
Curriculum Vitae of C.A. Middelburg

Personal data
name: Cornelis Adam Middelburg;
date of birth: 22 February 1948;
place of birth: Rotterdam, the Netherlands;
nationality: Netherlands.

Professional background

Education:
M.Sc. in physics, Delft University of Technology, 1971,

thesis title: Hybrid Simulation of Queueing Problems;
Ph.D. in mathematics & computer science, University of Amsterdam, 1990,

thesis title: Syntax and Semantics of VVSL.

Experience:
research and development in computer science, mainly in the following areas: systems software,

relational databases, programming languages, compiler construction, formal methods, concur-
rency theory, theory of programs, theory of number systems;

teaching in computer science;
management.

Positions:
scientific staff member at KPN Research, December 1971 – December 1995;
part-time full professor of applied logic at Utrecht University, June 1992 – May 2001;
senior research fellow at UNU/IIST, January 1996 – December 1997;
scientific staff member at KPN Research, January 1998 – April 1998;
research fellow at CWI, May 1998 – September 1998;
research fellow at Eindhoven University of Technology, October 1998 – February 2003;
research fellow at Utrecht University, June 2001 – February 2003;
part-time full professor of computer science at Eindhoven University of Technology,

April 2003 – March 2007;
senior researcher at the University of Amsterdam, December 2005 – November 2009;
guest researcher at the University of Amsterdam, December 2009 –

Particulars of my main past research and development activities

The following are particulars about my main research and development activities in the past:

Relational databases I have designed an experimental relational database management system for
the PDP-11 mini computers. This design has much in common with the design of the well-
known System R which was independently developed at about the same time for IBM main
frames. I have also developed an extremely space efficient algorithm for the evaluation of
database queries expressed in the relational calculus, which was, about 45 years ago, my first
formal software development activity. I have specified the query evaluation problem and verified
the correctness of the algorithm using classical first-order logic and elementary set theory.

Programming languages and compiler construction I have been involved in the design of the pro-
gramming language CHILL and the construction of a compiler for it. One of my main contribu-
tions to the compiler construction have been the detailed design of the translation phase of the
compiler by means of VDM. I have devised a new approach where code generation is driven

by simulation of program execution on an abstract machine. The starting-point of the rigorous
design of the translation phase was the formal definition of CHILL to which I have contributed
as well. The design turned out to be highly reusable when the compiler had to be adapted to
new target machines.

Formal methods (VVSL) I have designed a specification language, called VVSL, which extends the
language used in the software development method VDM with features for specifying inter-
fering operations and modular structuring of specifications. The approach to the specification
of interfering operations encompasses various other approaches. VVSL is probably the only
language for writing modularly structured VDM specifications with a sound mathematical basis
for its modular structuring features. I have also used VVSL to formalize the relational database
model and a model of transaction management in database systems. Many formerly unmen-
tioned assumptions in most work on databases have been made explicit in these formalizations.

Formal methods (SDL) I have worked on various topics aimed at achieving advances in the area of
analysis of systems described using SDL, a specification language widely used in telecommu-
nications. My work on a new semantics of a fragment of SDL, based on a process algebra with
discrete relative timing, is most known. Unlike in related work, the chosen fragment covers all
behavioural aspects of SDL and the proposed semantics agrees with the official semantics as far
as possible.

Concurrency theory I have made a systematic study of issues relevant to dealing with timing in
process algebra. This work has, first of all, resulted in a coherent collection of four process
algebras, each dealing with timing in a different way. Another result of my work on process
algebra with timing is a process algebra for hybrid systems which has considerably more poten-
tial with regard to description and analysis than the ones proposed earlier. My model-theoretic
investigation of first-order extensions of process algebras sets an interesting new direction for
future research in the field of process algebra. I have also developed an imperative process al-
gebra and used it to formalize versions of existing models of computation based on (sequential
or parallel) random access machines and time and work complexity measures for those models.

Theory of programs I have investigated issues concerning the following subjects from the viewpoint
that a program primarily represents an instruction sequence: programming language semantics,
programming language expressiveness, computability, computational complexity, algorithm ef-
ficiency, algorithmic equivalence of programs, program performance, program compactness,
program parallelization, and program verification. This work demonstrates that the notion of
instruction sequence is relevant to diverse subjects from computer science.

Summary of my other past research and development activities

Most of my other research and development activities in the past are summarized below.

• In the area of systems software:

– the development of a macro processor for the macro language TRAC;
– the development of a run-time system for the programming language BCPL.

• In the area of software reusability:

– a study of ways to formally specify general-purpose software components and to build up
and interrogate libraries of formally specified components.

• In the area of programming techniques:

– a study of the merits of parallel programming, functional programming, and logic program-
ming.

