
QUANTUM GROUPS AND KNOT THEORY: WEEK 46

This week we treat Chapter 5 of [2]. We give some additional proofs and definitions.

1. The Jones polynomial and skein categories

1. Knots, Links and Link Diagrams.

1.1. Framed links.

Definition 1.1. A framed link Lf in R3 is a smooth link L equipped with a nonzero
normal vector field f on L. The framing of L determined by f is the homotopy class of f
(within the space of nonzero normal vector fields). An isotopy of framed links is a smooth
ambient isotopy of the underlying unframed links such that the framings correspond under
the isotopy.

An alternative way to think about framed links is as ribbon links. A ribbon link in R3 is
a finite collection of disjoint images of smooth embeddings of S1 × I in R3, equipped with
an orientation. The correspondence between these notions is such that the framed link of a
ribbon link is the collection of core curves, each framed by the positive unit normal vector
field of the ribbon.

Definition 1.2. The framing (or self-linking) number Fr(Kf ) ∈ Z of a framed knot Kf is
the linking number Lk(K+, K

′
+) where K ′ denotes the knot obtained by moving K over a

distance ε in the direction of the normal vector field (with ε sufficiently small) and + refers
to an (arbitrarily chosen) orientation of K.

Exercise (a). Let Kf be a framed, oriented knot, and R be the associated ribbon knot.
Prove Fr(Kf ) = Lk(Rl, Rr) if Rl, Rr are the left and right boundary components of R (both
oriented in the same way as K is oriented).

Proposition 1.3. The framing number is well defined. Let K be a knot in R3. For every
k ∈ Z there exists a unique framing f = fk of K such that Fr(Kf ) = k.

Proof. Let us show that the normal bundle N of K ⊂ R3 is trivial: First choose a smooth
parametrization φ : S1 → K of K, and let t be the nonvanishing vector field on K obtained
by applying d(φ) to the positive unit tangent vector field on S1. Furthermore choose a
smooth nonzero normal vector field e1 on K. Define e2 = t× e1. Then (e1, e2) is a global
basis for N and hence trivializes N .

By results from elementary differential topology (for the interested reader: see e.g. [1,
Lemma 2.6, Theorem 12.11]) there exists ε > 0 such that the map S1 ×R2 → R3 given by
(x, (λ, µ))→ φ(x) +λe1(φ(x)) +µe2(φ(x)) restricts to an orientation preserving diffeomor-
phism Φ : S1 × Dε → U (with Dε the open ε disk centered at the origin in R2) where the
image U is an open neighborhood of K (a “tubular neighborhood”).
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Fix an orientation preserving diffeomorphism Φ as above. We see that a nonzero normal
vector field f on K yields (after a suitable scaling so that f(x) ∈ U for all x ∈ K) a
well defined homotopy class [F (f)] of smooth maps F (f) : S1 → D×ε . Conversely a map
F : S1 → D×ε defines a nonzero normal vector field f(F ) on K by application of Φ. This
gives rise to a bijection between framings [f ] of K and homotopy classes [F ] of maps
F : S1 → D×ε . These are in turn in canonical bijection with Z through the winding number
map [F ] → Wind(F ). It is easy to see that Fr(Kf(F )) −Wind(F ) is independent of [F ].
Hence Fr(Kf ) can assume any integral value and this number uniquely determines the
framing [f ]. �

1.2. Link diagrams. This was treated in week 37. A link diagram D is a 4-valent planar
graph with over/under information at each vertex. Every link L ∈ R3 is isotopic to a link
which is regular in the sense that the projection to R2 × {0} is regular. The projection of
a regular link determines a link diagram in the obvious way. Conversely each link diagram
D determines a unique isotopy class [L(D)] of links.

Definition 1.4. Let D be a link diagram, and let L(D) be a link which projects regularly
onto D with matching over/under crossing data. In particular the plane Nx normal to
L(D) at x ∈ L(D) is never horizontal. Given x ∈ L(D) we define a (nonzero) vector
bf(x) ∈ Nx by projecting (0, 0, 1) to Nx. Then Lbf (D) is a framed link. One can easily
show that the isotopy class [Lbf (D)] is uniquely determined, and this framing is called the
blackboard framing of [L(D)].

Definition 1.5. Define the writhe w(D) ∈ Z of a knot diagram D by w(D) = Fr(Lbf (D)).

Exercise (b). Let D be a knot diagram. Choose an orientation of D. Show that w(D) =∑
c∈V (D) ε(c) where V (D) is the vertex set of D (hint: use exercise (a)).

