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On Newman's 
Theorem 

Quick Way to the Prime Number 

J. Korevaar 

1. Introduction and Overview 

There are several interesting functions in number theory 
whose tables look quite irregular, but which exhibit sur- 
prising asymptotic regularity as x ~ ~. A notable example 
is the function rr(x) which counts the number of primesp 
not exceeding x. 

1.1. The Famous Prime Number Theorem 

~r(x) Z I~ x = a s  x --> ~ ,  ( 1 . 1 )  
p ,; x log x 

was surmised already by Legendre and Gauss. However, it 
took a hundred years before the first proofs appeared, one 
by Hadamard and one by de la Vall~e Poussin (1896). Their 
and all but one of the subsequent proofs make heavy use 
of the Riemann zeta function. (The one exception is the 
long so-called elementary proof by Selberg [11] and Erd6s 

[41.) 
For Re s > 1 the zeta function is given by the Dirichlet 

series 

~'(s) = ~ I - - ~  

! n ~ 

(1.2a) 

By the unique representation of positive integers n as 
products of prime powers, the series may be converted 
to the Euler product (of. [5]) 

~'(s) = (1 + 1 1 1 

- 11 1 ( 1 . 2 b )  
p 1 _ p - S "  

The above function element is analytic for Re s > 1 and 
can be continued across the line Re s = 1 (Fig. 1). More 
precisely, the difference 

1 
~ ( s )  - - -  

s - -1  

can be continued analytically to the half-plane Re s > 0 
(cf. w B.1 in the box on p. 111) and in fact to all o f r  The 
essential property of ~'(s) in the proofs of the prime num- 
ber theorem is its non-vanishing on the line Re s = 1 

Res = 1 

D. J. Newman Figure 1 



(cf. w B.2). [The zeta function has many zeros in the strip 
0 < Re s < 1. Riemann's conjecture (1859) that they all 

1 remains unproven to this lie on the central line Re s = 
day.] 

For about fifty years now, the standard proofs of the 
prime number theorem have involved some form of 
Wiener's Tauberian theory for Fourier integrals, usually 
the Ikehara-Wiener theorem of w 1.2 (see Wiener [14] 
and cf. various books, for example Doetsch [2], 
Chandrasekharan [1 ], Heins [6]). Thus the proof of the 
prime number theorem has remained quite difficult 
until the recent breakthrough by D. J. Newman [ 10]. 

In 1980, he succeeded in replacing the Wiener theory 
in the proof by an ingenious application of complex inte- 
gration theory, involving nothing more difficult than 
Cauchy's integral formula, together with suitable estim- 
ates. We present Newman's method in w 2 (applying it to 
Laplace integrals instead of Dirichlet series). In this 
method, the Ikehara-Wiener Tauberian theorem is replaced 
by a poor man's version which also readily leads to the 
prime number theorem. 

Excellent accounts of the history of the prime number 
theorem and the zeta function may be found in the 
books of Landau [9], Ingham [7], Titchmarsh [13] and 
Edwards [3]. 

1.2. A Gem from Ingham's Work 

Newman's method leads directly to the following pretty 
theorem which is already contained in work of Ingham 
[8]. However, Ingham used Wiener's method to prove his 
(more general) results. 

Auxiliary Tauberian theorem. Let F(t) be bounded on 
(0, oo) and integrable over every finite subinterval, so that 
the Laplace transform 

G(z) = ~f F(t)e-Ztdt (1.3) 
o 

is well-defined and analytic throughout the open half-plane 
Re z > 0. Suppose that G(z) can be continued analytically 
to a neighborhood of  every point on the imaginary axis. 
Then 

F(t)dt exists (1.4) 
o 

as an improper integral [and is equal to G(O)]. 

Under the given hypothesis, the Laplace integral (1.3) will 
converge everywhere on the imaginary axis. For the con- 
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ctusion (1.4), it is actually sufficient that G(z) have a con- 
tinuous extension to the closed half-plane Re z i> 0 which 
is smooth at z = O: see w 2. 