2

• In the area of formal methods:

– a comparison of the three-valued logic of partial functions LPF used with VDM and the
two-valued logic of partial functions MPLω used with COLD;

– the development of a complete proof system for the typed version of LPF;
– the development of a common semantic model for SDL, LOTOS and other specification

languages used for the development of communications software;
– the development of a simple variant of action-based computation tree logic, meant for ex-

pressing properties of telecommunication services that can be checked with commercially
available SDL tools;

– the development of an approach to explain issues concerning programs from the viewpoint
that a program is code that is capable of controlling the behaviour of some machine;

– a study of characterizing properties of an expansion of the paraconsistent logic LP with an
implication connective for which the standard deduction theorem holds and a falsity connec-
tive;

– the development of a natural deduction proof system for the first-order version of this para-
consistent logic, with a logical justification by means of an embedding into first-order classi-
cal logic;

– the development of a sequent calculus proof system for the first-order version of this para-
consistent logic, with an application to consistent query answering in inconsistent databases;

– a study of various properties of an expansion of first-order Belnap-Dunn logic with an impli-
cation connective for which the standard deduction theorem holds and a falsity connective;

– the development of a minor variation of this logic that can deal with terms with an indetermi-
nate value, with an application to consistent query answering in inconsistent databases with
null values.

• In the area of concurrency theory:

– the development of algebras of synchronous and asynchronous dataflow networks with mod-
els based on process algebra;

– the development of an algebra of timed frames, the kind of transition systems used for the
operational semantics of process algebra with discrete relative timing;

– an extension of the customary approach to structural operational semantics using transition
system specifications that takes variable binding operators into account;

– the development of a process algebra in which processes have an implicit computational
capital;

– the development of an algebra of interacting process components that comprise an interface
and a process as considered in process algebra;

– the development of thread algebra, a specialized process algebra dealing with threads, as
found in programming languages such as Java and C#, and interleaving strategies for threads;

– an extension of thread algebra to distributed multi-threaded programs that are subjected to
load balancing;

– an extension of thread algebra with probabilistic features;
– the adaptation of a process algebra in which processes have their state to some extent visible

by means of propositions to tolerance of self-contradictory states;
– the development of a probabilistic process algebra that supports both arbitrary interleaving

and interleaving according to some process-scheduling policy;
– a study of the use of Hoare logic in a process algebra setting;
– the elaboration of a variant of the standard notion of branching bisimilarity for processes with

discrete relative timing which is coarser than the standard notion;

3

– the development of an imperative process algebra with abstraction, with an example of a pos-
sible use of this imperative process algebra in the area of information-flow security analysis;

– a study of the role that this imperative process algebra can play in describing models of
parallel computation and complexity measures for them.

• In the area of theory of programs:

– the expression of the secure hash algorithm SHA-256 and the Karatsuba multiplication algo-
rithm by finite single-pass instruction sequences;

– a study of instruction sequence size bounded functional completeness of instruction sets for
Boolean registers;

– the development of an axiom system for behavioural congruence of single-pass instruction
sequences;

– a study of the complexity of the problem of deciding whether a single-pass instruction se-
quence correctly implements the non-zeroness test;

– a study of instruction sequences by which Turing machines can be simulated;
– a study of instruction sequences by which random access machines can be simulated, with a

proposal for a semi-realistic version of the random access machine model of computation.

• In the area of dynamic data structures:

– an extension of thread algebra with features of data linkage dynamics, a simple model of
computation which bears on the use of dynamic data structures in programming;

– the explanation of data linkage dynamics by means of a term rewriting system with rule
priorities;

– a study of automatic removal of links in dynamic data structures as soon as they will not be
used once again by the program, in the setting of data linkage dynamics.

• In the area of processor architecture:

– the modelling of micro-architectures with pipelined instruction processing;
– an study of the merits of program parallelization for speeding up instruction processing;
– a study of how the transformations on the states of the main memory of a load/store architec-

ture that can be achieved depend on the operating unit size.

• In the area of operating systems:

– a study of how a definition of a theoretical concept of an operating system, suitable to be
incorporated in a mathematical theory of operating systems, could look like.

• In the area of theory of number systems:

– a study of meadows, which are roughly fields in which the multiplicative inverse of zero is
zero, their partial variants, and logics that may be used when working with partial meadows;

– a study of non-involutive meadows, which are meadows in which the multiplicative inverse
of zero is a number different from zero;

– a study of which meadows admit transformation of fractions into fractions of which neither
the numerator nor the denominator contains a fraction.

• In the area of quantitative finance:

– the formalization of a cumulative interest compliant conservation requirement for pure finan-
cial products in timed tuplix calculus, a specialized process algebra for financial behaviours;

– a preparatory exploration of issues concerning the form of finance that the avoidance of in-
terest gives rise to in Islamic finance.

4

Current research interests

The following are my current research interests:

• The description and analysis of hybrid systems. In continuation of my previous work on a pro-
cess algebra for hybrid systems and its connections with the formalism of hybrid automata, I
am among other things interested in efficient proof techniques for that process algebra, effective
procedures for restricted versions of the process algebra to decide whether an equation is deriv-
able, and model checking tools for restricted versions of the process algebra to verify properties
expressed in a suitable temporal logic.

• The description and analysis of real-time reactive systems that are networks of dynamically
reconfiguring components in which communication between the components is usually in whole
or in part coordinated from outside the components. Such systems become dominating among
the systems that shape our society. My special interest is in dealing with all aspects relevant to
their behaviour, which includes coordination, reconfiguration and real-time reaction, in a single
framework.