We use the result of this exercise to extend writhe to oriented link diagrams:

Definition 1.6. Let D be an oriented link diagram. We define its writhe w(D) to be
w(D) =

∑
c∈V (D) ε(c).

1.3. Reidemeister moves. Recall Reidemeister’s Theorem (week 37):

Theorem 1.7. Let D,D′ be link diagrams. We have [L(D)] = [L(D′)] iff D′ can be
obtained from D by a finite sequence of steps consisting of

(1) Planar ambient isotopy.
(2) The Reidemeister moves Ω±11 ,Ω±12 and Ω±13 .

1.4. Reidemeister’s theorem for ribbon links. As we have seen above we can attach framed
links to link diagrams by using the blackboard framing. By Proposition 1.3 a framing of a
link L is given by attaching a framing number (∈ Z) to each of the components of L. Since
we can change the writhe of components of L(D) at will by adding positive or negative
curls to D (without changing the (unframed) isotopy class of L(D)) it is clear that we can
represent any framed link using the blackboard framing of an appropriate link diagram.
The Reidemeister theorem [2, Theorem 1.4] for such framed link diagrams requires the
weakening of the first Reidemeister move Ω1 to Ω0 (see [2, Figure 1.4]):
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Lemma 1.8. The equivalence relation on link diagrams defined by finite sequences of steps
of the form

(1) Planar ambient isotopy.
(2) The Reidemeister moves Ω±10 ,Ω±12 and Ω±13 .

is equal to the equivalence relation obtained by steps of the form

(1) Planar ambient isotopy.
(2) The Reidemeister moves Ω̃±10 ,Ω±12 and Ω±13 .

where Ω̃0 consists of replacing the positive right handed curl by the positive left handed curl.

Proof. We leave this as a pleasant exercise for the reader. �

Theorem 1.9. (see [2, Theorem 1.4]) Let D,D′ be link diagrams. We have [Lbf (D)] =
[Lbf (D

′)] iff D and D′ are equivalent in the sense of Lemma 1.8.

Proof. By Proposition 1.3 the framing of Lbf (D) is completely determined by the writhes
w(Di) where Di runs over the set of components of D. Since the steps used to define the
equivalence described in Lemma 1.8 do not change the writhes of the components the “if”
part follows.

The ”only if” is more complicated. Assume that L(D)bf and L(D′)bf are isotopic as
framed links. In particular L(D) and L(D′) are isotopic as unframed links, so D′ can be
obtained from D by a sequence S consisting of Reidemeister moves and planar isotopies.
Suppose that somewhere in the sequence S we need to apply a Ω1 step. Then we correct
this by adding a positive or negative curl in the same strand in such a way that in total
we apply a Ω0 step. We can reduce the size of this additional curl arbitrarily by planar
isotopy. We will refer to such a “very small curl” as a “cable kink”. On the other hand if
we need to apply a Ω−11 step in S then instead of removing the curl we just reduce its size
and start treating it as an additional cable kink. The crucial observation about these cable
kinks is that we may pass them (if necessary) through a crossing of the diagram at the cost
of additional Ω±12 and Ω±13 steps (which are allowed within our equivalence relation). In
this way we are free to move the “cable kinks” up and down the strands in order to keep
them from interfering with other steps in S. Hence we can ignore their presence until we
are finished with the sequence S. Working through the steps of S in this adapted sense we
are only using Reidemeister steps of type Ω±10 ,Ω±12 and Ω±13 , and when we are finished we
are presented with a diagram D′′ which is equal to D′ except for the presence of a number
of these cable kinks. From the assertion it follows however that in each component of D′′

the number of positive kinks is equal to the number of negative kinks. We group the kinks
in each component of D′′ together on a pieces of strand without crossings (again at the
cost of Ω±12 and Ω±13 steps). Using additional Ω±10 ,Ω±12 and Ω±13 steps we can now safely
remove all of them by cancellation. �

Exercise (c). See [2, Exercise 1.5(i)].

Exercise (d). See [2, Exercise 1.5(ii)].

2. The Jones polynomial of oriented links.
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2.1. Skein classes of modules. We do not follow the notation of the book here, since this
is somewhat confusing. We define:

Definition 2.10. Let D be a link diagram. We denote by [D](a) ∈ E(a) its class in the
skein module.

