kernel, and writefC W. Let s be an L? function which is slowly oscil- 
lating: 

s(x)-s(y) ->O asx-oo andx-y ->O. 

Finally suppose that 

(f*s)(x) = ff(x - t)s(t) dt ->O as x-> o0. 
_00 

Then 

s(x) > 0asx -o. 

This is Pitt's form [4], [5] of Wiener's Tauberian theorem [7], [8]. 
The above Tauberian theorem is easily derived from a closure 

theorem, also due to Wiener (loc. cit.), which asserts that for any 
fE W the finite linear combinations of translates f(x+X), X real, are 
dense in LI. Thus by the continuous linear functionals test, Wiener's 
Tauberian theorem is a consequence of the following 

THEOREM A. For any Wiener kernel f, the equation 

(1) f *g = O, g EE L?? 

implies that g = 0. 

It is also possible, as indicated by Beurling [1], to prove directly 
that Wiener's theorem is a consequence of Theorem A. 

A heuristic proof of Theorem A goes as follows. By Fourier trans- 
formation, equation (1) becomes jg =0. Thus since f is free of zeros 
one must have g = 0, and hence g = 0. The only difficulty with this 
approach is that for arbitrary gEL??, the Fourier transform g is a 
(tempered) distribution, and the product Jg is not defined in the 
usual theory (cf. [3], however). In the present note we indicate how 
one can get around this problem by replacingf with a suitable testing 
function of rapid descent, that is, a function belonging to Schwartz's 

Received by the editors December 27, 1963. 
lWork supported by NSF grant G-10093 at the University of Wisconsin. 

353 



354 JACOB KOREVAAR [June 

space S [6]. (It should be mentioned that Beurling has given several 
proofs of Theorem A [1], [2], and that the second one cited also em- 
ploys a generalized Fourier transform of g.) 

2. Two simple lemmas. Let b be any testing function of rapid de- 
scent, and define functions f by setting 

(2) On(x) ft 
- , n=1,2,-- n \n 

LEMMA 1. For f EL1 and 0n as above, 

I If * -j()on II -n0 as n -> c. 

PROOF. The norm in question is given by 

dx f f(t){ n (x- t) - On/(x)} dt ?< j f(t) I Pn (t) dt, 
00 00 00 

where 

Pn (t) = ||n(x - t) - On(X)|| = ||Oy - t/n) - O (y)I|. 

It is clear that pn0(t)->O for every fixed t, while p,(t) <21j111. The 
lemma thus follows from Lebesgue's dominated convergence theorem. 

LEMMA 2. Suppose that u and v belong to L1 and that IIlIi < 1. Then 
l/(1 +v^) is the Fourier transform of an L1 function w. 

PROOF. Consider the series 

(3) u-u*v + u*V*v * - 

Since 

11u * v*nhI < JJUJJ JJVJln% 

the sum of the norms of the terms in (3) is finite. It follows that the 
series converges in L1 to a function w which has the desired Fourier 
transform. 

3. Proof of Theorem A. Suppose that fE W, and that gE L00 satis- 
fies equation (1). We introduce a testing function 0 of rapid descent 
whose Fourier transform q is equal to 1 on [-1, 1] and equal to 0 
outside (-2, 2). 

Defining 4,n by equation (2), Lemma 1 shows that we can choose 
an index p so large that 

IIf * APO()q5I < Ijf(?)jI 
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It is clear that q,(x) =q(px) =1 for I x| I 1/p; we also note that 
02p(X) = O for I x >1/p. 

We now set 

1 
1P = 52py V A If * f 

7(0) f(0) 

By Lemma 2 the quotient 

__ k~02p 02p 

1 + A f(o) +f+ -J(0)q_ I 7 
is the Fourier transform of an L1 function w. For this w we will have 
W * f =42p, hence, by equation (1), 

(4) k2p*g=w*f*g=0. 

Since 42p iS a testing function of rapid descent we can take Fourier 
transforms in (4) to obtain 

(5) 42pg= 0. 

Observing that the testing function '2p is equal to 1 for I x| < 1/2p, 
one derives from (5) that the distribution g is equal to 0 at least on 
the open interval I x I < 1/2p. 

So far we have only used the nonvanishing of f(O). However, equa- 
tion (1) shows that the convolution of f(x)e-icx and g(x)e-icx is equal 
to 0 for every real number c, hence, by the preceding argument, the 
nonvanishing of f(c) implies that g vanishes in a neighborhood of the 
arbitrary point c. We conclude that g=0 on (- oo, oo) and, hence, 
g =0. 
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