
QUANTUM GROUPS AND KNOT THEORY: WEEK 50

This week we treat sections 3 and 4 of Chapter 6 of [2]. We give additional proofs and
definitions.

1. Modular tensor categories

One of the most important applications of the RT-functor is the construction of invari-
ants of (closed, connected, oriented) 3-manifolds, the so-called Reshetikhin-Turaev-Witten
invariants of 3-manifolds. However, the RT-invariants of ribbon links associated with col-
orings of links with objects of a ribbon category C in week 48 and week 49 are far too
general for this purpose. For this more ambitious goal we are forced to impose a very
restrictive additional property of the ribbon category C turning it into a so-called modular
tensor category.

1. Abelian categories. Let k be a commutative ring. A category C is called k-linear if all
hom-sets are k-modules such that the composition is bilinear. In particular if X is an object
of C then the monoid HomC(X) has the structure of an (associative, unital) k-algebra. We
call a Z-linear category C additive if there exists a zero object 0 such that Hom(0, X) =
Hom(X, 0) = 0, and moreover if every pair of objects (X, Y ) ∈ C × C has a product, i.e.
there exists an object X × Y ∈ C which represents the functor HomC(?, X)× HomC(?, Y )
from C × C → Mod(k). It is not difficult to show that in an additive category also every
pair of objects (X, Y ) defines a coproduct (or direct sum) X ⊕ Y which by definition
corepresents the functor HomC(X, ?) × HomC(Y, ?). In fact the product X × Y and the
direct sum X ⊕ Y are canonically isomorphic.

An additive category C is called abelian if all morphims in C admit kernels and cokernels,
and if for every morphism f : A → B the canonical morphism f : Coim(f) → Im(f)
(where Coim(f) is defined by Coim(f) = Coker(Ker(f) → A), and Im(f) = Ker(B →
Coker(f)) is an isomorphism. Equivalently, a morphism f is an isomorphism iff f is both
an epimorphism and a monomorphism.

For example, if A is a k-algebra then the category of left modules over A is k-linear and
abelian. In fact, it is known that any k-linear abelian category whose objects form a set
(a small category) is equivalent to a full subcategory of the category of left A-modules
of some k-algebra A (this is Mitchell’s embedding theorem, which is based on Yoneda’s
embedding). Abelian categories are of fundamental importance since they provide the
natural abstract framework in which homological algebra techniques can be considered.

Let C be a k-linear abelian category. An object M of C is called simple if for any
monomorphism f : N → M we have that either f = 0 or else f is an isomorphism. We
have the trivial but useful lemma of Schur:
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Proposition 1.1. Let C be a k-linear abelian category. An object M ∈ C is simple iff
EndC(M) is a division algebra over k. If M,N are both simple and f : N → M is any
morphism then either f = 0 or f is an isomorphism.

Proof. If f ∈ EndC(M) is nonzero then the canonical monomorphism ker(f) → M must
be zero, and M → Im(f), and thus f = f is invertible. The second assertion is proved
similarly. �

In particular, if M is simple then m := {x ∈ k | k.IdM = 0} is a maximal ideal in k.
Moreover, if k is an algebraically closed field then we have an isomorphism EndC(M) '
k.IdM . A simple object M in a k-linear abelian category C is called split if EndC(M) ' k. If
k is algebraically closed then simple objects are automatically split since the only division
algebra over k is k itself.

An object of a k-linear abelian category is called semisimple if it is isomorphic to a direct
sum of finitely many simple objects. We call a k-linear abelian category C semisimple if
every object of C is semisimple.

2. Modular tensor categories. We will introduce modular tensor categories (sometimes
also called fusion categories) under some rather restrictive conditions, but this is more than
enough for our purposes.

Definition 2.2. Let k be a field of characteristic zero. A strict modular tensor category
over k is a k-linear semisimple abelian strict ribbon category C such that

(a) The set of isomorphism classes of simple objects is finite and all simple objects are
split simple over k.

(b) Let us parameterize by {0, 1, . . . , N} the set of isomorphy classes of simple objects,
and for each i let Vi ∈ i. We choose the numbering such that 0 represents the class
of the tensor unit. Consider the (N + 1) × (N + 1) matrix s̃ with entries s̃i,j ∈ k
given by figure 1. Then the S-matrix s̃ is invertible.

