
QUANTUM GROUPS AND KNOT THEORY LECTURE: WEEK 48

This week in class we treat quantum traces and dimensions in general ribbon categories
(from the syllabus of week 47, see also [2, Chapter 6]) and we define the general notion of
ribbon algebras and discuss how these give rise relation to ribbon categories. This material
will be used in later to give some important explicit constructions of ribbon categories. The
syllabus of this week 48 contains material that is not covered in [2] (in particular, this week
the numbering of the syllabus does not refer to [2]). A good source for additional reading
is [1].

1. Ribbon algebras and ribbon categories

1. Recollection of some results for braided Hopf algebras. Let k be a field and let
A = (A, µ, η,∆, ε, R) be a braided bi-algebra a over k with universal R-matrix R ∈ A⊗A.
Let ModA denote the category of A-modules, i.e. the category whose objects are A-
modules and whose morphisms are A-linear maps between A-modules. Let Modf

A be the
full subcategory whose objects are the A-modules which are finite dimensional as a k-vector
space. Recall from Week 41 that we can equip Modf

A with the structure of a braided tensor
category where

(1) The monoidal structure of the category Modf
A is given by the the monoidal struc-

ture of the underlying category of vector spaces (in particular, it is not strict).
(2) The commutativity constraint (or braiding) c is given by the natural family of A-

module isomorphisms cV,W : V ⊗W → W ⊗ V (where V,W are f.d. A-modules)
defined by:

cV,W : V ⊗W → W ⊗ V
v ⊗ w → τ(R(v ⊗ w))

Here τ denotes the flip of the two tensor legs as usual, and the action of A⊗A on
V ⊗W is defined by (a⊗ b)(v ⊗ w) = av ⊗ bw.

Hence, if R =
∑

i si ⊗ ti ∈ A⊗ A then

(1.1) cV,W (v ⊗ w) =
∑
i

tiw ⊗ siv

Next assume that A is a braided Hopf algebra with invertible antipode S (as in week 41).
We introduced in week 41 the element u ∈ A by

(1.2) u :=
∑
i

S(ti)si ∈ A
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and proved that u is invertible with inverse

(1.3) u−1 =
∑
i

S−1(ti)S(si)

and the property that S2(a) = uau−1 for all a ∈ A. As a consequence (see week 41,
Corollary 2.6), the element D = uS(u) = S(u)u is central in A. Recall week 41, Proposition
2.7:

Proposition 1.1. (a) ε(u) = 1.
(b) ∆(u) = (R2,1R)−1(u⊗ u) = (u⊗ u)(R1,2R)−1.
(c) ∆(S(u)) = (R2,1R)−1(S(u)⊗ S(u)) = (S(u)⊗ S(u))(R2,1R)−1.
(d) ∆(D) = (R2,1R)−2(D ⊗D) = (D ⊗D)(R1,2R)−2.

The elements u and D of A play an important role in the next paragraph on duality and
twist in Modf

A.

1.1. Ribbon algebras and ribbon categories. Assume that A = (A, µ, η,∆, ε, R, S) is a
braided Hopf algebra with universal R-matrix R and invertible antipode S as above. We
call such algebra also a ribbon algebra, because the category Modf

A of finite dimensional
A-module, which is a braided monoidal category as we saw above, can be equipped with
the structure of a ribbon category as we discussed in week 47. This is done as follows:

Let C be the (braided) monoidal category Modf
A of finite dimensional modules over A.

Definition 1.2. If V,W ∈ C we define an A-module structure on Homk(V,W ) as follows:

(1.4) af(v) :=
∑
(a)

a′f(S(a′′)v)

Exercise (a). Prove that this defines an A-module structure on Homk(V,W ).