• The development of more theory in subject areas such as computability, computational complex-
ity, algorithm efficiency, program performance, program compactness, program parallelization,
probabilistic computation, and program verification from the viewpoint that a program pri-
marily represents an instruction sequence. For a growing number of developments, including
developments with respect to high-performance program execution on classical or non-classical
computers and estimation of execution times of hard real-time systems, it becomes increasingly
more important that programs are considered at the level of instruction sequence.

• In the past, I was for a long time concerned with formal techniques, and tools in support of them,
to complement industrial approaches to software development for more rigorous approaches to
software development in industry. I am still interested in this line of research.

Teaching

I have given the following courses and trainings:

• numerous ad hoc internal courses and trainings at KPN on systematic design of database sys-
tems, advanced programming techniques, and formal techniques for specification and design in
the period 1972 to 1992;

• a course Formal Specification for students at Utrecht University in the academic years 1993–
1994 and 1994–1995;

• a course Beyond SDL for graduates at numerous universities in developing countries, on indus-
trial specification techniques such as SDL and MSC as well as formalisms from the academic
community such as process algebra with timing and duration calculus, in the years 1996 and
1997;

• research training for graduates at universities in Indonesia, Pakistan, Brasil and South Africa,
using topics aimed at achieving advances in the area of analysis of telecommunication services,
in the year 1997;

• a course Process Algebra with Timing for graduates at UNU/IIST in September 2001;
• a course Process Algebra with Timing for students at Eindhoven University of Technology in

the academic years 2002–2003, 2003–2004 and 2004–2005.

I have also prepared the course material of a new course Process Theory for first-year students at
Eindhoven University of Technology in the academic year 2002–2003.

I have supervised the following M.Sc. students:

• T.H.P.F. Bullens, M.Sc. student at Utrecht University, thesis: Implementing the Intelligent Net-
work Model on the ToolBus (1994);

5

• R.P.G. Brouwer, M.Sc. student at Eindhoven University of Technology, thesis: Measuring For-
mal Tools and Methods (2002).

I have supervised the following Ph.D. students:

• E. Kwast, Ph.D. student at Utrecht University, as daily supervisor, thesis: Protocol Data De-
pendencies (1997);

• S. Andova, Ph.D. student at Eindhoven University of Technology, as promotor, thesis: Proba-
bilistic Process Algebra (2002);

• T.A.C. Willemse, Ph.D. student at Eindhoven University of Technology, as daily supervisor,
thesis: Semantics and Verification in Process Algebras with Data and Timing (2003).

Moreover, I have supervised at UNU/IIST in the academic year 1996–1997 three graduates
(R. Şoricuţ, Y.S. Usenko and B. Warinschi) doing research for nine months on topics aimed at
achieving advances in the area of analysis of telecommunication services.

I have been member of the examination committee of 5 M.Sc. students and 26 Ph.D. students.

Management

My main managerial tasks are summarized below:

• at KPN Research, I have been the deputy manager of the former Programming Research and
Development Group from 1978 till 1983;

• at UNU/IIST, I have managed the Research Group and assisted the director during the years
1996 and 1997.

Miscellaneous matters

Some remaining activities are summarized below:

• consultancy for software development projects within KPN;
• advice for the making of strategic policy of KPN with respect to new developments in software

technology;
• participation in the ISO working group concerning the standardization of VDM and Z;
• organization of a workshop on Semantics of Specification Languages;
• drafting proposals for research projects within the framework of European and Dutch research

programmes;
• giving invited talks as part of colloquia and workshops organized by professional associations

and universities;
• guest editing special issues of journals;
• participation in advisory committees, evaluation committees, program committees, etc.;
• membership of the editorial board of the journal Science of Computer Programming.

From the early eighties till the beginning of 1994, my main duties at KPN Research have been
those of a senior scientist:

• doing research;
• motivating younger colleagues;
• initiating new research and development activities;
• watching over the scientific character of the research in the group.

Notice that I have worked at KPN Research mostly in an environment where external publication
was not a priority. Actually, there was only room for external publication in 1989 and 1990, when
I was writing my Ph.D. thesis. Of course, there was some room for external publication since my
appointment, for 20% of a full-time professorship, at Utrecht University in 1992.

6

Best publications

Among my best publications are the following:

A typed logic of partial functions reconstructed classically
At the time, this paper was among the best papers about proof-theoretical issues concerning
VDM. The paper dealt with virtually all outstanding proof-theoretical issues. The complete
proof system for typed LPF, the induction rules for recursively defined functions and types, and
the meta-rules about induction rules for base types, types constructed by means of type formers
and subtypes were all new. The logical justification of all inference rules was new as well, and
provides an illuminating explanation of LPF in classical logic.

Discrete time process algebra and the semantics of SDL
At the time, this paper was among the best papers about the semantics of SDL, a specification
language widely used in telecommunications. The paper was the only paper on this subject in
which the chosen fragment of SDL covers all behavioural aspects of SDL and the proposed
semantics agrees with the official semantics wherever the latter gives a definite answer. The
main virtue of the proposed semantics is that it brought practically useful advanced tools and
techniques for analysis of systems described using SDL within reach.

