
QUANTUM DOUBLE AS A BRAIDED HOPF ALGEBRA AND
QUANTUM sl2

In this text we complete the treatment on the generalized quantum double construction.
We introduce the quantized universal enveloping algebra U of the Lie algebra sl2 and we
realize it as a quotient Hopf algebra of an explicit generalized quantum double. Next week
we use this observation to show that U is braided. This text complements parts of Chapter
3 and 4 of [3].

Convention: We fix an algebraically closed field k of characteristic zero.

We give several exercises in the text.
The homework exercise is 1.9.

1. The universal R-matrix of the quantum double

For Hopf algebras A and B with invertible antipodes, we constructed in the last lecture
the generalized double Dϕ(A,B) associated to a Hopf pairing ϕ : A×B → k. It is A⊗B
as a vector space with Hopf algebra structure characterized by

1. The canonical linear embeddings a 7→ a⊗ 1 and b 7→ 1⊗ b of A and B in Dϕ(A,B)
are Hopf algebra morphisms.

2. For a ∈ A and b ∈ B we have (a⊗ 1)(1⊗ b) = a⊗ b and we have the “straightening
rule”

(1⊗ b)(a⊗ 1) =
∑
(a),(b)

ϕ
(
S−1(a(1)), b(1)

)
ϕ
(
a(3), b(3)

)
(a(2) ⊗ 1)(1⊗ b(2)).

For the remainder of the section we assume that A and B are finite dimensional Hopf
algebras with invertible antipodes. We furthermore assume that ϕ : A × B → k is a
nondegenerate Hopf pairing (if you prefer, you may without loss of generality take B =
A∗,cop and ϕ the canonical Hopf pairing, see Exercise 2.4 of the lecture notes of last week).

Let {ai}i be a fixed linear basis of A and denote {bi}i for the associated dual linear basis
of B with respect to ϕ, so that ϕ(ai, bj) = δi,j (the Kronecker delta function δi,j is one if
i = j and zero otherwise). Some elementary facts are listed in the following

Lemma 1.1. (i) For a ∈ A and b ∈ B,∑
i

ϕ(a, bi)ai = a,
∑
i

ϕ(ai, b)bi = b.

In particular,
∑

i ε(bi)ai = 1 and
∑

i ε(ai)bi = 1.
(ii)

∑
i ai ⊗ bi ∈ A⊗B is independent of the choice of basis {ai}i of A.

1
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Proof. (i) Set a′ =
∑

i ϕ(a, bi)ai. For a dual basis element bj we have

ϕ(a′, bj) =
∑
i

ϕ(a, bi)δi,j = ϕ(a, bj),

hence a′ = a because ϕ is nondegenerate. Since ϕ(1, bi) = ε(bi) by the counit axiom for ϕ,
we obtain

∑
i ε(bi)ai = 1 by considering the latter equation for a = 1. In the same way

one verifies the second identity.
(ii) The assigment a ⊗ b 7→ ϕ(a, ·)b defines a linear isomorphism A ⊗ B → Endk(B). By
the first part of the lemma the element

∑
i ai ⊗ bi is mapped to IdB, which is independent

of the choice of basis {ai}i.
�

Denote

R =
∑
i

(ai ⊗ 1)⊗ (1⊗ bi) ∈ Dϕ(A,B)⊗2.

By the previous lemma, it is independent of the choice of basis {ai}i of A.

Lemma 1.2. The element R ∈ Dϕ(A,B)⊗2 is invertible with inverse

(1.1) R−1 =
∑
i

(S(ai)⊗ 1)⊗ (1⊗ bi).

Proof. Write T ∈ Dϕ(A,B)⊗2 for the right hand side of (1.1). We compute in Dϕ(A,B)⊗2

RT =
∑
i,j

(aiS(aj)⊗ 1)⊗ (1⊗ bibj)

=
∑
i,j,l

ϕ
(
aiS(aj), bl

)
(al ⊗ 1)⊗ (1⊗ bibj)

=
∑
i,j,l

∑
(bl)

ϕ
(
ai, bl(2)

)
ϕ
(
S(aj), bl(1)

)
(al ⊗ 1)⊗ (1⊗ bibj)

=
∑
i,j,l

∑
(bl)

ϕ
(
ai, bl(2)

)
ϕ
(
aj, S

−1(bl(1))
)
(al ⊗ 1)⊗ (1⊗ bibj)

=
∑
l

∑
(bl)

(al ⊗ 1)⊗ (1⊗ bl(2)S−1(bl(1))
)

=
∑
l

(ε(bl)al ⊗ 1)⊗ (1⊗ 1)

= (1⊗ 1)⊗2.