The name “modular tensor category” is justified by the fact that there exists a projective
action of the modular group SL2(Z) on the Grothendieck ring of the category, as we will
see below. This appearance of the modular group is a reflection of the fact that a modular
tensor category defines a (2+1)-dimensional topological quantum field theory. The modular
group is the mapping class group of a two dimensional compact torus (see below), and
therefore this group acts on the vector spaces attached to a two dimensional torus by the
TQFT.

3. The Verlinde algebra. In a k-linear semisimple (strict) ribbon algebra we consider
the k-algebra K := k ⊗Z K(C), where K(C) is the Grothendieck ring of C. The algebra
structure is defined by [V ][W ] := [V ⊗W ]. (We note that in any abelian ribbon category
the tensor product bifunctor is exact in both factors, hence this definition makes sense
even in the Grothendieck ring of any abelian ribbon category; in the semisimple situation
this is of course trivial). From the axioms of braided monoidal categories it follows easily
that K is unital (with unit [V0]), associative and commutative.
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i j

Figure 1.

The classes [V ], where V runs through a complete set of representatives of the equivalence
classes of simple objects in C, form a k-linear basis for K. The multiplication in K is

completely determined by the so-called fusion coefficients N
[W ]
[U ],[V ] ∈ Z≥0 defined by

(3.1) [U ].[V ] :=
∑
W

N
[W ]
[U ],[V ][W ]

where the sum is over a complete set of representatives of equivalence classes of the simple
objects. In the above situation where we have finitely many equivalence classes labelled
by {0, 1, . . . , N} we write Nk

ij when U ' Vi, V ' Vj and W ' Vk.

Lemma 3.3. For all U, V,W in C we have natural isomorphisms HomC(U ⊗ V,W ) →
HomC(U,W ⊗ V ∗) and HomC(V

∗ ⊗ U,W ) → HomC(U, V ⊗ W ). In particular, we have
HomC(U, V )→ HomC(I, U ⊗ V ∗). Finally we have dimHomC(U, V ) = dimHomC(U, V ).

Proof. The statements about the natural isomorphism follow by graphical calculus and are
true in any ribbon category. In particular The final assertion however uses the semisim-
plicity of C and the self-duality of I. It follows from the fact that for any object W of
C one has dimHomC(I,W ) = dimHomC(I,W

∗). Indeed, we have dimHomC(I,W ) = d iff
W ≈ Id⊕W ′ with W ′ disjoint from I (i.e. all its simple summands are inequivalent to I).
But then also W ∗ ≈ Id ⊕W ′∗ with W ′∗ disjoint from I, by the self duality of I. �

Hence we have the following rules for the fusion coefficients (using the fact that Nk
ij =

dimHomC(Vk, Vi ⊗ Vj) = dimHomC(I, Vi ⊗ Vj ⊗ V ∗k )):

Nk
0j = Nk

j0 = δkj ;(3.2)

Nk
ij = Nk

ji = N j∗

ik∗ = Nk∗

i∗j∗(3.3)

N0
ij = δji∗(3.4)
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i j

idVi⊗Vj∗

idVi⊗Vj∗

θ−1Vi
θ−1Vj∗

Vi ⊗ Vj∗

Figure 2.

Since the twist θ is an endomorphism of the identity functor θ must be (by Schur’s lemma)
a multiple θV of the identity on each simple module V . We write θi if V = Vi. The quantum
dimension of Vi is denoted by di ∈ k = EndC(I) (this last isomorphism is canonical and
follows from Schur’s lemma and (a) of definition 2.2). We have some easy consequences of
the properties of traces and twists in ribbon categories:

θ0 = 1, θi∗ = θi(3.5)

d0 = 1, di∗ = di, didj =
∑
k

Nk
ijdk(3.6)

Finally we have the following symmetries in the s̃ij which are easily proved by the graphical
calculus:

(3.7) s̃ij = s̃ji = s̃i∗j∗ = s̃j∗i∗ ; s̃i0 = s̃0i = di

Lemma 3.4. In a modular tensor category we have

(3.8) s̃ij = θ−1i θ−1j
∑
i

Nk
i,j∗θk

Proof. See figure 2 �

Lemma 3.5. In a semisimple ribbon category C we have di 6= 0 for all simple objects Vi.