Process algebra with timing
At the time, this book was among the best books about timing in process algebra. To the best of
my knowledge, this book is still the only book on this subject that deals thoroughly with relative
and absolute timing on both a discrete time scale and a continuous time scale, and the relations
between the process algebras dealing with these different ways of timing. Those relations are
of both theoretical and practical interest.

Instruction sequences for computer science
This book is the only book that demonstrates that the concept of an instruction sequence, a
forgotten basic concept of computer science, offers a useful viewpoint on issues relating to
diverse subjects in computer science. Selected issues relating to well-known subjects from the
theory of computation and the area of computer architecture are rigorously investigated in this
book thinking in terms of instruction sequences. The book presents the first theory of instruction
sequences and provides among other things a new perspective on non-uniform computational
complexity and the halting problem.

On the complexity of the correctness problem for non-zeroness test instruction sequences
This paper appears to be the only paper that investigates, within the context of some program-
ming language, under what restrictions it can be efficiently determined whether an arbitrary
program solves a particular problem correctly. A very simple assembler-like programming lan-
guage and a very simple problem concerning sequences of binary digits are considered. The
rather deep results of the presented work indicate that, contrary to popular believe, the weakest
restriction under which such correctness problems can be efficiently determined is a very strong
one.

Imperative process algebra and models of parallel computation
This paper presents, within the setting of an imperative process algebra, formalizations of ver-
sions of models of computation based on (sequential) random access machines, asynchronous
parallel random access machines, and synchronous parallel random access machines and also
formalizations of time and work complexity measures for those models. This paper appears to
be the only paper that presents formalizations of versions of models of computation other than
models based on Turing machines.

7

Publications

The abstracts of the published papers and recent technical reports, and the prefaces of the books, are
available from http://staff.fnwi.uva.nl/c.a.middelburg/. The published papers and technical reports
themselves can easily be found via http://staff.fnwi.uva.nl/c.a.middelburg/.

Books

1. C.A. Middelburg. Logic and Specification. Computer Science: Research and Practice, Vol. 1,
Chapman & Hall, 1993.

2. L.M.G. Feijs, H.B.M. Jonkers and C.A. Middelburg. Notations for Software Design. FACIT
Series, Springer-Verlag, 1994.

3. J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS Monograph Series,
Springer-Verlag, 2002.

4. J.A. Bergstra and C.A. Middelburg. Instruction Sequences for Computer Science. Atlantis
Studies in Computing, Vol. 2, Atlantis Press, 2012.

Handbook chapters

5. J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: real time and discrete time.
In J.A. Bergstra, A. Ponse and S.A. Smolka, editors, Handbook of Process Algebra, pages 627–
684, Elsevier, 2001.

6. J.A. Bergstra, C.A. Middelburg and Y.S. Usenko. Discrete time process algebra and the seman-
tics of SDL. In J.A. Bergstra, A. Ponse and S.A. Smolka, editors, Handbook of Process Algebra,
pages 1209–1268, Elsevier, 2001.

Journal papers

7. C.A. Middelburg. VVSL: A language for structured VDM specifications. Formal Aspects of
Computing, 1(1):115–135, 1989.

8. C.A. Middelburg. Modular structuring of VDM specifications in VVSL. Formal Aspects of
Computing, 4(1):13–47, 1992.

9. C.A. Middelburg. Specification of interfering programs based on inter-conditions. Software
Engineering Journal, 7(3):205–217, 1992.

10. C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed classically.
Acta Informatica, 31(5):399–430, 1994.

11. J.A. Bergstra, W.J. Fokkink and C.A. Middelburg. Algebra of timed frames. Int. Journal of
Computer Mathematics, 61:227–255, 1996.

12. J.A. Bergstra, C.A. Middelburg and Gh. Ştefănescu. Network algebra for asynchronous
dataflow. Int. Journal of Computer Mathematics, 65:57–88, 1997.

13. C.A. Middelburg. Truth of duration calculus formulae in timed frames. Fundamenta Informat-
icae, 36(2/3):235–263, 1998.

14. C.A. Middelburg. Variable binding operators in transition system specifications. Journal of
Logic and Algebraic Programming, 47(1):15–45, 2001.

15. J.C.M. Baeten and C.A. Middelburg. Real time process algebra with time-dependent conditions.
Journal of Logic and Algebraic Programming, 48(1):1–37, 2001.

16. C.A. Middelburg. Process algebra with nonstandard timing. Fundamenta Informaticae,
53(1):55–77, 2002.

17. C.A. Middelburg. Revisiting timing in process algebra. Journal of Logic and Algebraic Pro-
gramming, 54(1/2):109–127, 2003.

8

18. C.A. Middelburg. An alternative formulation of operational conservativity with binding terms.
Journal of Logic and Algebraic Programming, 55(1/2):1–19, 2003.

19. J.A. Bergstra and C.A. Middelburg. Located actions in process algebra with timing. Funda-
menta Informaticae, 61(3/4):183–211, 2004.

20. J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Theoretical Computer
Science, 335(2/3):215–280, 2005.

21. J.A. Bergstra and C.A. Middelburg. Continuity controlled hybrid automata. Journal of Logic
and Algebraic Programming, 68(1/2):5–53, 2006.