In the special case V ∗ = Homk(V, k) the A-action simplifies to aφ = φ ◦m(S(a)):

aφ(v) =
∑
(a)

ε(a′)φ(S(a′′)v)

= φ(S(
∑
(a)

ε(a′)a′′)v)

= φ(S(a)v)

In fact the A-action on Homk(V,W ) of Definition 1.2 is just the A action on W⊗V ∗ viewed
via the usual vector space isomorphism between W ⊗ V ∗ and Homk(V,W ) (NB: here we
use the assumption that V is finite dimensional!) according to the following:

Proposition 1.3. The vector space isomorphism

λVW : W ⊗ V ∗ → Homk(V,W )

w ⊗ φ→ {v → φ(v)w}
is A-linear.
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Exercise (b). Prove Proposition 1.3

Definition 1.4. Let V ∈ C and let (vi)
n
i=1 be a k-bases for V . Let (vi)ni=1 denote the dual

bases of V ∗. Define a k-linear map bV : k → V ⊗ V ∗ by

bV (1) =
n∑

i=1

vi ⊗ vi

(extended to k by linearity) and a k-linear map dV : V ∗ ⊗ V → k by

dV (φ⊗ v) = φ(v)

Theorem 1.5. The maps bV and dV are A-linear and the triple (∗, bV , dV ) is a left duality
on C.

Proof. We first remark that bV and dV well defined. The expression for bV (1) is independent
of the basis (vi) of V , which can for example be seen by the remark that

(1.5) λVV (
n∑

i=1

vi ⊗ vi) = idV

The description of dV uses the universal property of tensor products of vector spaces (see
week 40): dV is the unique k-linear map such that the bilinear map V ∗ × V → k given by
(φ, v)→ φ(v) is equal to (φ, v)→ dV (φ⊗ v).

Next we show that bV , dV are A-linear. In the case of bV this means that we need to
show that abV (1) = bV (a.1) = ε(a)bV (1). In order to show this we use equation (1.5)
and Proposition 1.3. This reduces our task to showing that idV ∈ EndV (with A-module
structure given by Definition 1.2) satisfies aidV = ε(a)idV . Indeed, for all v ∈ V we have

(aidV )(v) =
∑
(a)

a′idV (S(a′′)v)

=
∑
(a)

a′S(a′′)v = ε(a)v = (ε(a)idV )(v)

by definition of the antipode S.
The A-linearity of dV follows from a direct computation:

dV (a(φ⊗ v)) = dV (
∑
(a)

φ ◦m(S(a′))⊗ a′′v)

=
∑
(a)

φ(S(a′)a′′v)

= φ(
∑
(a)

S(a′)a′′v)

= ε(a)φ(v)
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Finally we need to show that the triple (∗, bV , dV ) forms a left duality. Recall from week
47 that in a strict monoidal category this means that the following identities hold for all
V ∈ C:

(idV ⊗ dV )(bV ⊗ idV ) = idV(1.6)

(dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗

Since we have already shown that bV and dV are A-linear with the usual A-module struc-
tures on the tensor products and duals it suffices simply to show that (∗, bV , dV ) satisfies
(1.6) in the category of finite dimensional vector spaces. This follows from a simple direct
computation, but before we go into this computation we need to make a remark at this
point. Strictly speaking the identities (1.6) are not true in the category of finite dimen-
sional vector spaces (or C for that matter) since this is a monoidal category which is not
strict. This has the effect that we need to correct the strict versions (1.6) of the left duality
axioms by inserting appropriate unit and associativity constraints of Vectk in order for
these identities to be admissible compositions of morphisms. Two remarks are in order
here. First of all, a priori there could be many essentially different ways to insert unit and
associativity constraints to get an admissible composition of morphisms. Fortunately this
is not the case. All possible admissible compositions of identities, unit and associativity
constraints from V to W (with V,W aribtrary objects in a monoidal category) give the
same morphism, as a result of Mac Lane’s coherence theorem (see week 40, and [1, Sec-
tion XI.5]). For example, Mac Lane’s theorem implies that there is only one morphism
V → k ⊗ V which can be built from identities and unit and associativity constraints
(namely l−1V ). The second remark is that we can do this in fact inside C, as we know that
the unit and associativity constraints of Vectk are A-linear (this is part of Theorem 1.1 of
Week 41). After all these “ifs and buts” let us now finally do the computation. We show
only the first identity, leaving the second one to the reader:

rV (idV ⊗ dV )aV,V ∗,V (bV ⊗ idV )l−1V (v) = rV (idV ⊗ dV )aV,V ∗,V (bV ⊗ idV )(1⊗ v)

= rV (idV ⊗ dV )aV,V ∗,V (
n∑

i=1

(vi ⊗ vi)⊗ v)

= rV (idV ⊗ dV )(
n∑

i=1

vi ⊗ (vi ⊗ v))

= rV (
n∑

i=1

vi ⊗ vi(v))

=
n∑

i=1

vi(v)vi

= v

�

The issue of the non-strictness of C will be mostly ignored in the rest of this syllabus.
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1.2. Twisting elements. Finally we add the last bit of structure to A in order to make A
a ribbon algebra:

Definition 1.6. A ribbon algebra A over a field k is a braided Hopf algebra over k with
invertible antipode and a central, invertible “twisting element” θ ∈ A such that the following
relations are satisfied:

(1.7) ∆(θ) = (R2,1R)−1(θ ⊗ θ), ε(θ) = 1, and S(θ) = θ

where R denotes the universal R-matrix, ε the co-unit, and S the antipode of A.