Proof. Recall from week 47 the formula for the dimension di:

di := trC(idVi) = dVi ◦ (idVi∗ ⊗ θ
−1
Vi

) ◦ c−1Vi∗ ,Vi ◦ bVi = θ−1i dVi ◦ c−1Vi∗ ,Vi ◦ bVi
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=
s̃ij
di

i

j

i

Figure 3.

We know that N0
i,i∗ = 1 so Vi⊗Vi∗ = X ⊕X ′ with X isomorphic to V0 = I and X ′ disjoint

from I. Similarly Vi∗ ⊗ Vi = Y ⊕ Y ′ with Y isomorphic to I and Y ′ disjoint with I. The
isomorphism c−1Vi∗ ,Vi therefore restricts to a direct sum of an isomorphism from Y → X
and and isomorphism from Y ′ → X ′. The evaluation dVi : Vi∗ ⊗ Vi → I factors through
a map Y → I and similarly the co-evaluation bVi : I → Vi ⊗ Vi∗ factors through a map
I → X. These maps are both nonzero, a fact that follows easily from the duality axioms.
Since I, X and Y are isomorphic and simple, Schur’s lemma implies that these maps are
isomorphisms. In particular, the above composition of maps is a composition of three
isomorphisms and hence nonzero. �

Lemma 3.6. See figure 3.

Proof. Since Vi is irreducible we know that the left hand side is equal to a constant, aij ∈ k
say, times idVi . To compute aij we close both sides of figure 3 to get figure 4. The left
hand side is s̃ij, proving the result (by using the previous Lemma). �

Definition 3.7. We extend the graphical calculus for a k-linear modular tensor category
by admitting coloring of the strands in a ribbon graphs by elements of the Verlinde algebra
K. This simply represents the morphism in C obtained by taking the associated k-linear
combination of actual C-colored ribbon graphs.

We will moreover use the convention in this graphical calculus that when we leave a strand
uncolored this means that it is colored by the element in R ∈ K defined by R =

∑
i di[Vi].

Lemma 3.8. See figure 5. Here ∆± :=
∑

i θ
±
i d

2
i .

Proof. We prove the positive identity; the other sign being similar. Again it is clear that
the left hand side equals ∆+θ−1i idVi for some constant ∆+ ∈ k. To compute this constant
∆+ we close up the diagram, after multiplication by θi. As in figure 2 we obtain figure 6
representing di∆

+ (here we have used the self duality of R to reverse the arrow of the left
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= aijdii

j

Figure 4.

= ∆+
i

i

θ θ−1 = ∆−i

i

θ−1 θ;

Figure 5.

hand side without changing the color R). Decomposing R ⊗ Vi in irreducibles and using
(3.3), (3.6) we obtain:

(3.9) di∆
+ =

∑
j,k

djN
k
ijθkdk =

∑
j,k

N j∗

ik∗djθkdk =
∑
k

θkdid
2
k

from which the assertion follows. �

Corollary 3.9. See figure 7.
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i

idR⊗Vi

R⊗ Vi

idR⊗Vi

=
R⊗ Vi

Figure 6.

i

θ

j

= ∆+ θ−1 θ−1

i j

Figure 7.

Theorem 3.10. Let C be a k-linear modular tensor category. Consider the linear operators
on K given in the standard basis {[Vi]} by the matrices s̃ = (s̃ij), t = (tij) and c = (cij)
(the “charge conjugation matrix”) where tij = δijθi and cij = δij∗. These operators satisfy
the following relations:

(s̃t)3 = ∆+s̃2(3.10)

(s̃t−1)3 = ∆−s̃2c(3.11)

ct = tc, cs̃ = s̃c, c2 = 1(3.12)

s̃2 = ∆+∆−c(3.13)
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= ∆+

i

θ θ−1 θ−1

i

k
k

i= ∆+θ−1i θ−1k

k

Figure 8.

∆+θ−1i θ−1k
s̃ik
di

i

Figure 9.