We give a direct definition of the bracket polynomial of a link diagram:

Definition 2.11. Let D be a link diagram. We denote by 〈D〉(a) the bracket polynomial
given by

(2.1) 〈D〉(a) =
∑
S

(−a2 − a−2)c(S)−1〈D,S〉(a)

where the sum runs over all smoothings S of the diagram D, c(S) denotes the number of
components of S, and where for each S we put

(2.2) 〈D,S〉(a) :=
∏

c∈V (D)

an(S,c)

with V (D) the vertex set of D, and n(S, c) = 1 if S opens the a channel at c and n(S, c) =
−1 if S opens the a−1 channel at c (see [2, Figure 2.1]).

2.2. The dimension of E(a). Using the above definition it is an elementary matter to verify
the following:

Proposition 2.12. The bracket polynomial 〈D〉(a) only depends on the skein class [D](a)
of D.

We use this proposition to prove:

Theorem 2.13. (see [2, Theorem 2.2, Chapter 5]) dim(E(a)) = 1.

Proof. The argument in [2] shows that the dimension is at most one. By the preceding
proposition there exists a unique linear functional φ on E(a) such that φ([D](a)) = 〈D〉(a)
for all diagrams D. In particular φ([O](a)) = 1, and we conclude that E(a) must be at
least one dimensional. �

2.3. The skein class is a ribbon link invariant. The result [2, Theorem 2.3] is very funda-
mental. It shows that the skein class [D](a) of a link diagram D is an invariant of the
ribbon link L(D)bf represented by D.

2.4. The bracket polynomial. In our notation we have for any link diagram D the following
relation in E(a):

(2.3) [D](a) = 〈D〉(a)[O](a).
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2.5. The Jones polynomial. We define for an oriented link diagram D the polynomial:

(2.4) fD(a) := (−a−3)w(D)〈D〉(a)

Theorem 2.14. fD is an isotopy invariant of oriented links, and fD ∈ Z[a−2, a2].

Proof. It is clear that fD is invariant for planar isotopy and for the Reidemeister moves
Ω±10 ,Ω±12 ,Ω±13 since this is true for the bracket polynomial 〈D〉(a) as well as for the writhe
w(D). The computation [2, Figure 2.2] proves that fD is invariant for Ω±11 as well.

The second assertion follows easily from the explicit expansion in the definition of the
bracket polynomial 〈D〉(a). �

Remark 2.15. fD is independent of the orientation of D if D is a knot diagram.

Definition 2.16. The Jones polynomial VL ∈ Z[q, q−1] of an oriented link L defined by a
diagram D is defined by

(2.5) VL(q) = fD(q−1/2)

2.6. Conway triples. The Jones polynomial as defined above satisfies the usual Conway
type skein relation and is normalized by VO(q) = 1. This characterizes the Jones polynomial
completely (see [2, Theorem 2.6]).

2.7. Exercises.

Exercise (e). Prove [2, Theorem 2.6(iii)].

Exercise (f). See [2, Exercise 2.7(ii)].

3. Skein module of tangles.

3.1. Tangles, framed tangles (or ribbon tangles).

3.2. Tangle Diagrams.

3.3. Reidemeister’s theorem for framed tangles.

3.4. The skein module Ek,l(a).

Theorem 3.17. The skein module Ek,l(a) has dimension 0 if k + l is not even, and if
k+ l = 2n is even then it has dimension Cn := binom(2n, n)/(n+1) (the Catalan number).

Proof. It is clear that there exist k, l tangle diagrams only if the total number k + l of
end points is even. Moreover Ek,l(a) is the linear span of the skein classes of smooth
(i.e. no crossings) k, l tangle diagrams. By induction on n = (k + l)/2 we easily see that
two smooth k, l tangle diagrams which determine the same pair matching of the 2n end
points are planar isotopic. Hence the planar isotopy classes of smooth diagrams yield a
linear basis of Ek,l(a). Thus dim(Ek,l(a)) is equal to the number of pair matchings of the
2n end points which are admissible in the sense that they arise as the pair matching of
a smooth diagram. Using a planar isotopy we can move the 2n end points of the k, l
tangle diagrams to 2n points on a circle, preserving their circular order. This gives a
bijective correspondence between admissible pair matchings of 2n points on the circle and
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admissible pair matchings of the 2n end points of k, l tangles. In particular the number of
such admissible pair matchings depends only on n. Let us denote this number by an. Fix
a circular numbering of p1, p2, . . . , p2n of the end points. If we match p1 with p2+i then we
divide the remaining 2n − 2 points in two groups of size i and 2n − 2 − i which can no
longer be matched by any smooth diagram which connects p1 and p2+i. Hence the number
of distinct admissible pair matchings in which p1 is matched with p2+i is equal to 0 if i is
odd, and equal to akan−k−1 if i = 2k. Whence the recurrence relation

