
QUANTUM GROUPS AND KNOT THEORY: WEEK 47

This week we treat the first 2 sections of Chapter 6 of [1]. We give additional proofs and
definitions (our paragraph numbering refers to the numbering in [1]). A good additional
source for this material is [2, Chapter 1].

1. From Ribbon categories to topological invariants of links

1. Ribbon categories.

1.1. Duality in monoidal categories. A left duality ∗ in a strict monoidal category C =
(C,⊗, I) is a function V → V ∗ on Obj(C) together with morphisms bV : I → V ⊗ V ∗ and
dV : V ∗ ⊗ V → I (called co-evaluation and evaluation respectively) such that for all V :

(idV ⊗ dV )(bV ⊗ idV ) = idV(1.1)

(dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗(1.2)

Proposition 1.1. Given a morphism f : U → V in C we define its transpose f ∗ : V ∗ → U∗

by

(1.3) f ∗ := (dV ⊗ idU∗)(idV ∗ ⊗ f ⊗ idU∗)(idV ∗ ⊗ bU)

This gives rise to a functor ∗ : C → Cop.

Proof. It is easy to check that id∗V = idV ∗ . Let f : V → W and g : U → V . Then

(fg)∗

=(dW ⊗ idU∗)(idW ∗ ⊗ fg ⊗ idU∗)(idW ∗ ⊗ bU)

=(dW ⊗ idU∗)(idW ∗ ⊗ f ⊗ idU∗)(idW ∗ ⊗ idV ⊗ idU∗)(idW ∗ ⊗ g ⊗ idU∗)(idW ∗ ⊗ bU)

=(dW ⊗ idU∗)(idW ∗ ⊗ f ⊗ idU∗)(idW ∗ ⊗ idV ⊗ dV ⊗ idU∗)

(idW ∗ ⊗ bV ⊗ idV ⊗ idU∗)(idW ∗ ⊗ g ⊗ idU∗)(idW ∗ ⊗ bU)

=(dW ⊗ idU∗)(idW ∗ ⊗ idW ⊗ dV ⊗ idU∗)(idW ∗ ⊗ f ⊗ idV ∗ ⊗ idV ⊗ idU∗)

(idW ∗ ⊗ idV ⊗ idV ∗ ⊗ g ⊗ idU∗)(idW ∗ ⊗ bV ⊗ idU ⊗ idU∗)(idW ∗ ⊗ bU)

=(dW ⊗ idU∗)(idW ∗ ⊗ idW ⊗ dV ⊗ idU∗)(idW ∗ ⊗ idW ⊗ idV ∗ ⊗ g ⊗ idU∗)

(idW ∗ ⊗ f ⊗ idV ∗ ⊗ idU ⊗ idU∗)(idW ∗ ⊗ bV ⊗ idU ⊗ idU∗)(idW ∗ ⊗ bU)

=(dV ⊗ idU∗)(idV ∗ ⊗ g ⊗ idU∗)(idV ∗ ⊗ bU)(dW ⊗ idV ∗)(idW ∗ ⊗ f ⊗ idV ∗)(idW ∗ ⊗ bV )

=g∗f ∗

�
1
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Proposition 1.2. There exists a natural family of isomorphisms λU,V : V ∗⊗U∗ → (U⊗V )∗

(i.e. a natural isomorphisms λ : ⊗ ◦ (∗ × ∗) ◦ τ → ∗ ◦ ⊗) given by

(1.4) λU,V := (dV ⊗ id(U⊗V )∗)(idV ∗ ⊗ dU ⊗ idV ⊗ id(U⊗V )∗)(idV ∗ ⊗ idU∗ ⊗ bU⊗V )

with inverse µU,V : (U ⊗ V )∗ → V ∗ ⊗ U∗ given by

(1.5) µU,V := (dU⊗V ⊗ idV ∗ ⊗ idU∗)(id(U⊗V )∗ ⊗ idU ⊗ bV ⊗ idU∗)(id(U⊗V )∗ ⊗ bU)

Proof. We (unhappily) compute

λU,V µU,V

=(dV ⊗ id(U⊗V )∗)(idV ∗ ⊗ dU ⊗ idV ⊗ id(U⊗V )∗)(idV ∗ ⊗ idU∗ ⊗ bU⊗V )

(dU⊗V ⊗ idV ∗ ⊗ idU∗)(id(U⊗V )∗ ⊗ idU ⊗ bV ⊗ idU∗)(id(U⊗V )∗ ⊗ bU)

=(dV ⊗ id(U⊗V )∗)(idV ∗ ⊗ dU ⊗ idV ⊗ id(U⊗V )∗)(idI ⊗ idV ∗ ⊗ idU∗ ⊗ bU⊗V )

(dU⊗V ⊗ idV ∗ ⊗ idU∗ ⊗ idI)(id(U⊗V )∗ ⊗ idU ⊗ bV ⊗ idU∗)(id(U⊗V )∗ ⊗ bU)

=(dV ⊗ id(U⊗V )∗)(idV ∗ ⊗ dU ⊗ idV ⊗ id(U⊗V )∗)(dU⊗V ⊗ idV ∗ ⊗ idU∗ ⊗ idU⊗V ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ idU⊗V ⊗ idV ∗ ⊗ idU∗ ⊗ bU⊗V )(id(U⊗V )∗ ⊗ idU ⊗ bV ⊗ idU∗)(id(U⊗V )∗ ⊗ bU)

=(dU⊗V ⊗ id(U⊗V )∗)(id(U⊗V )∗ ⊗ idU ⊗ idV ⊗ dV ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ idU ⊗ idV ⊗ idV ∗ ⊗ dU ⊗ idV ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ idU ⊗ bV ⊗ idU∗ ⊗ idU ⊗ idV ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ bU ⊗ idU ⊗ idV ⊗ id(U⊗V )∗)(id(U⊗V )∗ ⊗ bU⊗V )

=(dU⊗V ⊗ id(U⊗V )∗)(id(U⊗V )∗ ⊗ idU ⊗ idV ⊗ dV ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ idU ⊗ bV ⊗ idV ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ idU ⊗ dU ⊗ idV ⊗ id(U⊗V )∗)

(id(U⊗V )∗ ⊗ bU ⊗ idU ⊗ idV ⊗ id(U⊗V )∗)(id(U⊗V )∗ ⊗ bU⊗V )

=(dU⊗V ⊗ id(U⊗V )∗)(id(U⊗V )∗ ⊗ bU⊗V )

=id(U⊗V )∗

In a similar fashion one shows that µU,V λU,V = idV ∗⊗U∗ .
The naturality of λU,V and µU,V can be shown as well, but we will postpone this until

we have more efficient tools at our disposal (see Remark 2.13). �

The above computations show, if anything, that we are in desperate need of a more
efficient language to do calculations in monoidal categories. Please don’t panic! We will
soon develop a powerful graphical notation for computations such as the ones above (and
much worse cases...).