Here the previous lemma gives the second, fifth and seventh equality, the (co)multiplication
axiom of the pairing ϕ implies the third equality, the antipode axiom of the pairing implies
the fourth equality, and the antipode axiom in B gives the sixth equality.

The identity TR = (1⊗ 1)⊗2 is proved in a similar fashion. �
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The invertible element R ∈ Dϕ(A,B)⊗2 is our candidate for the universal R-matrix for
Dϕ(A,B). As a first step we show the hexagon relations.

Lemma 1.3. In Dϕ(A,B)⊗3 we have

(∆⊗ Id)(R) = R13R23,

(Id⊗∆)(R) = R13R12.

Proof. We compute in Dϕ(A,B),

R13R23 =
∑
i,j

(ai ⊗ 1)⊗ (aj ⊗ 1)⊗ (1⊗ bibj)

=
∑
i,j,l

ϕ
(
al, bibj

)
(ai ⊗ 1)⊗ (aj ⊗ 1)⊗ (1⊗ bl)

=
∑
i,j,l

∑
(al)

ϕ
(
al(1), bi

)
ϕ
(
al(2), bj

)
(ai ⊗ 1)⊗ (aj ⊗ 1)⊗ (1⊗ bl)

=
∑
l

∑
(al)

(al(1) ⊗ 1)⊗ (al(2) ⊗ 1)⊗ (1⊗ bl)

= (∆⊗ Id)(R).

The second identity is proved analogously. �

Exercise 1.4. Prove that (Id⊗∆)(R) = R13R12 in Dϕ(A,B)⊗3.

In order for R to be the universal R-matrix of Dϕ(A,B) it remains to prove that

(1.2) R∆(a⊗ b) = ∆op(a⊗ b)R
in Dϕ(A,B)⊗2 for all a ∈ A and b ∈ B. The following lemma gives a convenient alternative
criterion for (1.2).

Lemma 1.5 (Radford). Let H be a Hopf algebra with invertible antipode and fix an element
R =

∑
r αr ⊗ βr ∈ H ⊗H. Let H ′ ⊆ H be a Hopf subalgebra. Then the condition

(1.3) R∆(h) = ∆op(h)R ∀h ∈ H ′

is equivalent to

(1.4) R(1⊗ h) =
∑
r,(h)

h(3)αrS
−1(h(1))⊗ h(2)βr ∀h ∈ H ′.

Proof. Suppose that (1.3) holds. It implies∑
r,(h)

h(1) ⊗ αrh(2) ⊗ βrh(3) =
∑
r,(h)

h(1) ⊗ h(3)αr ⊗ h(2)βr

for all h ∈ H ′. Applying (µop ⊗ Id)(S−1 ⊗ Id⊗ Id) we get∑
r,(h)

αrh(2)S
−1(h(1))⊗ βrh(3) =

∑
r,(h)

h(3)αrS
−1(h(1))⊗ h(2)βr
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for all h ∈ H ′. Applying the antipode axiom and the counit axiom, the left hand side
reduces to R(1⊗ h).

Conversely, suppose that (1.4) holds. Then we have for h ∈ H ′,

R∆(h) =
∑
(h)

R(1⊗ h(2))(h(1) ⊗ 1)

=
∑
(h),r

h(4)αrS
−1(h(2))h(1) ⊗ h(3)βr

=
∑
(h)

h(2)αr ⊗ h(1)βr

= ∆op(h)R,

where the second equality is due to (1.4) and the third equality follows from the antipode
axiom and the counit axiom in H ′. �

Exercise 1.6. In the set-up of Radford’s lemma, show that (1.3) is also equivalent to

(1.5) (h⊗ 1)R =
∑
r,(h)

αrh(2) ⊗ S(h(1))βrh(3) ∀h ∈ H ′.

Theorem 1.7 (Drinfeld). Let A and B be finite dimensional Hopf algebras with invertible
antipodes. Let ϕ : A×B → k be a nondegenerate Hopf pairing.

Then the Hopf algebra Dϕ(A,B) is braided with universal R-matrix R.

Proof. It remains to show (1.2). Since ∆ is an algebra homomorphism it suffices to prove
that

(1.6) R∆(a⊗ 1) = ∆op(a⊗ 1)R, ∀a ∈ A

and

(1.7) R∆(1⊗ b) = ∆op(1⊗ b)R, ∀b ∈ B.

We consider (1.6) first. Since A ⊗ 1 ⊂ Dϕ(A,B) is a Hopf subalgebra, Radford’s lemma
applied to H ′ := A⊗1 as Hopf subalgebra in H := Dϕ(A,B) implies that (1.6) is equivalent
to

(1.8) R((1⊗ 1)⊗ (a⊗ 1)) =
∑
i,(a)

(a(3)aiS
−1(a(1))⊗ 1)⊗ (a(2) ⊗ bi), ∀a ∈ A.