At first glance, the above theorem looks quite different 
from the 

lkehara-Wiener theorem [ 14]: Let f (x)  be nonnegative 
and nondecreasing on [ 1, oo) and such that the Mellin 
transform 

go(s) = ~ x-Stir(x) = - f ( 1 )  + s ~f f ( x )x  - s -  ldx 
1 1 

exists for Re s > 1. Suppose that for some constant c, the 
function 

go(s) c 
s - - i  

has a continuous extension to the closed half-plane 
Re s/> 1. Then 

f ( x ) / x ~ c  as x -~~176 

This is an extremely useful theorem, but what could we 
do with the auxiliary theorem in the same direction? We 
will show that the latter has a corollary which is just as 
good for the application that we want to make. 

1.3. A Poor Man's lkehara-Wiener Theorem 

We will establish the following 

Corollary to the auxiliary theorem. Let f (x )  be non- 
negative, nondecreasing and O(x) on [ 1, oo), so that its 
Mellin transform 

g(s) = s *f f ( x )x  - s -  ldx (1.5) 
1 

is well-defined and analytic throughout the half-plane 
Re s > 1. Suppose that for some constant c, the function 

g(s) c (1.6) 
s - i  

can be continued analytically to a neighborhood of  every 
point on the line Re s = 1. Then 

f(x)/x-+ c as x ~~176 (1.7) 
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Derivation from the auxiliary theorem. Let f ( x )  and g(s) 
satisfy the hypotheses of the corollary. We set x = e t and 
define 

e- t f ( e  t) - c = F(t),  

so that F(t)  is bounded on (0, oo). Its Laplace transform 
will be 

G(z) = ~ {e - t f ( e  t) - e} e-Ztdt 
o 

1 z z + l  g ( z + l ) - - - C z  I 

Thus by the hypothesis of the corollary, G(z) can be con- 
tinued analytically to a neighborhood of  every point on 
the imaginary axis. We may now apply the auxiliary 
theorem from w 1.2. 

What does its conclusion tell us? Setting t = log x we 
find that the improper integrals 

{e- t f (e  t) - c) at  = of f (x )  - ex dx (1.8) 
0 1 X 2 

exist. Using the fact that f (x )  is an increasing function, 
one readily derives that f ( x ) ~  cx in the sense of  (1.7). 

Indeed, suppose for a moment that lim sup f ( x ) / x  > c 
('~ 0). Then there would be a positive constant 8 such that 
for certain arbitrarily large numbers y 

f ( y ) >  (c + 28)y.  

It would follow that 

f ( x ) > ( c + 2 8 ) y > ( c + 8 ) x  for y < x < p y  

where p = (c + 28)/(c + 8). But then 

PlY f ( x ) - c x  dx > PlY 8--dx =8 logp 
y X 2 y X 

for those same numbers y ,  contradicting the existence of  
(1.8). 

One similarly disposes of  the contingency lim inf 
f ( x ) / x  < c (in this case c would have to be positive and 
one would consider intervals 0y < x  < y  with 0 < 1 
where f (x )  < (c - 8 )x).  Thus f ( x ) / x  -+ c. 

1.4. Corollary ~ Prime Number  Theorem 

This step is routine to number theorists. One takes 
f ( x )  = ~(x), where ~b(x) is that well-known function from 

prime number theory, 

~b(x)= ~ logp (1.9) 
p m  < x  

(the summation is over all prime powers not exceeding x).  
It is a simple fact (first noticed by Chebyshev) that 
7r(x) = O(x/logx) or equivalently, @(x) = 0(x) (cf. w B.4 
in the box for more details). Thus f ( x )  is as the corollary 
wants it. 