Exercise (a). Show that

(idU⊗V ⊗ µU,V )bU⊗V = (idU ⊗ bV ⊗ idU∗)bU

and
dU⊗V (λU,V ⊗ idU⊗V ) = dV (idV ∗ ⊗ dU ⊗ idV )
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1.2. Twist in braided monoidal categories.

1.3. Ribbon categories. A ribbon category is a strict monoidal category C together with
braiding, a twist θ, and a (left) duality (∗, b, d) which is compatible with the braiding and
twist in the sense that it satisfies for any object V in C:
(1.6) (θV ⊗ idV ∗)bV = (idV ⊗ θV ∗)bV
This compatibility is equivalent to saying that (θV )∗ = θV ∗ . Indeed, suppose that (θV )∗ =
θV ∗ . Then

(θV⊗idV ∗)bV

=(idV ⊗ dV ⊗ idV ∗)(bV ⊗ idV ⊗ idV ∗)(θV ⊗ idV ∗)bV

=(idV ⊗ dV ⊗ idV ∗)(idV ⊗ idV ∗ ⊗ θV ⊗ idV ∗)(bV ⊗ idV ⊗ idV ∗)bV

=(idV ⊗ dV ⊗ idV ∗)(idV ⊗ idV ∗ ⊗ θV ⊗ idV ∗)(idV ⊗ idV ∗ ⊗ bV )bV

=(idV ⊗ (θV )∗)bV

=(idV ⊗ θV ∗)bV
Exercise (b). Prove the converse implication, i.e. show that the compatibility relation
(1.6) implies that (θV )∗ = θV ∗.

A crucial consequence of the axioms of a ribbon category is the fact that there exists a
“right duality” (∗, d−, b−) as well. In turn this implies that the duality is in fact contravari-
ant functorial and involutive. We postpone the discussion of these matters to paragraph
2.3.

1.4. Traces and dimensions; [1, Lemma 1.4.1]. The mentioned results on traces and dimen-
sions, and in fact also all definitions in this paragraph are typical applications of the so
called “graphical calculus” for ribbon categories. This graphical calculus is one of the ap-
plications of the Reshetikhin-Turaev functor F constructed in the next section. Therefore
we must postpone [1, Lemma 1.4.1] until we understand the graphical calculus.

2. The Reshetikhin-Turaev functor F .

2.1. Directed colored ribbon graphs. Recall the notion of a framed tangle (or ribbon tangle).
We say a ribbon tangle is directed if the framed arcs and links in the tangle are oriented.
We add to this notion of framed, directed tangles an additional ingredient called coupons. A
coupon is the image of a smooth embedding of I×I in R2×(0, 1), remembering orientation
and remembering which one of the 4 edges of its boundary rectangle is the bottom edge.
Finally each coupon comes with two finite sets of distinguished points called connectors,
one located on the bottom edge and the other on the top edge. We order the set of bottom
connectors by the orientation (so counterclockwise) and the set of top connectors by the
opposite orientation (clockwise).

A directed k, l ribbon graph G in R2 × I is a finite union of ribbon arcs, ribbon knots
and coupons such that:

(1) The arcs and knots are directed.
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(2) Each knot is disjoint from the rest of G.
(3) Each open arc (the arc without its endpoints) is disjoint from the rest of G.
(4) The intersection of G and R2 × {0} is the usual set of k tangle bottom connectors,

and the intersection with R2×{1} is the usual set of l tangle top connectors. Each
such connector is glued to precisely one endpoint of one arc of G, such that the
framing vector of the arc is (0,−1, 0) at the end point (the upward normal vector,
if the blackboard is the xz-plane).

(5) Each connector of a coupon is glued to precisely one end point of one arc, in such
a way that the framing vector at the connecting point is the positive unit normal
vector of the coupon.

(6) All end points of all arcs are connected in this way, either to a tangle type connector
or to a coupon connector.

In particular, a directed ribbon graph without coupons is just a directed ribbon tangle.

Definition 2.3. Let C be a ribbon category. A k, l C-colored ribbon graph G is a directed
k, l ribbon graph in which all knots and arcs of G are labelled by an object of C, and all
coupons C of G are labelled by a morphism of C as follows: Suppose that C is of type m,n,
i.e. C has m bottom and n top connectors. Then C is colored by a morphism

(2.1) f : V ε1
1 ⊗ · · · ⊗ V εm

m → W δ1
1 ⊗ · · · ⊗W δn

n

in C, where Vi denoted the color of the arc connecting to the i-th bottom connector of C, Wj

is the color of the arc connecting to the j-th top connector of C, and the signs εi, δj ∈ {±1}
are positive iff the strand is directed down (i.e. from top to bottom) w.r.t the connector.
Here the notation V ±1 is defined by V +1 := V , V −1 = V ∗.

An example of a C-colored coupon:

(2.2) f

VOO�� UTOOSOO

YOO�� XWOO

which is an admissible coloring provided that

(2.3) f : S∗ ⊗ T ∗ ⊗ U ⊗ V ∗ → W ∗ ⊗X ⊗ Y ∗

is a morphism in C. We call a C-colored ribbon graph which consists only of a C-colored
coupon (without any further knotting, linking or twisting) such as in (2.2) an elementary
C-colored ribbon graph. Observe that f can also be the color of coupons with other shapes
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e.g.

(2.4) f

�� W ∗⊗X⊗Y ∗

�� S∗⊗T ∗⊗U⊗V ∗

or that upward oriented arcs can be reversed, at the cost of flipping the colors of these
strands to their duals. For instance the following diagram is also a possible coloring:

(2.5) f

�� V ∗�� U�� T ∗�� S∗

�� Y ∗�� X�� W ∗

There is an obvious notion of isotopy of C-colored ribbon graphs.

The categories of colored framed tangles and graphs. We now start viewing the isotopy
classes C-colored ribbon graphs as morphisms of a strict monoidal category.

Definition 2.4. Let T GC be the category whose objects are ordered finite sequences of ordered
pairs (V, ε) consisting of an object V of C and a sign ε ∈ {±1}, and whose morphisms are
described as follows: Let b := ((V1, ε1), . . . , (Vk, εk)) and t := ((W1, δ1), . . . , (Wl, δl)) be
objects. Then the set of morphisms HomTCG (s, t) is the set of isotopy classes of C-colored
k, l ribbon graphs such that at each tangle connector the color of the connecting arc matches
the object attached to the connector (i.e. the color of the strand connecting to the i-th bottom
connector is Vi, and the color of the strand connecting to the j-th top connector is Wj),
and the direction of the connecting strand matches the sign at the corresponding connector
in the sense that downward oriented strands correspond to + signs, and upward strands to
− signs.