(3.1) an =
n−1∑
k=0

akan−k−1

Moreover we have a0 = 1 (by Theorem 2.13). Consider the generating power series f(z) =∑∞
n=0 anz

n. From the above recurrence relation and initial condition we see that zf(z)2 =
f(z)− 1, or (2zf)2 − 2(2zf) + 4z = 0. Using the binomial expansion theorem we get

2zf(z) = 1− (1− 4z)1/2(3.2)

= 1−
∞∑
k=0

binom(1/2, k)(−4z)k(3.3)

= 2
∞∑
k=1

Ck−1z
k(3.4)

proving the theorem. �

3.5. The skein class as isotopy invariant of framed tangles.

4. Categories of Tangles.

4.1. The category of framed tangles. The category of framed tangles T is a strict monoidal
category.

There exists a notion of a presentation of a strict monoidal category by means of gen-
erators and relations, analogous to presentations of groups (or better still, monoids). This
plays a mayor role in the theory of the Reshetikhin-Turaev invariants. In the paragraph
we discuss the definition of a presentation of a strict monoidal category, and we will study
some simple examples (in particular, the ribbon tangle category T ).

Definition 4.18. Let M be a strict monoidal category and let G be a set of morphisms
in M. Let AG be the set of morphisms of M consisting of all identities of M and all
morphisms of the type idV ⊗g ⊗ idW with g ∈ G and V,W ∈ M. We call the elements of
AG elementary morphisms (with respect to the set G). We say that M is generated (as a
strict monoidal category) by G if any morphism of M can be written as a composition of
elementary morphisms with respect to G.

Example 4.19. The braid category Balg is generated as a strict monoidal category by the
set G = {X±} where X+ = c1,1 ∈ B2 is the (positive) generator of B2 and X− is its inverse.
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We have a notion of presentation of a strict monoidal category by means of generators
and relations, analogous to presentations of groups (or better still, monoids). This plays a
mayor role in the theory of the Reshetikhin-Turaev invariants, so we will study the “baby
example” of the ribbon tangle category in this section.

Consider the set WG of admissible words in the alphabet formed by the identities in
M and the above elementary morphisms (i.e. concatenations of such letters such that
consecutive letters in a word are composable morphisms in M). If G generates M then
any morphism m ofM can be obtained from an admissible word w ∈ WG by replacing the
concatenations in w by compositions inM. We write m = [w] to express that a morphism
m in M is represented in such a way by the word w ∈ WG. This yields an equivalence
relation ∼M on WG by defining w ∼M w′ iff [w] = [w′]. We denote the concatenation of
words w1, w2 representing composable morphisms by w1 ∗ w2.

Observe that the alphabet AG is invariant for tensoring by an identity morphism idV
on the left or the right hand side. Obviously these operations respect the composability of
elementary morphisms. Hence for each object V ∈ M and for each word w ∈ WG we can
define new words idV ⊗w and w ⊗ idV in WG.

Let R ⊂ WG ×WG be a set of pairs (r, r′) of (admissible) words with the property that
the source and target objects of r and of r′ are equal. We define an equivalence relation
∼R generated by R as follows. First we form a bigger set R1 ⊂ WG ×WG by adding to R
all pairs (r1, r2) of the following form: Let g1 : U → U ′ and g2 : W → W ′ be elements of
G. We put

(4.1) r1 = (g1 ⊗ idV⊗W ′) ∗ (idU⊗V ⊗g2)

and

(4.2) r2 = (idU ′⊗V ⊗g2) ∗ (g1 ⊗ idV⊗W )

(where V is an arbitrary object of M).
Next we define the set R̃ ⊂ WG×WG obtained from R1 by tensoring the pairs in R1 on

both sides with arbitrary identities of M. Finally we say that w ∼R w′ if and only if w′

can be obtained from w by a finite sequence of steps consisting of

(1) Deleting or inserting an identity morphism in the concatenation.
(2) Replacing a word of the form w1 ∗ r ∗ w2 by a word of the form w1 ∗ r′ ∗ w2 where

the pair (r, r′) or (r′, r) belongs to R̃.

It is clear that ∼R so defined is an equivalence relation on WG. It is easy to see that ∼R
is stronger than ∼M iff all pairs (r1, r2) ∈ R satisfy [r1] = [r2].