Proof. Observe that (3.12) follows from the listed symmetries of t and s̃. We first show
that (3.13) follows from (3.10), (3.11), (3.12) since s̃ is invertible. Indeed, by (3.10), (3.11),
(3.12) we see

ts̃t = ∆+s̃−1t−1s̃(3.14)

t−1s̃t−1 = ∆−cs̃−1ts̃(3.15)

Now multiply these equations to obtain ts̃2t−1 = ∆+∆−c. Conjugation by t−1 finally gives
the desired result. Therefore it remains to prove (3.10) and (3.11). We show the case of
(3.10) (the other case being similar) using graphical calculus. Consider figure 8.
The first identity follows from Corollary 3.9, and the second is obvious. Using Lemma 3.6
the right hand side is easily seen to be equal to the expression of figure 9. On the other
hand we can rewrite the left hand side as in figure 10. Applying twice Lemma 3.6 one can
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i
∑

j θj

j

k

Figure 10.

i

j∑
j djθj

s̃jk
dj

=
∑

j θj s̃jk
s̃ij
di

i

Figure 11.

rewrite this as in figure 11. We conclude that we have the following identity

(3.16)
∑
j

s̃ijθj s̃jk = ∆+θ−1i s̃ikθ
−1
k

or

(3.17) s̃ts̃ = ∆+t−1s̃t−1

proving (3.10). The proof of (3.11) is similar. �

Corollary 3.11. In a k-linear modular category, ∆± are nonzero.

Definition 3.12. Let C be a k-linear modular tensor category. We write ∆ :=
√

∆+∆−

and ζ := (∆+/∆−)1/6. Define s := s̃/∆.

The relations of Theorem 3.10 translate as follows:
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= ∆+∆−δi0i i

Figure 12.

Theorem 3.13. We have the relations:

(3.18) (st)3 = ζ3s2, s2 = c, ct = tc, c2 = 1.

These relation are closely related to the modular group SL2(Z). Indeed, SL2(Z) has

generators S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
. These satisfy the relations

(3.19) (ST )3 = S2, S4 = 1

and we see easily that C = S2 is central (either from the explicit matrix for S or

(3.20) CT = S2T = (ST )3T = (TS)3T = T (ST )3 = TC

using the above relations) and has order 2. It follows that the matrices s and t form a
projective representation of SL2(Z) (in fact s and t/ζ define a genuine representation of
SL2(Z)).

Corollary 3.14. See figure 12.

Proof. As usual it is clear that the identity is true up to a scalar multiple. To compute
this constant we take traces on both sides of figure 12. Using Lemma 3.6 we see that this
constant is

(3.21) d−1i
∑
j

dj s̃ij = d−1i
∑
j

s̃ij s̃j0 = d−1i s̃2i0 = d−1i ∆+∆−ci,0 = ∆+∆−δi0

proving the result. �

Corollary 3.15. We have ∆+∆− =
∑

i d
2
i .

Proof. This is simply the special case i = 0 in the previous corollary. �
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= µ(V )(xi)i i

V

Figure 13.

Theorem 3.16. Let C be a k-linear modular tensor category and let F be the k-linear
dual of K. We equip F with the unique unital associative commutative k-algebra structure
in which the basis (vi) of F which is dual to the basis (xi) of K (where we have written
xi = [Vi] for brevity) consist of mutually orthogonal idempotents of F . We define a k-linear
map µ : K → F defined by figure 13. Then µ is an algebra isomorphism.

Proof. It is clear from graphical calculus that µ is an algebra homomorphism. When we
renormalize the basis of F to εi := vi/si0, then by Lemma 3.6 the homomorphism µ is
given by µ(xj) =

∑
i s̃ij/s̃i0v

i =
∑

i sijε
i. The invertibility of µ follows, completing the

proof. �

The elements εi := µ−1(εi) too form a basis of K. In the proof of the previous theorem
we saw that

(3.22) xj =
∑
i

sijεi

Combining this with the multiplication rule

(3.23) εiεj = δijεj/sj0

we obtain that the multiplication by xi in K in the new basis takes the diagonal form

(3.24) xiεj = (sij/s0j)εj

If we denote by M(xi) the matrix of the left multiplication by xi on K with respect to the
basis (xj), and if Di denotes the diagonal matrix (Di)ab = δab(sia/s0a) then we see that

(3.25) sM(xi)s
−1 = (Di)ab

This fact is described by saying that “the s-matrix diagonalizes the fusion rules.” This
gives a way to espress the fusion coefficients in terms of the s-matrix:
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Theorem 3.17. (Verlinde formula)

(3.26) Nk
ij =

∑
r

sirsjrsk∗r
s0r

Proof. We have sM(xi) = Dis or, using the symmetry of sij,

(3.27)
∑
a

Na
ijsar =

sirsjr
s0r

Now multiply both sides with srk∗ and sum over r; using that s2 = c we get the desired
result. �

2. Reshetikhin-Turaev-Witten invariants of 3-manifolds

Now we will use the acquired knowledge on the properties of the Verlinde algebra to
construct the 3-manifold invariants of the TQFT attached to a k-linear modular tensor
category C.