The composition S ◦T of two C-colored ribbon graphs is given by taking the isotopy class
of the colored ribbon graph obtained by putting S on top of T (and shrinking the vertical
size by a factor 2).

The identity morphism of ((V1, ε1), . . . , (Vk, εk)) is given by k vertical strands such that
the i-the strand (connecting (i, 0, 0) to (i, 0, 1)) has color Vi, and is oriented downwards if
εi = +1 and upwards if εi = −1.

The following proposition is an obvious generalization of earlier results on the braid- and
tangle categories.
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Proposition 2.5. This defines a category T GC which is strict monoidal with respect to
the tensor product defined on the level of objects by concatenation, and on the level of the
morphisms by horizontal juxtaposition (as in the usual tangle category T ). The tensor unit
is the empty sequence.

2.2. The RT-representation theorem. We now present a proof of the main theorem, the
Reshetikhin-Turaev representation theorem. For this proof it is of crucial importance to
have a good representation by means of generators and relations (in the sense of the syllabus
of week 46) of the strict monoidal category T GC . This is done in the Appendix. You are
invited to first read from the Appendix the definition of the set of RT generators (Definition
2.25), the set of RT-relations (Definition 2.27), and the read (at least) the statement of
Theorem 2.28. For the remaining notations we refer to [1, Chapter 6, Section 2.1].

Theorem 2.6. ([1, Chapter 6, Theorem 2.2], [2, Chapter 1]) Let C be a strict ribbon
category with braiding c, twist θ, and duality (∗, b, d). There exists a unique strict tensor
functor F : T GC → C satisfying the following conditions:

(1) For all objects V of C: F ((V,+1)) = V and F ((V,−1)) = V ∗.
(2) The F -image of an elementary C-colored ribbon graph with coupon colored by f is

equal to f .
(3) For all objects V,W of C we have

F (X+
V,W ) = cV,W , F (φV ) = θV , F (∪V ) = bV , F (∩V ) = dV

The functor F has the following properties:

(2.6)

F (X−V,W ) = c−1W,V F (Y +
V,W ) = c−1W,V ∗ F (Y −V,W ) = cV ∗,W

F (Z+
V,W ) = c−1W ∗,V F (Z−V,W ) = cV,W ∗ F (T+

V,W ) = cV ∗,W ∗

F (T−V,W ) = c−1W ∗,V ∗ F (φ′V ) = θ−1V

Proof. Using Theorem 2.28 (see the Appendix) and Theorem 4.24 of week 46 we see that
a strict tensor functor from T GC to C is uniquely determined by assigning the images of the

RT-generators GG,RT
C in such a way that images of the RT-relations RG,RT

C are valid in the
target strict monoidal category C.

We are not given a prescription for the F -image the X−, φ′V and Z-generators, but by

RT-relations RG,RT
C (d)(e)(g) it is clear that if there exists such a strict tensor functor F then

F (X−V,W ), F (Z±V,W ) and F (φ′V ) are determined by the images of the other RT-generators.
This observation proves the uniqueness of F .

In order to establish the existence we first need to extend F to the complete set of RT-
generators, and then prove that the images of the RT-relations hold with these assignments.
We extend F to all the RT-generators by declaring:

(2.7) F (X−V,W ) = c−1W,V , F (Z+
V,W ) = c−1W ∗,V , F (Z−V,W ) = cV,W ∗ , F (φ′V ) = θ−1V

in addition to the assertions (1),(2) and(3) of the Theorem. Now we verify the validity of

the RT-relations RG,RT
C (a)− (k) after mapping these to C as described in Theorem 4.24 of

week 46.
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(a) This is the Yang-Baxter equation for the braiding c of C (see Chapter 2, Theorem
3.3).

(b) This is a defining property of the duality of C.
(c) This is a defining property of the duality of C.
(d) This follows from (2.7).
(e) This follows from (2.7).
(f) This follows from the naturality of the braiding.
(g) Recall that cV,I = cI,V = idV for all V ∈ C. Hence the naturality of c implies that

V ⊗ I idV //

idV ⊗bW
��

I ⊗ V
bW⊗idV
��

V ⊗W ⊗W ∗
cV,W⊗W∗

// W ⊗W ∗ ⊗ V

or, using the braiding property of c,

(bW ⊗ idV ) = (idW ⊗ cV,W ∗) ◦ (cV,W ⊗ idW ∗) ◦ (idV ⊗ bW )

Using this equality we compute (following Theorem 4.24 of week 46)

F (Z−V,W ) ◦
(
(F (∩W )⊗ idV ⊗ idW ∗) ◦ (idW ∗ ⊗ F (X+

V,W )⊗ idW ∗) ◦ (idW ∗ ⊗ idV ⊗ F (∪W ))
)

=cV,W ∗ ◦ (dW ⊗ idV ⊗ idW ∗) ◦ (idW ∗ ⊗ cV,W ⊗ idW ∗) ◦ (idW ⊗ idV ⊗ bW )

=(dW ⊗ idW ∗ ⊗ idV ) ◦ (idW ∗ ⊗ idW ⊗ cV,W ∗) ◦ (idW ∗ ⊗ cV,W ⊗ idW ∗) ◦ (idW ⊗ idV ⊗ bW )

=(dW ⊗ idW ∗ ⊗ idV ) ◦ (idW ∗ ⊗ bW ⊗ idV )

=idW ∗ ⊗ idV

We also have the diagram

W ∗ ⊗W ⊗ V
cW∗⊗W,V //

dW⊗idV
��

V ⊗W ∗ ⊗W
idV ⊗dW
��

I ⊗ V
idV

// V ⊗ I

and in a similar way this leads to

((F (∩W )⊗ idV ⊗ idW ∗) ◦ (idW ∗ ⊗ F (X+
V,W )⊗ idW ∗) ◦ (idW∗ ⊗ idV ⊗ F (∪W ))) ◦ F (Z−V,W )

=idV ⊗ idW ∗

Together the last two identities imply that F (Z−V,W ) = cV,W ∗ is the inverse of

(2.8) (F (∩W )⊗ idV ⊗ idW ∗) ◦ (idW ∗ ⊗ F (X+
V,W )⊗ idW ∗) ◦ (idW ∗ ⊗ idV ⊗ F (∪W ))