22. J.A. Bergstra and C.A. Middelburg. Thread algebra with multi-level strategies. Fundamenta
Informaticae, 71(2/3):153–182, 2006.

23. C.A. Middelburg. Conditionals in algebraic process calculi. Electronic Notes in Theoretical
Computer Science, 162:237–241, 2006.

24. J.A. Bergstra and C.A. Middelburg. Splitting bisimulations and retrospective conditions. Infor-
mation and Computation, 204(7):1083–1138, 2006.

25. J.A. Bergstra and C.A. Middelburg. Preferential choice and coordination conditions. Journal of
Logic and Algebraic Programming, 70(2):172–200, 2007.

26. J.A. Bergstra and C.A. Middelburg. Thread algebra for strategic interleaving. Formal Aspects
of Computing, 19(4):445–474, 2007.

27. J.A. Bergstra and C.A. Middelburg. A thread algebra with multi-level strategic interleaving.
Theory of Computing Systems, 41(1):3–32, 2007.

28. J.A. Bergstra and C.A. Middelburg. Maurer computers with single-thread control. Fundamenta
Informaticae, 80(4):333–362, 2007.

29. J.A. Bergstra and C.A. Middelburg. Synchronous cooperation for explicit multi-threading. Acta
Informatica, 44(7/8):525–569, 2007.

30. J.A. Bergstra and C.A. Middelburg. Instruction sequences with indirect jumps. Scientific Annals
of Computer Science, 17:19–46, 2007.

31. J.A. Bergstra and C.A. Middelburg. Programming an interpreter using molecular dynamics.
Scientific Annals of Computer Science, 17:47–81, 2007.

32. J.A. Bergstra and C.A. Middelburg. Simulating Turing machines on Maurer machines. Journal
of Applied Logic, 6(1):1–23, 2008.

33. J.A. Bergstra and C.A. Middelburg. Maurer computers for pipelined instruction processing.
Mathematical Structures in Computer Science, 18(2):373–409, 2008.

34. J.A. Bergstra and C.A. Middelburg. Distributed strategic interleaving with load balancing. Fu-
ture Generation Computer Systems, 24(6):530–548, 2008.

35. J.A. Bergstra and C.A. Middelburg. Parallel processes with implicit computational capital.
Electronic Notes in Theoretical Computer Science, 209:55–81, 2008.

36. J.A. Bergstra and C.A. Middelburg. Program algebra with a jump-shift instruction. Journal of
Applied Logic, 6(4):553–563, 2008.

37. J.A. Bergstra and C.A. Middelburg. Instruction sequences with dynamically instantiated in-
structions. Fundamenta Informaticae, 96(1–2):27–48, 2009.

38. J.A. Bergstra and C.A. Middelburg. Machine structure oriented control code logic. Acta Infor-
matica, 46(5):375–401, 2009.

39. J.A. Bergstra and C.A. Middelburg. A thread calculus with molecular dynamics. Information
and Computation, 208(7):817–844, 2010.

40. J.A. Bergstra and C.A. Middelburg. On the operating unit size of load/store architectures. Math-
ematical Structures in Computer Science, 20(3):395–417, 2010.

9

41. J.A. Bergstra and C.A. Middelburg. An interface group for process components. Fundamenta
Informaticae, 99(4):355–382, 2010.

42. J.A. Bergstra and C.A. Middelburg. Data linkage dynamics with shedding. Fundamenta Infor-
maticae, 103(1–4):31–52, 2010.

43. J.A. Bergstra and C.A. Middelburg. Thread algebra for poly-threading. Formal Aspects of
Computing, 23(4):567–583, 2011.

44. J.A. Bergstra and C.A. Middelburg. Inversive meadows and divisive meadows. Journal of
Applied Logic, 9(3):203–220, 2011.

45. J.A. Bergstra and C.A. Middelburg. Thread extraction for polyadic instruction sequences. Sci-
entific Annals of Computer Science, 21(2):283–310, 2011.

46. J.A. Bergstra and C.A. Middelburg. Preliminaries to an investigation of reduced product set
finance. Journal of King Abdulaziz University: Islamic Economics, 24(1):175–210, 2011.

47. J.A. Bergstra and C.A. Middelburg. On the expressiveness of single-pass instruction sequences.
Theory of Computing Systems, 50(2):313–328, 2012.

48. J.A. Bergstra and C.A. Middelburg. Instruction sequence processing operators. Acta Informat-
ica, 49(3):139–172, 2012.

49. J.A. Bergstra and C.A. Middelburg. On the behaviours produced by instruction sequences under
execution. Fundamenta Informaticae, 120(2):111–144, 2012.

50. J.A. Bergstra and C.A. Middelburg. Indirect jumps improve instruction sequence performance.
Scientific Annals of Computer Science, 22(2):253–265, 2012.

51. J.A. Bergstra and C.A. Middelburg. A process calculus with finitary comprehended terms.
Theory of Computing Systems, 53(4):645–668, 2013.

52. J.A. Bergstra and C.A. Middelburg. Data linkage algebra, data linkage dynamics, and priority
rewriting. Fundamenta Informaticae, 128(4):367–412, 2013.