1. Surgery along framed links in S3. The geometric basis of the way of constructing 3-
manifold invariants is the following deep theorem of Lickorish and (independently) Wallace:

Theorem 1.1. Let M be a closed connected oriented topological 3-manifold. There exists
a framed link L ⊂ S3 such that M is homeomorphic to the manifold obtained by applying
“surgery” along L on S3.

To explain the surgery operation, let L1, . . . , Lm be the components of the link. Recall
that every link component Li has a closed tubular neighborhood Ui which is homeomorphic
to S1 × B2, and we can choose these neighborhoods sufficiently small such that they are
mutually disjoint. Choose a direction for each component (the result of the surgery will not
depend on this choice, up to homeomorphisms). Obviously Ti = ∂(Ui) is a 2-dimensional
torus. On Ti we can define a meridian αi (it is the boundary of a disk B2 in Ui, oriented
according to the corkscrew rule relative to the direction of Li; this is a canonically defined
homology class once the direction has been chosen) and the longitude βi defined by the
framing fi of Li. Observe that the basis ([αi], [βi]) of H1(Ti,Z) is positive with respect to
the orientation of Ti by the outward normal vector with respect to Ui. Let U = S1 × B2

an abstract oriented solid torus. Choose orientations of the meridian α = {1} × S1 and
longitude β = S1 × {1} such that ([α], [β]) is a positive basis of H1(T,Z) (i.e. [α ∧ β] is
positive).

Now we choose (orientation preserving) homeomorphisms gi : ∂(Ui)→ ∂(U) = S1 × S1,
such that gi(αi) = −β = −(S1×{1}) and gi(βi) = α := {1}×S1 (the minus sign refers to
the orientation of the curves). This is possible and unique up to isotopy by the following
classical result:

Lemma 1.2. For any orientation preserving isomorphism Gi : H1(Ti,Z)→ H1(T,Z) there
exists an orientation preserving homeomorphism gi : Ti → T such that Gi = (gi)∗, the ho-
momorphism induced by gi on the first singular homology group. The isotopy class of the
homeomorphism gi is uniquely determined by its induced action Gi = (gi)∗ on H1(Ti,Z).
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In particular, the mapping class group of isotopy classes of orientation preserving self-
homeomorphisms of a compact two dimensional torus T (also called the Teichmüller mod-
ular group, or the homeotopy group of T ) is canonically isomorphic to SL2(H1(T,Z)) via
the isomorphism g → g∗.

Proof. The universal covering space of a two dimensional compact torus T ≈ S1×S1 is R2,
with as group of deck transformations the group of translations of a lattice X in R2. There
is a natural isomorphism H1(T,Z) ≈ X, and if we choose a base point e ∈ T then there is
also a natural isomorphism π1(T, e) ≈ X. Choose base points ei ∈ Ti and e ∈ T . We may
in fact compose any homeomorphism Ti → T with a translation in T without changing
its isotopy type, hence we may always choose representatives of the isotopy classes of
homeomorphisms which map ei to e.

By elementary lifting results the homeomorphism h : ∂(Ui) → ∂(U) gives rise to an
isomorphism H∗ : Xi ≈ H1(Ti,Z) → H1(T,Z) ≈ X and a homeomorphism H : R2 → R2

restricting to the isomorphism H∗ : Xi → X. On the other hand, any isomorphism
H∗ : Xi → X can be extended linearly to a linear isomorphismH : R2 → R2 which descends
to a homeomorphism h : Ti → T such that H∗(h) = H. Hence given gi we can construct the
linear homeomorphism h : Ti → T such that h(ei) = e and such that H|Xi

= Gi|Xi
. In this

situation we can use the classical result that two orientation preserving homeomorphisms
between closed connected oriented surfaces are isotopic iff they are homotopic. But in the
situation above it is clear that h and gi are homotopic, by the homotopy of linear convex
combinations of h and gi. This finishes the proof. �

Let fi : ∂(Ui) → ∂(U) be the same homeomorphism as gi but with the domain ∂(Ui)
equipped with the opposite orientation (i.e. now we consider ∂(Ui) as a boundary compo-
nent of the oriented 3-manifold S3\ ∪i (int(Ui))). Let f be the disjoint union of the maps
fi. The map f is an (orientation reversing!) homeomorphism of the boundary components
of the 3-manifold S3\∪i (int(Ui)) to the boundary components of the m-fold disjoint union
of the standard solid torus (S1 × B2)×m, and is determined up to isotopy by the above
recipe in terms of the framing of L.

Definition 1.3. Given a fixed homeomorphism f as described, we define

(1.1) ML,f := (S3\ ∪i (int(Ui))) ∪f (S1 ×B2)×m

This defines ML,f up to homeomorphisms since it is well known that the identification
space ML,f only depends, up to homeomorphisms, on the isotopy class of f (see [1, Lemma
4.1.1](iii)). In fact if two gluing homeomeorphisms f, f ′ are connected by an orientation
preserving homeomorphism φ of (S1 × S1)×m with itself (i.e. we have f ′ = φ ◦ f) such
that φ extends to a homeomorphism Φ of (S1×B2)×m then the corresponding spaces ML,f

and ML,f ′ are also homeomorphic. For one solid torus component U = S1 × B2 the set of
isotopy classes of self homeomorphisms of the boundary T 2 = S1×S1 which extend to self
homeomorphisms of U is generated by the so-called Dehn-twists along the meridian curve

α (these correspond to the matrices

(
1 k
0 1

)
) and by the central element

(
−1 0
0 −1

)
. Here



14 QUANTUM GROUPS AND KNOT THEORY: WEEK 50

we have chosen the positive basis ([α], [β]) for H1(T,Z) with α = {1} × S1 the meridian,
and β = S1 × {1} a longitude as usual. These remarks yield the following result:

Theorem 1.4. Up to homeomorphisms ML,f only depends on the class of L as a framed
link. In particular, ML,f is independent of the chosen directions of the components Li,
and also of the choices of the homeomorphisms fi satisfying the description in terms of
the framing of L. We denote the resulting isomorphy class of closed connected oriented
3-manifolds by ML.

1.1. Examples. The first important example isML0 , where L0 denotes the unframed unknot
in S3. We claim that ML0 ≈ S1 × S2. Indeed, we have the Hopf decomposition S3 ≈
∂(B2×B2) = (B2×S1)∪id (S1×B2) where id is the orientation reversing homeomorphism
that interchanges the roles of meridian and longitude when we change the view from S1×S1

as boundary of UL0 = S1×B2 to the boundary of the complement B2×S1 of its interior in
S3. Now the homeomorphism g of Definition 1.3 corresponding to the 0-framing changes the
role of meridian and longitude once more, sending αi → −β and βi → α. As we have argued

above, we may in addition compose the gluing map with

(
−1 0
0 −1

)
without changing ML0 ,

after which the gluing map f is prescribed by f∗([α0]) = −[α] and f∗([β0]) = [β]. Thus
ML0 consists of the two solid tori U0 := S3\int(U(L0)) = B2 × S1 and U = S1 × B2 with
the boundaries identified by the gluing map f such that meridian α0 = S1 × {1} maps to
the opposite meridian −α = −({1}×S1) of U = S1×B2, and the longitude βi = {1}×S1

to β = S1 × {1}. In particular both solid tori have a common longitude onto which they
project and the fiber of this projection consists of two disks B2 glued at the boundary by
the identity map. Hence we obtain

(1.2) ML0 = (B2 ∪id B2)× S1 = S2 × S1

The second example is the case where we consider L1, the unknot with framing 1. In that
case one can show that one recovers ML1 = S3. Indeed, the orientation reversing map
f : ∂(U0) → ∂(U) is now given by the matrix (with respect to the bases ([α0], [β0]) and
([α], [β]))

(1.3) f :=

(
1 0
1 −1

)
Indeed, [α0] = [β1] − [α1] and [β0] = [α1]. Hence [α0] maps to [α] + [β] and [β0] to −[β].
Again, since we are gluing two solid tori by means of the homeomorphism f of the bound-
aries we can compose f on both sides with orientation preserving homeomorphisms which
extend to the full solid torus, without changing the space ML,f up to homeomorphisms.
In the bases we are using these are upper triangular matrices (since the meridian is the
first basis element). In addition we may compose with −id ∈ SL2(Z) without changing the
space. Therefore the computation

(1.4)

(
0 1
1 0

)
=

(
1 −1
0 1

)(
1 0
1 −1

)(
1 1
0 1

)
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Figure 14.

shows it is equivalent to take f equal to the homeomorphism id : ∂(U0)→ ∂(U) described
in the beginning of the previous example, proving the assertion.