Analogous computations show that F (Z+
V,W ) = c−1W ∗,V is the inverse of

(2.9) (F (∩W )⊗ idV ⊗ idW ∗) ◦ (idW ∗ ⊗ F (X−V,W )⊗ idW ∗) ◦ (idW ∗ ⊗ idV ⊗ F (∪W ))
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(h) By the naturality and compatibility of θ we have for any V ∈ C
bV = bV ◦ idI = bV ◦ θI = θV⊗V ∗ ◦ bV

= cV ∗,V ◦ cV,V ∗ ◦ (θV ⊗ θV ∗) ◦ bV
= cV ∗,V ◦ cV,V ∗ ◦ (θ2V ⊗ idV ∗) ◦ bV

or
(θ2V ⊗ idV ∗) ◦ bV = c−1V,V ∗ ◦ c

−1
V ∗,V ◦ bV

Hence by the duality axioms we have

θ2V = (idV ⊗ dV ) ◦ (c−1V,V ∗ ⊗ idV ) ◦ (c−1V ∗,V ⊗ idV ) ◦ (bV ⊗ idV )

With F (Z+
V,V ) = c−1V ∗,V and using that we have already shown that the F image of

RG,RT
C (g) is an identity in C (so that c−1V,V ∗ = F (Y +

V ∗,V ) = (dV ⊗ idV ⊗ idV ∗)◦ (idV ∗⊗
F (X+

V,V )⊗ idV ∗) ◦ (idV ∗ ⊗ idV ⊗ bV )) we get

F (φ2
V ) = θ2V

=(idV ⊗ dV ) ◦ (dV ⊗ idV ⊗ idV ∗ ⊗ idV ) ◦ (idV ∗ ⊗ F (X+
V,V )⊗ idV ∗ ⊗ idV )◦

(idV ∗ ⊗ idV ⊗ bV ⊗ idV ) ◦ (F (Z+
V,V )⊗ idV ) ◦ (bV ⊗ idV )

=(dV ⊗ idV ) ◦ (idV ∗ ⊗ idV ⊗ idV ⊗ dV ) ◦ (idV ∗ ⊗ F (X+
V,V )⊗ idV ∗ ⊗ idV )◦

(idV ∗ ⊗ idV ⊗ bV ⊗ idV ) ◦ (F (Z+
V,V )⊗ idV ) ◦ (bV ⊗ idV )

=(dV ⊗ idV ) ◦ (idV ∗ ⊗ F (X+
V,V )) ◦ (idV ∗ ⊗ idV ⊗ idV ⊗ dV )◦

(idV ∗ ⊗ idV ⊗ bV ⊗ idV ) ◦ (F (Z+
V,V )⊗ idV ) ◦ (bV ⊗ idV )

=(dV ⊗ idV ) ◦ (idV ∗ ⊗ F (X+
V,V )) ◦ (F (Z+

V,V )⊗ idV ) ◦ (bV ⊗ idV )

=(F (∩V )⊗ idV ) ◦ (idV ∗ ⊗ F (X+
V,V )) ◦ (F (Z+

V,V )⊗ idV ) ◦ (F (∪V )⊗ idV )

which is what we needed to show.
(i) We have reached the stage that we have checked existence and uniqueness of the

functor F on the full subcategory TC of T GC . Let us now check that the F -images
of the Y and T crossings are as asserted.

The asserted F -values of Y ±V,W follows from the remark that Y ±V,W = (Z∓W,V )−1 in
TC and applying F .

For the asserted F -values of T±V,W it is enough to verify the F -value of T+
V,W (since

T−W,V is its inverse). This value can be checked using the the relation of Figure (18)
implying that in TC:

(2.10) T+
V,W =

(
(dW ⊗ idV ∗ ⊗ idW ∗) ◦ (idW ∗ ⊗ Y −V,W ⊗ idW ∗) ◦ (idW ∗ ⊗ idV ∗ ⊗ bW )

)−1
Now repeat the proof for F (Z−V,W ) (which is part of RG,RT

C ) but with V replaced by

V ∗, using the already established value F (Y −V,W ) = cV ∗,W . This yields the result.
Now we go back to the task at hand, proving the crossing relation (i) for coupons.

If all the strands of the coupon are oriented downwards then this is true by the
naturality of the braiding, since the F -image of the crossings of the top strand
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V1 Vk

Vk VkV1 ⊗ · · · ⊗ Vk−1

.
=

.
=

.
=

V1 ⊗ · · · ⊗ Vk−1

.
=

V1 ⊗ · · · ⊗ Vk

V1 ⊗ · · · ⊗ Vk

θV1⊗···⊗Vk−1

V1 Vk

.
=

Vk−1

idV1⊗···⊗Vk−1

idV1⊗···⊗Vk−1

. . .

. . .. . .

. . .. . .

. . .

θV1⊗···⊗Vk−1

idV1⊗···⊗Vk−1

idV1⊗···⊗Vk−1

. . .

. . .

. . .

.
=

V1 VkVk−1

V1 VkVk−1

Figure 1. The F -image of the right positive downward twist.

with the strands connected to the top of the coupon is (by the braiding property
of c) equal to cV,t(f), and the F -image of the crossing of the top strand with the
strands connected to the bottom of the coupon is equal to cV,s(f) (V the color of
the top strand). We reduce the general case to this case. If necessary we change
the orientation of a strand and replace its color to the dual color. This is allowed
(the coloring of the coupon stays admissible) and the F image of the coupon does
not change. Also the F -images of the crossings do not change, since F (XV,W ∗) =
F (Z−V,W ) = cV,W ∗ . Hence without changing the F -images of both sides we reduce
to the case with all strands oriented downwards.

(j) This is similar to the proof of (i).
(k) If all strands are oriented downwards this follows from the naturality of the twist

θ, since the F -image of the full right hand twist of k strands (see Figure 15) with
downward orientation and color V1, . . . Vk is equal to θV1⊗···⊗Vk , (and hence the F -
image of the full left hand twist is θ−1V1⊗···⊗Vk). Indeed, this is true for k = 1 and by
using induction on k and the definition of a the twist we easily prove this in general
(see Figure 1).

Now we reduce to this case with the same observations as we used for (i) and (j).