53. J.A. Bergstra and C.A. Middelburg. Timed tuplix calculus and the Wesseling and van den Berg
equation. Scientific Annals of Computer Science, 23(2):169–190, 2013.

54. J.A. Bergstra and C.A. Middelburg. Instruction sequence based non-uniform complexity
classes. Scientific Annals of Computer Science, 24(1):47–89, 2014.

55. J.A. Bergstra and C.A. Middelburg. Division by zero in non-involutive meadows. Journal of
Applied Logic, 13(1):1–12, 2015.

56. J.A. Bergstra and C.A. Middelburg. On algorithmic equivalence of instruction sequences for
computing bit string functions. Fundamenta Informaticae, 138(4):411–434, 2015.

57. J.A. Bergstra and C.A. Middelburg. Probabilistic thread algebra. Scientific Annals of Computer
Science, 25(2):211–243, 2015.

58. J.A. Bergstra and C.A. Middelburg. Transformation of fractions into simple fractions in divisive
meadows. Journal of Applied Logic, 16:92–110, 2016.

59. J.A. Bergstra and C.A. Middelburg. Instruction sequence size complexity of parity. Funda-
menta Informaticae, 149(3):297–309, 2016.

60. J.A. Bergstra and C.A. Middelburg. On instruction sets for Boolean registers in program alge-
bra. Scientific Annals of Computer Science, 26(1):1–26, 2016.

61. J.A. Bergstra and C.A. Middelburg. A Hoare-like logic of asserted single-pass instruction se-
quences. Scientific Annals of Computer Science, 26(2):125–156, 2016.

62. J.A. Bergstra and C.A. Middelburg. Contradiction-tolerant process algebra with propositional
signals. Fundamenta Informaticae, 153(1–2):29–55, 2017.

63. J.A. Bergstra and C.A. Middelburg. Axioms for behavioural congruence of single-pass instruc-
tion sequences. Scientific Annals of Computer Science, 27(2):111–135, 2017.

10

64. J.A. Bergstra and C.A. Middelburg. Instruction sequences expressing multiplication algorithms.
Scientific Annals of Computer Science, 28(1):39–66, 2018.

65. J.A. Bergstra and C.A. Middelburg. A short introduction to program algebra with instructions
for Boolean registers. Computer Science Journal of Moldova, 26(3):199–232, 2018.

66. J.A. Bergstra and C.A. Middelburg. Program algebra for Turing-machine programs. Scientific
Annals of Computer Science, 29(2):113–139, 2019.

67. J.A. Bergstra and C.A. Middelburg. Process algebra with strategic interleaving. Theory of
Computing Systems, 63(3):488–505, 2019.

68. J.A. Bergstra and C.A. Middelburg. On the complexity of the correctness problem for non-
zeroness test instruction sequences. Theoretical Computer Science, 802:1–18, 2020.

69. C.A. Middelburg. Probabilistic process algebra and strategic interleaving. Scientific Annals of
Computer Science, 30(2):205–243, 2020.

70. C.A. Middelburg. On the strongest three-valued paraconsistent logic contained in classical logic
and its dual. Journal of Logic and Computation, 31(2):597–611, 2021.

71. J.A. Bergstra and C.A. Middelburg. Using Hoare logic in a process algebra setting. Fundamenta
Informaticae, 179(4):321–344, 2021.

72. C.A. Middelburg. Imperative process algebra with abstraction. Scientific Annals of Computer
Science, 32(1):137–179, 2022.

73. C.A. Middelburg. Program algebra for random access machine programs. Scientific Annals of
Computer Science, 32(2):285–319, 2022.

74. C.A. Middelburg. Belnap-Dunn logic and query answering in inconsistent databases with null
values. Scientific Annals of Computer Science, 33(2):159–192, 2023.

75. C.A. Middelburg. Paraconsistent logic and query answering in inconsistent databases. Journal
of Applied Non-Classical Logics, 34(1):133-154, 2024.

76. C.A. Middelburg. Imperative process algebra and models of computation. Theory of Computing
Systems, 2024. doi:10.1007/s00224-024-10164-0

Conference papers

77. C.A. Middelburg. The effect of the PDP11 architecture on code generation for CHILL. In
Proceedings ACM Symposium on Architectural Support for Programming Languages and Op-
erating Systems, pages 149–157, 1982.

78. C.A. Middelburg. The VIP VDM specification language. In R. Bloomfield, L. Marshall and
R. Jones, editors, VDM ’88, pages 187–201. LNCS 328, Springer-Verlag, 1988.

79. C.A. Middelburg. Experiences with combining formalisms in VVSL. In J.A. Bergstra and
L.M.G. Feijs, editors, Algebraic Methods II: Theory, Tools and Applications, pages 83–103.
LNCS 490, Springer-Verlag, 1991.

80. C.A. Middelburg and G.R. Renardel de Lavalette. LPF and MPLω – A logical comparison
of VDM-SL and COLD-K. In S. Prehn and W.J. Toetenel, editors, VDM ’91, pages 279–308.
LNCS 551, Springer-Verlag, 1991.

81. C.A. Middelburg. VVSL specification of a transaction-oriented access handler. In D.J. Harper
and M.C. Norrie, editors, Specifications of Database Systems, pages 188–212. Workshops in
Computing Series, Springer-Verlag, 1992.