The main result on ribbon algebras is that they produce ribbon categories:

Theorem 1.7. (see [1, Propositin XIV.6.2]) Let A be a ribbon algebra over a field k. Then

the category C = Modf
A of finite dimensional A-modules is a ribbon category whose ribbon

structure is defined as follows:

(a) As a monoidal category C is a monoidal subcategory of Vectk, where the A-module
structure of V ⊗W is given by a(v ⊗ w) = ∆(a)(v ⊗ w).

(b) The left duality (∗, b, d) is the restriction to C of the usual left duality in the category

Vectfk of finite dimensional vector spaces. Here the A-module action on V ∗ is
defined by aφ(v) := φ(S(a))v.

(c) The braiding cV,W : V ⊗W → W⊗V is the natural family of A-linear isomorphisms
defined by cV,W (v ⊗ w) := τ(R(v ⊗ w)).

(d) The twist θV : V → V is the natural family of A-linear isomorphisms that is defined
by θV (v) := θ−1v (notice the inverse!).

Proof. We have already shown that the structures defined in (a)-(c) satisfy the required
axioms to justify their naming. We now must show that θV satisfies the axioms of a twist,
and that the duality and the twist are compatible.

It is clear that the family of isomorphisms θV is A-linear, because θ−1 is an element of
the center of A. The family {θV }V of isomorphisms is natural because the application of
θ−1 ∈ A obviously commutes with the application of any A-linear map defined on V . The
twist property follows from:

(θV ⊗ θW )cW,V cV,W (v ⊗ w) = (θ−1 ⊗ θ−1)(R2,1R)(v ⊗ w)

= ∆(θ−1)(v ⊗ w) = θV⊗W (v ⊗ w)

Finally we need to show that the twist is compatible with the duality, i.e. we need to show
that θ∗V = θV ∗ . Notice that because of (b), the transpose f ∗ : W ∗ → V ∗ of a morphism
f : V → W in C is simply its transpose as a k-linear map. Let V ∈ C with φ ∈ V ∗ and
v ∈ V .

θ∗V (φ)(v) = φ(θV (v)) = φ(θ−1v)

= φ(S(θ−1)v) = (θ−1φ)(v) = (θV ∗φ)(v)

whence θ∗V = θV ∗ . This finishes the proof. �

Corollary 1.8. Let A be a ribbon algebra. Then the graphical calculus (see week 47) applies
to C (or strictly speaking, to its strictification).
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1.3. The square of the twist and the quantum trace in C. We retain the assumptions that
C is the ribbon category of finite dimensional modules over a ribbon algebra A over k.

Theorem 1.9. The element θ2 ∈ A acts in objects of C as multiplication by the central
element D = uS(u) ∈ A.

Proof. By graphical calculus in C we have for any V ∈ C (we intentionally omit non-strict
structural information like brackets, unit constraints, associators etc.; these can be added
in a unique way):

(1.8) φ−2V = (idV ⊗ dV )(idV ⊗ cV,V ∗)(c−1V,V ⊗ idV ∗)(idV ⊗ bV )

Indeed, the proof is Figure 1. We compute the action of the right hand side of this identity

θ−2
V

V

V

.
=

V

.
=

V

Figure 1. Graphical formula for θ−2V
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on v ∈ V :

(idV ⊗ dV )(idV ⊗ cV,V ∗)(c−1V,V ⊗ idV ∗)(idV ⊗ bV )(v)

= (idV ⊗ dV )(idV ⊗ cV,V ∗)(c−1V,V ⊗ idV ∗)(
∑
i

v ⊗ vi ⊗ vi)