�

2.3. Graphical Calculus for ribbon categories. The existence of the Reshetikhin-Turaev
functor F represents a deep insight in the general structure of ribbon categories and their
relation to the topology of ribbon tangles.
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The so called graphical calculus in a ribbon category C exploits F in order to compute
in C. We represent a morphism f in C as the F -image of a C-colored ribbon graph T
say, thus f = F (T ). Furthermore T can be represented by a generic C-colored ribbon
graph diagram D, and we may and will assume that the coupons of D are rectangles with
horizontal and vertical edges, with their faces up and with their bottom edges down. We
may then manipulate T (or better, D) in such a way that its F -value F (T ) does not change.
The basic invariances of F are the following operations on D:

(i) Change D in accordance with an ambient isotopy of T (in R2 × I).
(ii) Use a coupon as a placeholder for a C-colored ribbon sub-graph, by which we

mean the following. Let R = (a, b) × (c, d) ⊂ R × (0, 1) be a rectangle such that
∂(R) ∩ D consists of a finite set of generic points of strands of D (local extrema,
crossings, or points of coupons of D are not allowed) which are all located either
in {c} × (a, b) (the bottom edge of R) or in {d} × (a, b) (the top edge of R). Let
E = R ∩D. Then E can itself be considered as a generic C-colored ribbon graph
diagram (by stretching R in the vertical direction and fitting it in the usual tangle
diagram strip R× [0, 1]), representing a C-colored ribbon graph TE (determined by
E up to isotopy). Then F is invariant for the following operation: we replace the
subdiagram E of D by the rectangle R, now viewed as a coupon which is colored
by the morphism f = F (TE) (or conversely, replace a coupon with color f by
a C-colored ribbon graph subdiagram E drawn inside the coupon such that the
corresponding C-colored ribbon graph TE satisfies f = F (TE)).

(iii) Absorb or create a coupon colored by an identity morphism at the bottom or top
of D, and change the number of strands of top or bottom tangle connectors of D
accordingly.

Indeed, (i) follows because F is an isotopy invariant, and (ii), (iii) follow because F is a
strict tensor functor.

If T, T ′ satisfy F (T ) = F (T ′) we denote this by T
.
= T ′. The equivalence relation

.
= is

referred to as F -equivalence. Manipulating C-colored ribbon graphs using F -equivalences
is called “graphical calculus”. For example graphical calculus was used in Figure 1.

Exercise (c). Explain the F -equivalences of Figure 1 in terms of the basic invariances
of F as mentioned above, together with the induction hypothesis and the definition of the
twist. Explain that these steps do not depend on the assumption that F is invariant for
RG,RT
C (k) (so that the argument is allowed to prove the invariance of F for RG,RT

C (k)).

Let us now show some typical applications of the graphical calculus. First of all, let us
give a graphical proof of Proposition 1.1, namely (fg)∗ = g∗f ∗ (where f : V → W and
g : U → V ):

Definition 2.7. We define the right duality (∗, b−, d−) in C by b−V := F (∪−V ) : I → V ∗⊗V
and d−V := F (∩−V ) : V ⊗ V ∗ → I (see Figures 20 and 19).

By graphical calculus it is obvious that:
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f

g

f

g

f

g

f

g

.
=

.
=

.
=

W
W W

W

U
U U

U

V

V V

Figure 2. Proof of Proposition 1.1

Proposition 2.8. For any object V ∈ C we have:

idV = (d−V ⊗ idV ) ◦ (idV ⊗ b−V )

idV ∗ = (idV ∗ ⊗ d−V ) ◦ (b−V ⊗ idV ∗)

There are easy relations between transpose morphisms and the left and right dualities
of C:

Proposition 2.9. For any morphism f : V → W we have

(f ⊗ idV ∗) ◦ bV = (idW ⊗ f ∗) ◦ bW
(idV ∗ ⊗ f) ◦ b−V = (f ∗ ⊗ idW ) ◦ b−W
dW ◦ (idW ∗ ⊗ f) = dV ◦ (f ∗ ⊗ idV )

d−W ◦ (f ⊗ idW ∗) = d−V ◦ (idV ⊗ f ∗)

Exercise (d). Prove Proposition 2.9 using graphical calculus.

Using Proposition 2.9 it is easy to prove that the right duality defines the same notion
transpose morphisms as was defined before with the left duality:

Corollary 2.10.

(2.11) f ∗ = (idV ∗ ⊗ d−W ) ◦ (idV ∗ ⊗ f ⊗ idW ∗) ◦ (b−V ⊗ idW ∗)

Proposition 2.11. There exists a natural isomorphism α : idC → ∗ ◦ ∗.

Proof. Define α : V → V ∗∗ and βV : V ∗∗ → V by Figure 3. It is easy to see by graphical
calculus that αV and βV are inverse isomorphisms. To show the naturality we need to show
that for morphisms f : V → W we have f ∗∗αV = αWf . This we prove by Proposition 2.9
and graphical calculus (see Figure 4). �
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V

idV ∗

V ∗

αV := F )(

V ∗

idV ∗

V

βV := F )(

Figure 3. The natural isomorphisms between V and V ∗∗.

f∗

V
W ∗

.
= f

W

f∗

W ∗

idV ∗

V

V ∗

.
=

W ∗
f∗

V .
=

idW∗

W
W ∗

f

V

idW∗

W

.
=

V

W ∗

V

W ∗

.
=

f∗∗

αV

f

αW

Figure 4. The naturality of α

Remark 2.12. Using Proposition 2.11 we will from now on identify V and V ∗∗ and f and
f ∗∗. In particular we may change in the graphical calculus the orientation of any strand
(up or down) and at the same time dualize its color, see Figure 5.

Recall the inverse isomorphisms λU,V and µU,V . They can be represented by the graphs
of Figure 6
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W

V

f
.
=

W ∗

V ∗

f

Figure 5. Identification of f and f ∗∗.

idU⊗VidU⊗V

U ⊗ V

U ⊗ V U

U

V

V

Figure 6. Graphs representing λU,V and µU,V respectively

Remark 2.13. By graphical calculus one can prove easily that the family of isomorphisms
λU,V , µU,V of Proposition 1.2 are natural (finishing the proof of Proposition 1.2).

This allows us to identify (U ⊗ V )∗ and V ∗ ⊗ U∗.

Proposition 2.14. Observe that Exercise (a) implies that with this identification,

bU⊗V = (idU ⊗ bV ⊗ idU∗)bU

dU⊗V = dV (idV ∗ ⊗ dU ⊗ idV )

(see Figure 7). In fact we have similar relations for the right dualities and the tensor
product, as is proved for the cap in Figure 8, and as is displayed for the cup in Figure 9.
(The proof of Figure 8 uses the identity Figure 1.)

The quantum trace in C; quantum dimension. Finally we are in the position to prove
[1, Chapter 6, Lemma 1.4.1](!)

Recall the following basic property of strict monoidal categories:

Proposition 2.15. Let C be a strict monoidal category. The monoid of endomorphisms
K := EndC(I) of the tensor unit I is commutative. Moreover if f, g ∈ EndC(I) then we
have f ◦ g = f ⊗ g.