Definition 4.20. Let M be a strict monoidal category and let G be a set of morphisms
of M. Let R ⊂ WG ×WG be a set of pairs (r, r′) of admissible words in the alphabet AG.
We say that (G,R) is a presentation of M if G is a set of generators of M and if the
equivalence relations ∼M and ∼R agree on WG.

We know from week 37 (in a different language):
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Example 4.21. The braid category Balg has a presentation (G,R) with G = {X±} (as
above) and R = {Ω2,Ω3}. In other words, R consists of the pairs (X+ ∗X−, id2) and the
Yang Baxter relation ((id1⊗X+)∗(X+⊗id1)∗(id1⊗X+), (X+⊗id1)∗(id1⊗X+)∗(X+⊗id1)).

We usually represent a pair (r1, r2) in the set R of relations by the equality [r1] = [r2]
where both sides are expressed as the appropriate compositions of identities and elementary
morphisms.

Theorem 4.22. The ribbon tangle category T is generated as a strict monoidal category
by the set G = {∪,∩, X±} with set of relations R consisting of

(1) (id1⊗∩) ◦ (∪ ⊗ id1) = (∩ ⊗ id1) ◦ (id1⊗∪) = id1,
(2) (∩ ⊗ id1) ◦ (id1⊗X±) = (id1⊗∩) ◦ (X∓ ⊗ id1),
(3) (id1⊗X±) ◦ (∪ ⊗ id1) = (X∓ ⊗ id1) ◦ (id1⊗∪),
(4) Ω̃0 : (∩ ⊗ id1) ◦ (id1⊗X±) ◦ (∪ ⊗ id1) = (id1⊗∩) ◦ (X± ⊗ id1) ◦ (id1⊗∪),
(5) Ω2,
(6) Ω3.

Proof. A tangle diagram D in R× I is called generic if its crossings are transversal double
points, if the critical points of the height function on D are all nondegenerate local extrema
and if all the crossings and local extrema occur at different heights. We call the finite set
of local extrema and crossings of D the set of singular points.

Any ribbon tangle T can be represented by a generic tangle diagram D. Cutting D in
horizontal strips containing at most one singular point each and applying planar ambient
isotopies we see that T is a composition of elementary morphisms from the set AG. The
listed relations are true in T , so we know in particular that ∼R is stronger than ∼T .

It remains to show that if w1, w2 ∈ WG and w1 ∼T w2 then w1 ∼R w2. Now recall [2,
Theorem 3.3] (Reidemeister’s theorem for ribbon tangles): w1 ∼T w2 implies that w1 and
w2 can be obtained from each other by a finite sequence of steps of the form

(1) Planar diagram isotopies,
(2) Ω̃0,Ω2,Ω3.

The steps of the last kind are all explicitly included in R so these steps can be performed
by R-equivalences. For the steps of the first kind we need to analyze the situation a bit
further. First notice that a generic tangle diagrams determines an element of WG (up to
insertions of identities) and vice versa. Suppose that we need to apply a planar isotopy to
go from a generic tangle diagram T to a generic tangle diagram T ′. This can be achieved
by a finite sequence of changes in the representing word in WG of the following kind (see
Week 6, Theorem 1.11):

(a) Interchange the order of two elementary morphisms as described by (4.1), (4.2),
(b) Birth or annihilation of a pair of local extrema,
(c) Move a crossing from one side of a local extremum to the other side.

Now (a) is included in ∼R (these type of equivalences were added to R to get R1), and
(b),(c) are given by (1)-(3). This concludes the proof. �
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We can reformulate the above result by formally introducing a strict tensor category
T alg with objects {0, 1, 2, . . . } and morphisms built from the R-equivalence classes in WG.
The content of the above theorem is then an isomorphism of categories given by w → [w]
from T alg to T compatible with the strict monoidal structures.

Let us look at this more carefully in the general case of a strict tensor categoryM with
presentation (G,R). First we form the category F(G) by applying the above constructions
with R = ∅. Hence Obj(F(G)) = Obj(M) and the set WG of morphisms is obtained from
the class WG of admissible words by taking the equivalence classes for the relation ∼∅.
The composition of morphisms in F(G) is given by concatenation (of words that represent
composable morphisms). Now we define a strict tensor structure on F(G). Recall that
the operation of tensoring a word w ∈ WG by an identity of M on the left or right is well
defined. We use this to define a strict monoidal structure on F(G): Its tensor unit and
the tensor product on the level of objects are the same as in M. If w1 : U → U ′ and
w2 : V → V ′ are words of length a and b respectively then we define w1 ⊗ w2 ∈ WG by

w1 ⊗ w2 := (w1 ⊗ idaV ′) ∗ (idbU ⊗w2). Using that M is a strict tensor category, and using
(4.1), (4.2) it is not hard to show that this defines a strict monoidal structure on F(G).
The crucial point is that we have the identity

(4.3) (w1 ⊗ idaV ′) ∗ (idbU ⊗w2) = (idbU ′ ⊗w2) ∗ (w1 ⊗ idaV )

and this relation easily implies the functoriality of ⊗ on WG.