What about its Mellin transform g(s)? A standard 
calculation based on the Euler product in (1.2) shows that 

g(s) - ~"(s) Re s > 1 
f(s)' 

(cf. w B.3). Since ~'(s) behaves like 1/(s - 1) around s = 1, 
the same is true for g(s). The analyticity of ~'(s) at the 
points of  the line Re s = 1 (different from s = 1) and its 
non-vanishing there imply that g(s) can be continued 
analytically to a neighborhood of  every one of those 
points (cf. w w B. 1, B.2). Thus 

1 ~ ) - - -  
s - - 1  

has an analytic continuation to a neighborhood of  the 
closed half-plane Re s >~ 1. 

The conclusion of  the corollary now tells us that 

~(x) /x  -+ 1 as x -+ ~ ,  

and this is equivalent to the prime number theorem (1.1) 
(el. w B.4). 

2. Newman's Beautiful Method 

2.1. Proof  o f  the Auxiliary Tauberian Theorem 

Let F(t)  be bounded on (0, ~ )  and such that its Laplace 
transform G(z) can be continued to a function (still 
called G(z)) which is analytic in a neighborhood of the 
closed half-plane Re z ~> 0. We may and will assume that 

IF(t)l <~ 1, t > 0 .  

For 0 < ;k < oo we write 

h 
Gx(z ) = f F(t)e-Ztdt .  (2.1) 

o 

Observe that Gx(z ) is analytic for all z. We will show that 

Gx(O ) = f F(t)dt-+ G(O) as X-+ ~.  
o 
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Some details left out in 1.4 

We begin with the necessary facts about the zeta function. 

B.1. Analy t ic  continuation of~(s) .  Simple transformations show that for Re s > 2 

~ . ( s )=~  n ~ n - 1  ~ n ~ n ~ n { ~  s 1 / ~ n + l  " n + l  
. . . . . . . .  ns f x-S- lax=sX f txlx-s-ldx= 

1 n s 1 n s 1 n s 1 (n + 1) s 1 (n + 1) s 1 n 1 n 

oo 

= s f [xlx-s-ldx, (B.1) 
1 

where [x] denotes the largest integer ~< x. Since first and final member are analytic for Re s > 1, the integral formula holds throughout  that 
half-plane. 

It is reasonable to compare the integral with 

0" 1 
s f x .  x _ S _ l d x =  s = 1 + - - .  (B.2) 

l s - 1  s - 1  

Combination of  (B.1) and (B.2) gives 

o o  

~(s) - 1 = 1 + s f ( [x l  - x)x-S-ldx. (B.3) 
s - 1  1 

The new integral converges and represents an analytic function throughout the half-plane Re s > 0. Thus (B.3) provides an analytic con- 
ti~auation of  the left-hand side to that  half-plane. 

B.2. Non-vanishing o f ~ ( s ) f o r  Re s ~ 1. The Euler product  in (1.2) shows that ~(s) ~ 0 for Re s > 1. For Re s = 1 we will use Mertens's 
clever proof  of  1898. The key fact is the inequality 

3 + 4 cos 0 + cos 20 = 2(1 + cos 0) 2 ~ 0, 0 real. (B.4) 

Suppose that ~'(1 + ib) would be equal to 0, where b is real and :~ 0. Then the auxiliary analytic function 

~(s) = ~'3(s)~'4(s + ib)~(s + 2ib) 

would have a zero for s = 1: the pole of  ~-3(s) could not  cancel the zero of  ~'4(s + ib). It would follow that 

log Is0(s)l ~ - oo as s ~  1. (B.5) 

We now take s real and > 1. By the Euler product,  

o o  

1 ( D 3 ) - s _  it + Re ~ an n - s -  log I~(s + it)l = - R e  ]~log (1 - p - S - i t )  = Re ~ p - s - i t +  12 ( p 2 ) - s - i t  + 3 . . . . . .  }= with a n ~ O. it 

p p 1 

T h u s  

log I~o(s)l : Re ~ ann-S (3  + 4n - i b  + n - 2 i b )  = ~ a n n - S ( 3  + 4 cos (b log n) + cos (2b log n)} ~ 0 
1 1 

because o f  (B.4), contradicting (B.5). 