Proof. Let f, g : I → I. Recall that I = I ⊗ I and f = f ⊗ idI = idI ⊗ f . Hence
fg = (f ⊗ idI)(idI ⊗ g) = (idI ⊗ g)(f ⊗ idI) = gf . We also see that fg = f ⊗ g. �

Exercise (e). Give the graphical representation of Proposition 2.15

The following fact is also useful:
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idU⊗V µU⊗V

idU⊗VλU⊗V

U

U

UU

U U

V

V V

V V

V

U ⊗ V

U ⊗ V

.
=

.
=

Figure 7. Left duality and tensor products

idU⊗V λU⊗V idU⊗V λU⊗V

idU⊗VλU⊗V

UU VV

U ⊗ V
U ⊗ V

U ⊗ V

U

U

U

V

UV

.
=

.
=

.
=

.
=

Figure 8. The cap ∩− of a tensor product

Proposition 2.16. The morphisms bI : I → I ⊗ I∗ = I∗ and dI : I∗ ⊗ I = I∗ → I are
inverse isomorphisms. For all k ∈ K := EndC(I) we have k∗bI = bIk.

Proof. We first show that bI : I → I ⊗ I∗ = I∗ and dI : I∗ ⊗ I = I∗ → I are inverse
isomorphisms of each other. Duality gives idI = (idI ⊗ dI)(bI ⊗ idI) = dIbI . Now remark
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idU⊗V µU⊗V

U

V

U U VV

U ⊗ V

.
=

Figure 9. The cup ∪− of a tensor product

that I is isomorphic to I∗: we have I ' I∗∗, and thus

(2.12) I∗ = I∗ ⊗ I ' I∗ ⊗ I∗∗ ' (I∗ ⊗ I)∗ ' I∗∗ ' I

Let g : I → I∗ be any isomorphism. Then g−1bI , dIg ∈ K. By the commutativity of K we
have:

(2.13) g−1(bIdI)g = (g−1bI)(dIg) = (dIg)(g−1bI) = dIbI = idI

or bIdI = idI∗ . This proves the first assertion. Finally we compute

(2.14) k∗bI = (idI ⊗ k∗)bI = (k ⊗ idI∗)bI = (k ⊗ idI ⊗ idI∗)bI = bIk

�

Definition 2.17. If f : V → V is a morphism in C we define its quantum trace trC(f) ∈
EndC(I) as follows:

(2.15) trC(f) := dV ◦ (idV ∗ ⊗ fθ−1V ) ◦ c−1V ∗,V ◦ bV
If V ∈ C then its quantum dimension is defined as dimC(V ) := trC(idV ).

Graphical calculus yields some useful alternative expressions for the trace, see Figure
10. The following proposition shows that the quantum trace indeed behaves like a trace.

Proposition 2.18. We have

(1) If f : V → W and g : W → V then trC(fg) = trC(gf).
(2) If f : V → V and g : W → W then trC(f ⊗ g) = trC(f)trC(g).
(3) If f : I → I then trC(f) = f .

Proof. (1) Graphical calculus.
(2) Graphical calculus; see Figure 11.
(3) Recall that cI,V = idV (for any object V ) and θI = idI . Hence (using Figure 10,

Proposition 2.9, and Proposition 2.16):

trC(f) = dIcI,I∗ ◦ (fθI ⊗ idI∗) ◦ bI
= dI(f ⊗ idI∗)bI = dI(idI ⊗ f ∗)bI = dIf

∗bI = dIbIf = f

�

Corollary 2.19. Let C be a ribbon category, as usual. The quantum dimension has the
following properties:
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ff

f

ff

ff

.
=

.
=

.
=

V

V

V

V

Figure 10. The quantum trace of f : V → V

(1) Isomorphic objects have the same dimension.
(2) Dual objects have the same dimension.
(3) We have dimC(V ⊗W ) = dimC(V )dimC(W ).
(4) We have dimC(I) = idI := 1 ∈ K.

Remark 2.20. We remark that in the graphical calculation of Figure 11 we have used
carefully the preceding remarks on the canonical identification of (V ⊗W )∗ with W ∗ ⊗ V ∗
and the behavior of cup and cap under tensor product. In this way we avoided pulling a
“zipper coupon” labelled idV⊗W past a cup or cap (after which action the coupon would be
upside down). However, the RT-theorem tells us that this is actually no problem (!) and
moreover we have even seen in detail in the above example how this works fine and that
one can avoid at all times putting coupons upside down. So we may now forget about it
and freely use the invariance of F for the “unzipping” of a strand whose color is the tensor
product V ⊗W in two parallel strands whose colors are V and W . We will also usually
not mention the identifications λV,W and µV,W explicitly.

Exercise (f). Prove Proposition 2.18(1)

Exercise (g). Prove Corollary 2.19

Exercise (h). Let V,W be objects of C. Show that the trace SV,W := trC(cW,V ◦ cV,W )
satisfies SV,W = SW,V . Show that SV,W is the F -image of a positive Hopf link whose two
components are colored by V and W .
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ff

V

g

W

f ⊗ g

V ⊗W

g

V ⊗W

ff

idV ⊗W

idV ⊗W

V ⊗W

λV,W

µV,W

gff

W V

.
=

.
=

.
=

.
=

gff

idV ⊗W

idV ⊗W

V ⊗W

V ⊗W

Figure 11. The trace of f ⊗ g

The RT representation Theorem and ribbon link invariants. So far we have mainly
used the RT-representation Theorem 2.6 as a tool to facilitate the computations in a
ribbon category by topology (graphical calculus). This is extremely useful, but the deepest
application of the theorem goes in the opposite direction: The RT-Theorem 2.6 produces
a C-colored ribbon link invariant whenever we are given a ribbon category C.

It has been shown (Drinfeld, Lusztig) that the simple complex Lie algebras are a source
of ribbon categories. In fact one can show that the universal quantum enveloping algebra
Uq(g) of g is close to being a so called ribbon algebra. This implies that the category
of representations of Uq(g)-modules has the structure of a ribbon category (with K =
Z[q1/2, q−1/2]). In this course we will prove this for g = sln.

In particular every choice of a finite dimensional representation V of Uq(g) gives rise to
a directed ribbon link invariant PV (L) defined by PV (L) := F (LV ) ∈ Z[q1/2, q−1/2], where
LV denotes the link L with all its strands colored by the object V .

For the case of g = sl2, and V its 2-dimensional representation one reconstructs in this
this way the Kauffman bracket polynomial (as we will see next week), leading to the Jones
polynomial. For the higher dimensional representations of sl2 one is lead to the so-called
colored Jones polynomials. The defining n-dimensional representation V of sln will give us
the Homfly polynomial discussed in the beginning of this course.