1.2. Kirby calculus. It is quite possible that we are given two inequivalent ribbon links L
and L′ while still ML ≈ ML′ . If fact we have seen an example of this phenomenon in the
second example above, where we saw that surgery of S3 along a single unknot with framing
1 does not change S3 up to homeomorphisms. This is a special case of a so-called “Kirby
move” which we will describe below. The existence of such homeomorphisms obstructs the
definition of 3-manifold invariants using general invariants of ribbon links, since one needs
additional requirements ensuring that whenever ML ≈ ML′ the ribbon link invariant in
question will assign the same value to L and L′.

The quantum invariants of ribbon links (RT-invariants) associated with ribbon categories
are in general much too strong for this and can not be used. However, if the RT-invariants
are associated with the coloring of all strands by the regular representation R of a modular
tensor category then essentially the RT-invariant descends to a 3-manifold invariant, as
was shown by Reshetikhin and Turaev. The central technical result in the proof is the
precise description of the ribbon links defining the same 3 manifold, due to Kirby (and
proved by Fenn and Rourke).

Theorem 1.5. Let L and L′ be framed links in S3. Then ML ≈ML′ iff L and L′ are con-
nected by a sequence of “Kirby moves” (or there inverses). The Kirby moves are described
by figure 14, where the number of strands inside the single ribbon band with framing 1 can
be arbitrary (including 0).

1.3. Definition of the Reshetikhin-Turaev invariants. We define the wreath number σ(L)
of a framed link L ⊂ S3 as the signature of the canonical intersection pairing H2(WL,Z)×
H2(WL,Z)→ Z on the second homology of the 4-manifold WL which is obtained by gluing
m handles B2×B2 with their boundary component S1×B2 to the tubular neighbourhood
Ui of Li in such a way that ML = ∂(WL) (see [2, Section 4]). It is known that this number
σ(L) can be easily computed as the signature (i.e. the number of positive eigenvalues minus
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the number negative eigenvalues) of the linking matrix of L, i.e. the m × m symmetric
integral matrix A with entries Ai,j = Lk(Li, Lj) if i 6= j and Ai,i = Fr(Li) where we chose
(arbitrarily) directions and a numbering L1, L2, . . . , Lm of the components of L. Then

Theorem 1.6. Let L ⊂ S3 be an m-component framed link. Let C denote a k-linear
modular tensor category, and let F CRT be the associated RT-functor on T GC . The k-valued
function

(1.5) τC(ML) := ∆−m−1ζ−3σ(L)F CRT (LR)

only depends on the 3-manifold ML up to homeomorphisms. This defines an invariant of
closed, connected, oriented 3-manifolds, the Reshetikhin-Turaev invariant τC.

Proof. We need to show that τC is invariant for Kirby moves. If ∆+ = ∆− = ∆ this follows
immediately from Lemma 3.6. The general case is not much harder, but one needs to study
the behaviour of σ(L) under the Kirby moves. �

Example 1.7. We have S3 = M∅. Clearly τC(S3) = ∆−1 since σ(∅) = 0. Indeed, S3 =
∂(B4) and H2(B

4) = 0, so σ(∅) = 0, m = 0 and F CRT (∅R) = 1.

Example 1.8. As we have seen, we can also consider S3 as the surgery of S3 along the
unknot with framing 1. Indeed, in that case we have σ(L) = 1, m = 1, and F CRT (LR) = ∆+.

Example 1.9. Similarly we can also view S3 as obtained from the surgery of S3 along the
unknot with framing −1. We leave it to the reader to verify this as in the above examples,
and compute the invariant again in this way.