= (idV ⊗ dV )(idV ⊗ cV,V ∗)(τV,V (m⊗m)(idA ⊗ S)(R2,1)⊗ idV ∗)(
∑
i

v ⊗ vi ⊗ vi)

= (idV ⊗ dV )(idV ⊗ cV,V ∗)(
∑
i,j

S(sj)vi ⊗ tjv ⊗ vi)

= (idV ⊗ dV )(
∑
i,j,k

S(sj)vi ⊗ tkvi ⊗ sktjv)

= (idV ⊗ dV )(
∑
i,j,k

S(sj)vi ⊗ (vi ◦m(S(tk)))⊗ sktjv) =
∑
i,j,k

vi(S(tk)sktjv))S(sj)vi

=
∑
i,j,k

S(sj)(v
i(S(tk)sktjv))vi) =

∑
j,k

S(sj)S(tk)sktjv =
∑
j

S(sj)utjv

=
∑
j

S(sj)S
2(tj)uv =

∑
j

S(S(tj)sj))uv = S(u)uv = uS(u)v

�

Remark 1.10. If A is not finite dimensional it does not follow that θ2 = D in A.

Proposition 1.11. (see [1, Proposition XIV.6.4]) Let A be a ribbon algebra over k and
let C be the ribbon category of finite dimensional modules over A. Let V ∈ C, and let
f ∈ EndC(V ). Then

(1.9) trC(f) := trk(v → θ−1uf(v))

where trk refers to the usual trace in the category of finite dimensional vector spaces over
the ground field k. In particular, the quantum dimension of V ∈ C is the vector space trace
of the action of the element θ−1u in V .

Proof. We have by definition (see Figure 10, week 47):

(1.10) trC(f) = d−V (f ⊗ idV ∗)bV

Looking at Figure 19 of week 47 and using the functor F we see that

(1.11) d−V = dV cV,V ∗(φV ⊗ idV ∗)
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so that

trC(f) = dV cV,V ∗(φV f ⊗ idV ∗)bV = dV (
∑
i

cV,V ∗(θ−1f(vi)⊗ vi))

= dV (
∑
i,j

(tjv
i ⊗ sjθ−1f(vi))) = dV (

∑
i,j

(vi ◦m(S(tj))⊗ sjθ−1f(vi)))

=
∑
i,j

vi(S(tj)sjθ
−1f(vi)) =

∑
i

vi(uθ−1f(vi)) = trk(v → θ−1uf(v))

�

Exercise (c). Let A be a finite abelian group (with group operation + and with unit
element 0) and let k be a field. Let Funk(A) be the Hopf algebra of k-valued functions
on A, i.e. the Hopf algebra which is dual to the group algebra k[A]. Explicitly the Hopf
algebra structure of Funk(A) is given as follows. For x ∈ A write δx ∈ Funk(A) for the
function on A with value one at x and zero elsewhere. The multiplication in Funk(A) is
pointwise multiplication, hence given by δaδb = δa,bδa. The co-multiplication is given by
∆(f) =

∑
x,y∈A f(x+y)δx⊗δy. The unit element is 1 =

∑
x∈A δx and the co-unit ε is given

by ε(f) = f(0). Finally the antipode S is given by S(f)(x) = f(−x).

(1) Show that Funk(A) is a braided Hopf algebra with universal R-matrixR ∈ Funk(A)⊗
Funk(A) if and only if

(1.12) R =
∑
a,b∈A

γ(a, b)δa ⊗ δb

satisfies γ(a, b) ∈ k× for all a, b ∈ A, and moreover γ : A×A→ k× is a bi-character
of A, i.e.

γ(a+ a′, b) = γ(a, b)γ(a′, b), γ(a, b+ b′) = γ(a, b)γ(a, b′)

for all a, a′, b, b′ ∈ A.
(2) Let χ : A → k× be a character (i.e. a group homomorphism from A to the mul-

tiplicative group k× of k). Assume that χ(x)2 = 1 for all x ∈ A. Prove that
θ =

∑
x∈A χ(x)γ(x,−x)δx gives Funk(A) the structure of a ribbon algebra.

(3) Let C be the ribbon category of finite dimensional modules over Funk(A). Consider
the one-dimensional module Va ∈ C of Funk(A) defined by setting Va = k as a k-
vector space, with Funk(A)-action given by f1 = f(a). Prove that dimC(Va) = χ(a).
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