Exercise (i). Let G be an abelian group, and K a commutative ring with unit. Let K×

be the multiplicative group of invertible elements in K. Let c : G×G→ K× be a bilinear



18 QUANTUM GROUPS AND KNOT THEORY: WEEK 47

pairing, i.e. c(g, hh′) = c(g, h)c(g, h′) and c(gg′, h) = c(g, h)c(g′, h) for all g, g′, h, h′ ∈ G.
Let φ : G → K× be a character of G (i.e. φ(gh) = φ(g)φ(h) for all g, h ∈ G) such that
φ(g2) = 1 for all g ∈ G.

Let V be the strict monoidal category whose objects are given by the elements of G, with
tensor product of g, h ∈ G defined by g ⊗ h := gh ∈ G, and with HomV(g, h) = K if g = h
and HomV(g, h) = {0} ⊂ K else. Let the composition and tensor product of morphisms in
V be defined by the product of the corresponding elements of the ring K. This defines a
strict monoidal structure on V with the identity e of G as the tensor unit object (you may
use these facts without proof).

(1) Define cg,h := c(g, h) ∈ K and θg := φ(g)c(g, g) ∈ K for all g, h ∈ G and prove that
this gives V the structure of a braided monoidal category with braiding c and twist
θ.

(2) Define g∗ := g−1, bg = 1 and dg = 1 for all g ∈ G, and prove that the triple (∗, b, d)
defines a compatible duality on V. We denote the resulting strict ribbon category by
V(G,K, c, φ).

(3) Give an example of such a ribbon category V(G,K, c, φ) for which the braiding is
not symmetric.

(4) Let F = FV(G,K,c,φ) be the Reshetikhin-Turaev functor associated to V(G,K, c, φ).
Prove that F (∪g) = F (∩g) = φ(g) for all g ∈ G.

(5) Compute the dimension dim(g) for any object g ∈ G.
(6) Let L = L1 ∪L2 ∪ · · · ∪Lm an m-component framed link. Give the definition of the

linking number li,j = Lk(Li, Lj) of the components Li and Lj and of the framing
number (or linking number) li = Lk(Li) of one component Li.

(7) Suppose that we color the component Li with color gi ∈ G. Prove that with this
coloring:

F (L) =
∏

1≤j<k≤m

(c(gj, gk)c(gk, gj))
lj,k

m∏
j=1

c(gj, gj)
ljφ(gj)

lj+1

Appendix: Proof of the Reshetikhin-Turaev presentation.

The category T G,RMC . Recall the definition of a presentation of a strict monoidal category
as discussed in the syllabus of week 46. In particular recall the derivation of a presentation
of the tangle category T on the basis of Reidemeister’s theorem. We will now consider
the analogous presentation for T GC using an obvious extension of Reidemeister’s theorem
(by including the colorings and coupons). This will give rise to an algebraic presentation

T G,RMC of T GC .

Definition 2.21. Consider the strict monoidal category T G,RMC generated by the set GG,RM
C

of morphisms of T GC consisting of the crossings {X±V,W , Y
±
V,W , Z

±
V,W , T

±
V,W} as defined in [1,

Chapter 6, Figure 2.1] (where V,W run over all possible objects of C), the cups {∪V ,∪−V }
and caps {∩V ,∩−V } as defined in [1, Chapter 6, Figure 2.2, bottom row], and finally the

elementary C-colored ribbon graphs. Let RG,RM
C be the set of relations given in week 46,
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Theorem 4.22 (1)-(6) (including the diagram isotopies (1)-(3) and the ribbon Reidemeis-
ter moves of types Ω0,Ω2,Ω3) with all possible coloring and orientations of the strands
involved, complemented by the relations displayed in figures 12 and 13 (with all possible
orientations of the strands connecting to the coupon, and all admissible colorings), and
finally the relation of figure 14 (again, for all colorings and all orientations of the strands).

=

f f

Figure 12. Crossings over a coupon

=

f f

Figure 13. Crossing under a coupon

Remark 2.22. We emphasize that in figure 14 the ovals marked “r-twist” and “l-twist” are
NOT coupons(!), but refer to the full right hand twist and full left hand twist respectively
of all strands together, which can be expressed in terms of our generators by means of a
picture like Figure 15
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f

neg. l-twist

pos. r-twist

f

=

Figure 14. Twisting a coupon

. . .

. . .

Figure 15. The right hand positive twist.

Remark 2.23. The crossing relations of an upward directed strand over or under a coupon
are not included because these relations are consequences of the other relations (namely (1)-
(3) with the crossing relations for coupons and downward strands).

As an extended version of Reidemeister’s theorem (with colors, directions and coupons)
we have:

Theorem 2.24. The pair (GG,RM
C , RG,RM

C ) is a presentation of T GC . In other words, the

canonical strict tensor functor F (GG,RM
C )→ T GC from the free monoidal category F (GG,RM

C )

generated by GG,RM
C factors through T G,RMC and then gives rise an isomorphism of categories

ρ : T G,RMC → T GC .

Proof. We first represent C-colored, directed k, l ribbon graph by a C colored, directed k, l
graph diagram by a generic projection onto the (x, z)-plane. For this we first move the
coupons of the graph in a position such that their projections to the z-axes are disjoint
(distinct heights) and their position is parallel to the (x, z) plane, with bottom edge down
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and face side up. This can obviously be done. We “freeze” the coupons in these positions
and put all strands (arcs and knot components) in a position so that their projection to the
(x, y) plane is generic. Finally we put in little curls in each arc or knot component so that
we can put the framing vector everywhere in blackboard position. The projection graphs
diagram can be moved still by small diagram isotopies so as to get a generic diagram, with
its singular points and coupons all at distinct heights and only nondegenerate extrema
as the stationary points of the height function on its arcs. From here on the proof is
completely analogous to the proof of Theorem 4.22 of week 46, and we therefore omit
this. �

2.4. The category T G,RTC . The presentation of T GC given by Theorem 2.24 is easy to prove
but has as a drawback that it uses much more generators than necessary, making it ineffi-
cient to apply directly. The most substantial part of the proof of the Reshetikhin-Turaev
representation theorem consists of improving the presentation.

Definition 2.25. The set GG,RT
C of morphisms of T GC consist of the union of the sets

{X±V,W , Z
±
V,W ,∪V ,∩V , φV , φ′V }, where V and W run over the set of objects of C and where

φV and φ′V are define by figure 16, and the collection of elementary colored ribbon graphs

φV = φ′V =

Figure 16. The positive curl and the negative curl

(as exemplified by (2.2)).

Proposition 2.26. The set GG,RT
C is a set of generators of T GC .