B. 3. Representations for  ~'(s)/~(s). Logarithmic differentiation of  the Euler product  in (1.2) gives 

~'(s) ~ p-S 0o 
. . . . .  l o g p = ~ ( p - S + p - 2 S + . . . ) l o g p = ~ A ( n ) n - S  ' 

~(s) p l - p - S  p 1 
(B.6) 

where A(n) is the yon Mangotdt function, 
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J log p if n = pm, 
A(n) 

0 if n is not  a prime power. 

The corresponding partial sum function is equal to ~0 (x): 

qJ (x) = ~ log p = ~ A(n). 
pm<x n<x 

Proceeding as in (B.1), the series (B.6) leads to the integral representation 

~'(s) 
= s f ~: Cx)x - s -  adx, Re s > 1. 

~(s) 1 

The integral converges and is analytic for Re s > 1 since by (B.7), ~(x)  < x logx .  

B.4. Relation between ~ (x) and rr(x). By (B.7), ~0 (x) counts log p (for fixed p)  as many times as there are powers pm< x, hence 

~0(x)= ~ [l~ ~, l=~r (x)  logx.  
p<x[ logp]  p<x 

On the other hand,  when 1 < y < x,  

7r(x) = lr(y) + ~ 1 < ~r(y) + ~ log p < Y + ~0 (x) 
y<p<x y<p<x l ogy  logy 

Taking y = x / log  2 x one thus finds that  

rr(x) log x < 1 + ~0 (X) log x 
X log X X log X - 2 log log X 

Combination of  (B.9) and (B. 10) shows that 

lim lr(x) log x = 1 if and only if lim ~0 (x) = 1. 
x x 

We finally indicate a standard proof  of  the estimate 

~ ( x )  = O(x). 

F•rp•sitiveintegra•n•thebi••mia1c•effic•ent(2nn)!mustbedivisib•ebya••primesp•n(n•2n].He•ce 

n<p<2n 

so that 

log p < 2 k log 2. 
2k-l  <p<2 k 

It follows that 

~, logp<(2k+2k- - l+. . .+l ) log2<2k+l log2  
p~2 k 

and hence there is a constant C such that 

log p < Cx. 
p<x 

1/2+e Since the prime powers higher than the F~st contribute at most a t e rm0(x  ) to ~(x) , inequal i ty  (B.12)foUows. 

(B.7) 

(B.8) 

(B.9) 

(B.IO) 

(B.11) 

(B.12) 
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- - - - - - [  

Figure 2 

W+ 

First idea. We try to estimate G(0) - Gx(0 ) with the aid of  
Cauchy's formula. Thus we look for a suitable path of  
integration W around 0. The simplest choice would be a 
circle, but we can not  go too far into the left half-plane 
because we know nothing about G(z) there. So for given 
R > 0, the positively oriented path W will consist of  an 
arc of  the circle I z I = R and a segment of  the vertical 
line Re z = - 8  (Fig. 2). Here the number 8 = 6(R) > 0 
is chosen so small that  G(z) is analytic on and inside W. 
We denote the part  o f  W in Re z > 0 by W+, the part  
in Re z < 0 by W_. By Cauchy's formula, 

1 f {G(z) - Ox(z)} l d z .  a (0 )  - O~,(0) = ~ w z (2.2) 

We have the following simple estimates: 

for x = Re z > 0, 

I O(z) - Gx(z)l = I 7 F(t)e-Ztdtl <- 7 e-Xtdt = I e_XX; 
h h X 

(2.3) 
fo rx  = Re z < 0, 

h h 1 e_X~. IGx(z)l = I f  F(t)e-=tdtl <<, f e-Xtdt < (2.4) 
o o 

Second idea. Observe the similarity between the bounds 
obtained in (2.3) and (2.4)! It will be advantageous to 
multiply G(z) and Gx(z ) in (2.2) by e xz. This will not 
affect the left-hand side, but in estimating on W, the 
exponential e -xx (large on W_) will disappear from (2.3) 
and (2.4). 