82. L.G. Bouma, W.G. Levelt, A.A.J. Melisse, C.A. Middelburg and L. Verhaard. Formalisation of
properties for feature interaction detection: experience in a real-life situation. In H.-J. Kugler,
A. Mullery and N. Niebert, editors, IS&N ’94, pages 393–405. LNCS 851, Springer-Verlag,
1994.

11

83. J.A. Bergstra and C.A. Middelburg. Process algebra semantics of ϕSDL. In A. Ponse, C. Ver-
hoef and S.F.M. Vlijmen, editors, ACP ’95, pages 309–346. Report 95-14, Eindhoven Univer-
sity of Technology, Department of Computing Science, 1995.

84. Yuan Zhaorui, Yang Fangchun and C.A. Middelburg. Detection of non-determinacy feature
interaction in ACPτ . In Communications 1999, volume 2, pages 1231–1235. Publishing House
BUPT, Beijing, China, 1999.

85. Yuan Zhaorui, Yang Fangchun and C.A. Middelburg. Detection of livelock feature interaction
in ACPτ , In Future Telecommunication Forum ’99. Publishing House BUPT, Beijing, China,
1999.

86. J.A. Bergstra and C.A. Middelburg. A thread algebra with multi-level strategic interleaving.
In S.B. Cooper, B. Löwe and L. Torenvliet, editors, CiE 2005, pages 35–48. LNCS 3526,
Springer-Verlag, 2005.

87. J.A. Bergstra and C.A. Middelburg. Strong splitting bisimulation equivalence. In J.L. Fiadeiro,
N. Harman, M. Roggenbach and J. Rutten, editors, CALCO 2005, pages 85–99. LNCS 3629,
Springer-Verlag, 2005.

88. J.A. Bergstra and C.A. Middelburg. Model theory for process algebra. In A. Middeldorp, V. van
Oostrom, F. van Raamsdonk and R. C. de Vrijer, editors, Processes, Terms and Cycles: Steps
on the Road to Infinity, pages 445–495, LNCS 3838, Springer-Verlag, 2005.

89. J.A. Bergstra and C.A. Middelburg. Transmission protocols for instruction streams. In M.
Leucker and C. Morgan, editors, ICTAC 2009, pages 127–139, LNCS 5684, Springer-Verlag,
2009.

Preprints

90. C.A. Middelburg. A simple language for expressing properties of telecommunication services
and features. Publication 94-PU-356, PTT Research, October 1994.

91. J.A. Bergstra, W.J. Fokkink and C.A. Middelburg. A logic for signal inserted timed frames.
Logic Group Preprint Series 155, Utrecht University, Department of Philosophy, January 1996.

92. J.C.M. Baeten, C.A. Middelburg and M.A. Reniers. A new equivalence for processes with
timing. Computing Science Report 02-10, Eindhoven University of Technology, Department of
Mathematics and Computing Science, October 2002.

93. J.A. Bergstra and C.A. Middelburg. Process algebra with conditionals in the presence of ep-
silon. Computing Science Report 05-15, Eindhoven University of Technology, Department of
Mathematics and Computing Science, May 2005.

94. J.A. Bergstra and C.A. Middelburg. Instruction sequences and non-uniform complexity the-
ory. Electronic Report PRG0812, University of Amsterdam, Programming Research Group,
September 2008.

95. J.A. Bergstra and C.A. Middelburg. Instruction sequences for the production of processes. Elec-
tronic Report PRG0814, University of Amsterdam, Programming Research Group, November
2008.

96. J.A. Bergstra and C.A. Middelburg. Instruction sequence notations with probabilistic instruc-
tions. Electronic Report PRG0906, University of Amsterdam, Programming Research Group,
June 2009.

97. J.A. Bergstra and C.A. Middelburg. On the definition of a theoretical concept of an operating
system. arXiv:1006.0813v1 [cs.OS], June 2010.

98. C.A. Middelburg. A survey of paraconsistent logics. arXiv:1103.4324v3 [cs.LO], March
2011.

99. J.A. Bergstra and C.A. Middelburg. An application specific informal logic for interest prohibi-
tion theory. arXiv:1104.0308v1 [q-fin.GN], April 2011.

12

100. J.A. Bergstra and C.A. Middelburg. Turing impossibility properties for stack machine program-
ming. arXiv:1201.6028v1 [cs.LO], January 2012.

101. J.A. Bergstra, C.A. Middelburg, and Gh. Ştefănescu. Network algebra for synchronous
dataflow. arXiv:1303.0382v1 [cs.LO], March 2013.

102. J.A. Bergstra and C.A. Middelburg. Instruction sequence expressions for the secure hash algo-
rithm SHA-256. arXiv:1308.0219v7 [cs.PL], August 2013.

103. C.A. Middelburg. Process algebra, process scheduling, and mutual exclusion. arXiv:2003.

00473v3 [cs.LO], March 2020.
104. R.J. van Glabbeek and C.A. Middelburg. On infinite guarded recursive specifications in process

algebra. arXiv:2005.00746v1 [cs.LO], May 2020.
105. C.A. Middelburg. A classical-logic view of a paraconsistent logic. arXiv:2008.07292v6

[cs.LO], August 2020.
106. C.A. Middelburg. Dormancy-aware timed branching bisimilarity for timed analysis of commu-

nication protocols. arXiv:2107.08921v4 [cs.LO], July 2021.
107. C.A. Middelburg. A conventional expansion of first-order Belnap-Dunn logic. arXiv:2301.