Example 1.10. For k ≥ 2 the Lens space L(k, 1) is by definition the 3-manifold obtained
by surgery along the unknot with framing k. As in the above examples we see that

(1.6) τC(L(k, 1)) = ∆−2ζ−3
∑
i

θki d
2
i

Exercise (a). Compute τC(S2 × S1).

It is not difficult to see that M−L = −ML where −L denoted the mirror image of the
framed link L and where, for a given oriented 3-manifold M , the notation −M is used to
denote the same manifold with the opposite orientation. For example L(−k, 1) = −L(k, 1).

Exercise (b). Using the above, compute τC(−L(k, 1)).

If L1, L2 ⊂ S3 are two disjoint, mutually unlinked links (i.e. L1 and L2 can be separated
by a hyperplane in S3 after a suitable ambient isotopy) then it is clear that ML1∪L2 =
ML1#ML2 (the connected sum of ML1 and ML2). Therefore it is easy to see that

Theorem 1.11. For all closed connected oriented 3-manifolds M1 and M2 we have:

(1.7) τC(M1#M2) = ∆τC(M1).τ
C(M2)

Exercise (c). Prove Theorem 1.11.
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3. Tilting modules and modular tensor categories from quantum groups
at root of 1

We have constructed a ribbon category from the ribbon algebra Uq(sl2). In this con-
struction we worked over the field C(q) of rational functions in a formal parameter q. To
construct modular tensor categories we need to specialize the parameter q at a root of 1.
In order to be able to do so, we first of all need to replace the field C(q) by the subring
A = C[q, q−1] in which specializations of q at nonzero complex numbers are well defined.
For Uq(sl2) this is elementary, we just take the A-subalgebra UA of Uq(sl2) generated by
E,F,K±1 and [K; 0] (see [2, Chapter 4, Section 4]).

Proposition 0.1. Let ε be a complex primitive l-th root of 1, where l is odd. Define
uε = UA ⊗A Cε, where Cε denotes the one dimensional complex A-module in which q acts
as multiplication by ε. The ribbon algebra structure of Uq(sl2) gives rise to the structure of
an abelian ribbon category on the category of finite dimensional modules of uε.

Proof. See [2, Chapter 7, Proposition 3.1]. �

There are finitely many finite dimensional irreducible representations Lε(λ) of uε. These
are parameterized by their highest weights λ ∈ {0, ρ, 2ρ, . . . , (l−1)ρ}. For our purpose the
most important irreducible uε-modules are the irreducible “tilting modules”, which are the
Lε(λ) with λ ∈ {0, ρ, 2ρ, . . . , (l − 2)ρ}. These irreducible tilting modules are simply the
specializations at q = ε of the finite dimensional modules of the generic algebra Uq(sl2) with
the same highest weight, in the following sense. There exist modules LA(λ) (with λ in the
above range) of UA which are free as A-modules and such that LA(λ)⊗ACq = Lε(λ) on the
one hand, while on the other hand LA(λ) ⊗A C(q) = L(λ), the corresponding irreducible
over Uq(sl2).

The Lε(λ) are the irreducible objects of the category of tilting modules of uε, which are
by definition modules of uε which admit certain types of filtrations. The importance of
the category of tilting modules in the theory of modular tensor categories was stressed by
the work of the Danish mathematician H.H. Andersen, who worked out their fundamental
properties in great generality (working with general simple Lie algebras and more general
fields of definition). The tilting modules have the important property that tensor products
of tilting modules are tilting, and summands of tilting modules are tilting. Moreover, the
indecomposable tilting modules are parameterized by the set of dominant weights (in our
situation the set Z≥0ρ). Finally it was shown by Andersen that indecomposable tilting
modules whose hightest weight is above a certain level (in our case (l − 2)ρ) have the
property that the quantum trace of all their endomorphisms is zero (while the irreducible
tilting modules with highest weight below this level all have nonzero quantum dimensions).
These results show that one can form a semisimple “reduced” tensor category with finitely
many simple objects, namely the irreducible tilting modules described above, by defining
the reduced tensor product of two tilting modules to be the quotient of the ordinary tensor
product by the submodule which is the direct sum of all indecomposable tilting submodules
with quantum dimension zero. This turns out to be a modular tensor category in the sense
of Reshetikhin and Turaev.
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There are many details to this story. We refer the interested reader to the original papers
by Andersen for further reading.
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