Third idea. Could we also get rid of  the troublesome factor 
1/Ixl in the estimates which is bad near the imaginary 
axis? Yes, this can be done by adding the term z/R 2 to 
1/z in (2.2), again without affecting the left-hand side. 
(For the experts: this trick is used also in Carleman's 
formula for the zeros of  an analytic function in a half- 
plane, cf. [ 12].) The resulting modified formula is 

1 f {G(z) - Gx(z)} e xz {1 + i I dz. 
o ( o )  - c a ( o )  = 2-7," w / z R ] 

(2.5) 

Let us start harvesting. On the circle I z I = R,  

l + z  _ 2 x  (2.6) 
z R 2 R 2" 

Thus on W+ the integrand l(z) in (2.5) may be estimated 
as follows (see (2.3)): 

II(z)l <~ I e_X~eX~ 2x _ 2 
x R 2 R 2" 

The corresponding integral is harmless: 

i 1__1_ f i(z)dz]< ~ 1 2 =1,  - - -  ~ 7rR . (2.7) 
2rri w+ 2rr R "  R 

Fourth idea. We now turn to the part of  (2.5) due to W_. 
Since Gx(z ) is analytic for all z, we may  replace the integral 
over W_ involving Gx(z ) by the corresponding integra' over 
the semi-circle 

W*_ : {Izl = R }  A {Re z < 0 }  

(Fig. 3). Cauchy's theorem and inequality (2.4) readily give 

1 Gx(z)eXZ{]+ z__Idzl=l I f,_ dzl<l 
I ~ i  i ~ z R 2] 21r-7 "'" R" 

(2.8) 

We finally tackle the remaining integral 

1  29, 
2rti w _  \z R'] 
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w" 

Figure 3 

_-[--- - - - I - - -  

W_ 

iR 

-JR 

By the analyticity of  G(z) on W_ there will be a constant 
B = B(R, ~) such that 

o n  

It follows that 

Hence on the part  o f  W_ where x ~< - 81 < 0, the integrand 
in (2.9) tends to zero uniformly as X ~ oo. On the remaining 
small part of  W_ (we take 81 < ~ small), the integrand is 
bounded by B. Thus for fixed W, the integral in (2.9) tends 
to zero as X ~ oo. 

Conclusion. For given e > 0 one may choose R = 1/e. One 
next chooses 8 so small that G(z) is analytic on and inside 
W. One finally determines Xo so large that (2.9) is bounded 
by e for all X > X o. Then by (2.5) and (2 .7)- (2 .9) ,  

[ G ( 0 ) - G  x(0) l < 3 e  for X > X o .  

In other words, Gx(0 ) ~ G(0) as X -+ ~ .  

iR 

0 R 

W L I W. 

Figure 4 

-JR 

2.2. Relaxing the Conditions on G(z) 

In the above proof, it is not really necessary to take G(z) 
into the left half-plane. By modifying F( t )  on some finite 
interval one may assume that G(0) = 0. Then G(z)/z will 
be analytic for Re z /> 0 and thus 

G(O) = 0 - 1 f G(z)e~ z (1  + Z l d z ,  
27ri w+us ~z R 2] 

where S is the segment [/R, - / R ]  of  the imaginary axis 
(Fig. 4). For Gx(0 ) we integrate over the circle I z I = R.  
Subtracting, one obtains 

1 7 r + - -  G(z)eXZ... dz - - - -  G x ( z ) . . .  dz. 
27ri iR 2rri _ 

(2.10) 

The first and third integral are just as before. To deal with 
the second integral one may apply integration by parts or 
the Riemann-Lebesgue lemma. 

In order to arrive at (2.10), we have not used any 
analyticity of  G(z) at points of  the imaginary axis. It 
would be more than enough to know that G(z)/z can 
be extended continuously to Re z i> 0. The Riemann- 
Lebesgue lemma will then handle the second integral. 
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Conclusion.  In the auxiliary Tauberian theorem, it is 
sufficient to require that (G(z)  - G(O)}/z can be extended 
continuously to the closed half-plane Re z >1 0. 
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