Proof. In view of Theorem 2.24 it suffices to express the generators of the set GG,RM
C in

terms of GG,RT
C modulo RG,RM

C -equivalences. For the elements of GG,RM\GG,RT this is
shown by the figures 17, 18 in combination with the analogous formulas for Y −V,W and

T−V,W , and the formulas of figures 19 and 20. �

Definition 2.27. We define a set of relations RG,RT
C as the union of the following relations

(as usual, with all possible C colorings) between RT generators. Besides the generators

GG,RT
C we use the notation ↓V (↑V ) for a single straight arc oriented downwards (upwards),

colored with V (which are identities in T GC ).
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YV,W := =

Figure 17. Expressing Y’s in RT-generators

TV,W := =

Figure 18. Expressing T’s in Y’s and RT generators.

(a) Reidemeister 3 (or Ω3) for X+-crossings (all crossings positive, all strands down-
wards).

(b) Annihilation or creation of a cup-cap pair, oriented downwards, i.e.

↓V = (↓V ⊗∩V ) ◦ (∪V⊗ ↓V )

(c) Annihilation or creation of a cap-cup pair, oriented upwards, i.e.

↑V = (∩V⊗ ↑V ) ◦ (↑V ⊗∪V )

(d) Reidemeister 2 (or Ω2) with both strands oriented downwards, i.e. X−V,W = (X+
W,V )−1.

(e) φ′V = φ−1V .
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=

Figure 19. Reverse cap in RT generators

=

Figure 20. Reverse cup in RT generators

(f) Move the positive curl past a X-crossing, i.e.

X±V,W ◦ (↓V ⊗φW ) = (φW⊗ ↓V ) ◦X±V,W
(g) Reidemeister 2 (bis): The inverse of Z±V,W is Y ∓W,V , expressed in RT generators as

in figure 17. Explicitly:

Z±V,W =
(
(∩W⊗ ↓V ⊗ ↑W ) ◦ (↑W ⊗X∓V,W⊗ ↑W ) ◦ (↑W ⊗ ↓V ⊗∪W )

)−1
(h)

φ2
V = (∩V⊗ ↓V ) ◦ (↑V ⊗X+

V,V ) ◦ (Z+
V,V⊗ ↓V ) ◦ (∪V⊗ ↓V )

(i) Crossing a coupon as in figure 12.
(j) Crossing a coupon as in figure 13.
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(k) Twisting a coupon as in figure 14.

The main theorem of this section is:

Theorem 2.28. The pair (GG,RT
C , RG,RT

C ) is also a presentation of T GC .

Proof. Let WG,RT
C denote the set of admissible RT-words (in the sense of week 46) and

let WG,RM
C denote the set of admissible RM-words. Recall that (in the notation of week

46) F (GRM
C ) denotes the free monoidal category on the generator set GRM

C , and similarly
F (GRM

C ) denotes the free monoidal category with generators GRT
C .

We denote by T G,RTC the strict monoidal category given by the pair (GG,RT
C , RG,RT

C ). We
want to show that this category is isomorphic to T GC via a strict tensor functor.

Step 1: The relations RG,RT
C are true in T GC , in particular we have a strict monomial

functor γ : T G,RTC → T GC (by the discussion in the syllabus of week 46). Moreover γ is
surjective. These assertions are easy verifications, by drawing the corresponding generic
diagrams and checking that the relations indeed represent topologically true statements.
The surjectivity follows from Proposition 2.26.

We will now construct maps according to the following diagram. The mapsA,B, α, β, γ, ρ
in this diagram are the morphism components of strict tensor functors which are them-
selves also denoted by A,B, α, β, γ, ρ respectively. Observe that the isomorphism ρ was
obtained in Theorem 2.24.

WG,RM
C

a
--

��

WG,RT
C

b

mm

��
Hom(F (GRM

C ))
A ..

��

Hom(F (GRT
C ))

B
nn

π
��

Hom(T G,RMC )
α ..

ρ'
��

Hom(T G,RTC )
β

nn

γvv
Hom(T GC )

Step 2: Define a map a : WG,RM
C → WG,RT

C by expressing the RM-generators in RT-
generators as explained in the proof of Proposition 2.26, and extending to this to a map
sending elementary RM-morphisms to admissible RT-words (elements of WG,RT

C ) in the
obvious way. Finally we define a by using substituting the elementary RM-morphisms of
an admissible RM-word by the corresponding admissible RT-words using the above map.

By a similar procedure we define a map b :WG,RT
C →WG,RM

C corresponding to the map

b : GG,RT
C →WG,RM

C determined by saying that it is identical on the X,Z,∩,∪ generators
and the elementary C-colored graphs, and

b(φV ) = (∩V⊗ ↓V ) ◦ (↑V ⊗X+
V,V ) ◦ (∪−V⊗ ↓V )(2.16)

b(φ′V ) = (∩V⊗ ↓V ) ◦ (↑V ⊗X−V,V ) ◦ (∪−V⊗ ↓V )(2.17)
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This obviously defines strict monoidal functors A : F (GRM
C )→ F (GRT

C ) and B : F (GRT
C )→

F (GRM
C ).

Step 3. The strict monoidal functor B : F (GRT
C ) → T G,RMC (obtained by composing B

with the canonical tensor functor from F (GRM
C ) to T G,RMC ) descends to a surjective (on

morphisms) strict tensor functor β : T G,RTC → T G,RMC such that γ = ρ ◦ β.
This is true because γ ◦ π = ρ ◦B, as one easily checks by computing the images of the

RT-generators on both sides. The surjectivity of β now follows from Step 1.
Step 4. The strict monoidal functor A : F (GRM

C ) → T G,RTC (obtained by composing

A with the canonical tensor functor from F (GRT
C ) to T G,RTC ) descends to a strict tensor

functor α : T G,RMC → T G,RTC .
This step is the core of the proof. It is not hard, but it requires a lot of verifications

since there are many RM-relations, and we need to verify that all RM-relations give rise to
RT-equivalences if we apply the map a to both sides of the RM-relation. The proofs can
be given in an entirely pictorial fashion. We work in WG,RT

C , representing the words by
diagrams, and we transform the diagrams according to the RT-equivalences (and already
established RM-relations, so that we acquire more power as we are progressing through
the proof).

We refer the interested reader to [2, Chapter 1, paragraph 4.4–4.9].
Step 5. The strict tensor functors α and β are inverse isomorphisms.

We have seen in Step 3 that β is surjective on morphisms. Hence is suffices to show that
α ◦ β = id. In other words, we need to show that we have a(b(g)) ≡RT g for all g ∈ GR,RT

C .

This is trivial for all generators except for φV and φ′V . By RG,RT
C [(e)] it suffices to prove

it for φV only. This is an easy verification, using RG,RT
C [(f)] and RG,RT

C [(h)]. �
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