Exercise (g). Show (4.3) and that ⊗ defines a strict monoidal structure on F(G).

The equivalence relation ∼R on the morphisms WG of F(G) is compatible with the
tensor product and composition of morphisms. Hence the class of ∼R-equivalence classes
of words inWG can also be equipped with a tensor product and a composition law, defining
a strict tensor category F(G,R).

Proposition 4.23. If all the relations of R hold inM then there exists a canonical functor
φ : F(G,R) →M which is the identity on objects and such that φ((w)R) = [w] (where (w)R
denotes the ∼R-equivalence class of w ∈ WG). Moreover φ is a strict tensor functor (see
below) and φ is an isomorphism of categories iff (G,R) is a presentation of M.

Exercise (h). Prove the above Proposition.

4.2. T is a braided strict monoidal tensor category. As we have seen in Exercise 3.5(b) of [2,
Chapter 2] there exists a unique braiding c of the braid category B such that c1,1 = σ1 ∈ B2.
In a formula this braiding is given by

(4.4) cm,n = (σn . . . σm+n−1)(σn−1 . . . σm+n−2) . . . (σ1 . . . σm)

Since B is a subcategory of T we only need to show the naturality of the braiding with
respect to the additional generators ∩,∪ in order to show that c also defines a braiding for
T . This is obvious topologically, or it can be shown using the relations of Theorem 4.22.

Exercise (i). Show using Theorem 4.22 and (4.4) that

(4.5) (id2⊗∪)c1,1 = c3,1(id1⊗ ∪⊗ id1)
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4.3. Strict tensor functor. A strict tensor functor is a functor F : M → N where M,N
are strict tensor categories, such that F respects the tensor product. This means that F
maps the tensor unit of M to the tensor unit of N , F (V ⊗W ) = F (V ) ⊗ F (W ) for all
objects of M, and F (α⊗ β) = F (α)⊗ F (β) for all morphisms α, β of M.

Now we come to an important existence criterion for strict tensor functors on strict
tensor categories with a presentation:

Theorem 4.24. Let M,N be strict tensor categories and suppose that (G,R) is a pre-
sentation of M. Suppose that we are given a map f0 : Obj(M) → Obj(N ) such that
f0(IM) = IN and such that f0(V ⊗ W ) = f0(V ) ⊗ f0(W ) for all objects V,W in M.
Suppose that we are moreover given a map f1 : G → Hom(N ) with the property that if
g : U → V belongs to G, then f1(g) ∈ HomN (f0(U), f0(V )). There exists a strict tensor
functor F : M → N such that F coincides with f0 on the level of objects and with f1
on G iff for all pairs (r1, r2) ∈ R we get an identity of morphisms in N if we replace the
elementary morphisms of the form idV ⊗g⊗ idW which occur as letters of r1 and r2 by the
morphism idf0(V )⊗f1(g) ⊗ idf0(W ), and similarly replace the identities in r1 and r2 by the
corresponding identities in N and finally replace the concatenations by compositions in N .
In this case the functor F is uniquely determined.

Proof. It is obvious that there exists a (unique) strict tensor functor F̃ : F(G)→ N which
restricts to f0 on objects, and to f1 on G. In view of Proposition 4.23 we therefore need
to verify that F̃ factors through φ. This amounts to checking that the images under F̃ of
r1 and r2 are equal in N for all pairs (r1, r2) ∈ R. But this was the assertion. �

4.4. Skein category S and skein functor. We now take the vector space Ek,l(a) of C-linear
combinations of the skein classes [D](a) of the tangle diagrams of k, l-tangles as the space
of morphisms from k to l. This defines a category S with composition law and tensor
product defined analogously to T . Since the skein class of a diagram is invariant for the
Reidemeister moves Ω0,Ω2,Ω3 we obtain a functor P : T → S. It is obviously a strict
tensor functor.

Definition 4.25. Let a ∈ C×. The Temperley-Lieb algebra TLn(a) is the complex algebra
EndS(n).
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