10555v6 [cs.LO], January 2023.
108. C.A. Middelburg. On the formalization of the notion of an algorithm. arXiv:2401.08366v1

[cs.CC], January 2024.
109. C.A. Middelburg. The interdefinability of expansions of Belnap-Dunn logic. arXiv:2403.

04641v1 [cs.LO], March 2024.

Other publications

110. C.A. Middelburg. Het relationele model gezien in het licht van de Codasyl voorstellen. Infor-
matie, 17(2):67–76, 1975 (in Dutch).

111. C.A. Middelburg. Een beschouwing over informatiesystemen en databasemanagement. Het
PTT-Bedrijf, 20(4):221–224, 1977 (in Dutch).

112. C.A. Middelburg and J. Mendrik. Een ingenieurskijk op Teletekst en Viewdata: Technische
achtergronden. De Ingenieur, 90(48):927–932, 1978 (in Dutch).

113. C.A. Middelburg. A formal definition based design of the translation phase of a CHILL com-
piler. In CHILL Implementors/Users Meeting, Technical University of Denmark, Lyngby, 1980.

114. C.A. Middelburg. Prolog: Programmeren in logica? Informatie, 26(11):866–870, 1984 (in
Dutch).

115. B.T. Denvir, J.E.P. Fienieg, W.T. Harwood, C.A. Middelburg and P.M. Taylor. Methods of
defining, cataloguing and retrieving specifications of abstract data types. Final deliverable from
the CEC-ADT Study, Dr. Neher Laboratorium and Standard Telecommunication Laboratories,
1984.

116. C.A. Middelburg. Programmeren in logica. In J.A.A.M. Poirters and G.J. Schoenmakers, edi-
tors, Colloquium Programmeertalen, pages 39–60. Academic Service, 1986 (in Dutch).

117. SPECS Project Team. A feasible IBC software specification environment. Final deliverable
from RACE project 2093: Specification Environment for Communication Software (SPECS),
SPECS Consortium, 1987.

118. J. Bruijning and C.A. Middelburg. VDM extensions: Final report. Final deliverable from
ESPRIT project 1283: VDM for Interfaces of the PCTE (VIP), Praxis, Dr. Neher Laboratorium,
CWI, and Océ, 1988.

119. C.A. Middelburg. Combining VDM and temporal logic. In Workshop on Specification of Con-
current Systems, Philips Research Laboratories, Eindhoven, 1989.

13

120. C.A. Middelburg. Preliminary remarks on Bear’s model of BSI/VDM modules. BSI IST/5/50
Document N-133, BSI, 1989.

121. C.A. Middelburg. Syntax and Semantics of VVSL. Ph.D. thesis, University of Amsterdam, 1990.
122. C.A. Middelburg. Evaluation report from the ISO/VDM Review Board. Document I-10,

ISO/IEC JTC1/SC22/WG19, 1992.
123. C.A. Middelburg. A framework for defining modular structuring facilities. In Modules Meeting,

National Physical Laboratory, Teddington, 1992.
124. C.A. Middelburg. Is programmatuurontwikkeling met formele methoden zinvol. Informatie,

34(3):148–158, 1992 (in Dutch).
125. C.A. Middelburg. Programmatuur zonder Logica. Inaugural lecture, Utrecht University, De-

partment of Philosophy, 1993 (in Dutch).
126. C.A. Middelburg. Design calculi in software development: Theory and practice. In Proceedings

of EU-China High Tech Conference, pages 307–311. SSTCC and EU DG XII, 1996.
127. C.A. Middelburg. Beyond SDL. Lecture notes of UNU/IIST Course DesCaRTeS, United Na-

tions University, International Institute for Software Technology, 1997.
128. C.A. Middelburg and M.A. Reniers. Introduction to process theory. Lecture notes of TUE

Course Process Theory, Eindhoven University of Technology, Department of Mathematics and
Computing Science, 2003.

129. C.A. Middelburg. Searching publications on operating systems. arXiv:1003.5525v1

[cs.OS], March 2010.
130. C.A. Middelburg. Searching publications on software testing. arXiv:1008.2647v1 [cs.SE],

August 2010.
131. J.A. Bergstra and C.A. Middelburg. Interest prohibition and financial product innovation. In

A. Escurat, editor, Finance Islamique: Regard(s) sur une Finance Alternative, pages 274–284.
Mazars Hadj Ali, Algiers, 2011.

132. C.A. Middelburg. A short introduction to process theory. arXiv:1610.01412v1 [cs.LO],
October 2016.

Unpublished documents

133. C.A. Middelburg. Towards modular structuring facilities in VDM-SL. Unpublished note, in-
vited by ISO/IEC JTC1/SC22/WG19, 1993.

134. C.A. Middelburg. Computer-aided formal software development. Unpublished note, invited by
KPN Research, 1993.

14