Straightening the left hand side we get

R((1⊗ 1)⊗ (a⊗ 1)) =
∑
i

(ai ⊗ 1)⊗ ((1⊗ bi)(a⊗ 1))

=
∑
i,(a)

ϕ
(
S−1(a(1)), bi(1)

)
ϕ
(
a(3), bi(3)

)
(ai ⊗ 1)⊗ (a(2) ⊗ bi(2)).

(1.9)
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The formula (1.9) is seen to be equal to the right hand side of (1.8) by expanding the first
tensor component in the right hand side of (1.8) in terms of the basis {aj}j. The relevant
formula is a special case of the following identity in the vector space A⊗B:

(1.10)
∑
i

aaia
′ ⊗ bi =

∑
j

∑
(bj)

ϕ
(
a′, bj(1)

)
ϕ
(
a, bj(3)

)
aj ⊗ bj(2)

for a, a′ ∈ A. This follows from the computation∑
i

aaia
′ ⊗ bi =

∑
i,j

ϕ
(
aaia

′, bj
)
aj ⊗ bi

=
∑
i,j

∑
(bj)

ϕ
(
a, bj(3)

)
ϕ
(
ai, bj(2)

)
ϕ
(
a′, bj(1)

)
aj ⊗ bi

=
∑
j

∑
(bj)

ϕ
(
a, bj(3)

)
ϕ
(
a′, bj(1)

)
aj ⊗ bj(2),

where the first and third equality follow from Lemma 1.1 and the second equality from the
(co)multiplication axiom of ϕ.

The verification of (1.7) follows by a similar argument, now using Exercise (b) instead
of Radford’s lemma. �

Example. The quantum double D(G) of a finite group is a braided Hopf algebra, with
universal R-matrix given by

R =
∑
g∈G

(g ⊗ 1)⊗ (1⊗ eg).

Exercise 1.8. Complete the proof of Theorem 1.7 by deriving formula (1.7).

Exercise 1.9. Let H be a finite dimensional braided bialgebra with universal R-matrix
R ∈ H ⊗H. Show that the bilinear form ϕ : H∗ ×H∗ → k defined by

ϕ(f, g) := (g ⊗ f)(R), f, g ∈ H∗

is a bialgebra pairing. Hint: You may make use of the identities

(ε⊗ Id)(R) = 1 = (Id⊗ ε)(R)

for the universal R-matrix, see [3, Chpt. 2, Prop. 4.2].

2. Quantum sl2

Drinfeld’s theorem (Theorem 1.7) allows one to produce lots of interesting examples of
braided Hopf algebras. Prominent examples of braided Hopf algebras that can be con-
structed using the quantum double construction, are quantized universal enveloping alge-
bras of semisimple Lie algebras g, although some extra care needs to be taken since the
associated Hopf algebras are infinite dimensional.

In this section we explain this example in case g = sl2 (the 2 × 2 traceless matrices).
We first introduce it directly as a Hopf algebra. As a second step, we show that it is the
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quotient Hopf algebra of a quantum double. The (formal) R-matrix of the quantum double
then provides it with a R-matrix of its own.

2.1. Universal enveloping algebras again. We first return to the universal enveloping
algebra U(g) of a Lie algebra g and its canonical cocommutative Hopf algebra structure.
Recall that a Lie algebra g is a k-vector space together with a bilinear map [·, ·] : g×g→ g
(called the Lie bracket) satisfying

[X, Y ] = −[Y,X],

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

for all X, Y, Z ∈ g. The second equality is called the Jacobi identity. For an associative
algebra A the commutator bracket

[a, a′] = aa′ − a′a (a, a′ ∈ A)

turns A into a Lie algebra, denoted by g(A) (check the Jacobi identity!). The general linear
Lie algebra glk(V ) associated to a finite dimensional k-vector space V is g(Endk(V )). It
is isomorphic to the Lie algebra of dimk(V ) × dimk(V )-matrices with entries in k, with
Lie bracket the commutator bracket with respect to matrix multiplication. The special
linear Lie algebra slk(V ) associated to V is the Lie subalgebra of glk(V ) consisting of
endomorphisms φ ∈ glk(V ) (cq. matrices) with zero trace. This is indeed a Lie algebra with
respect to the commutator bracket, since the commutator of two traceless endomorphisms
is traceless again.

We recall now shortly some general facts about universal enveloping algebras, discussed
already in previous lectures. Let g be a finite dimensional Lie algebra. The universal
enveloping algebra of g is the associative algebra U(g) = T (g)/I(g) with I(g) the two-sided
ideal in the tensor algebra T (g) generated by the elements

X ⊗ Y − Y ⊗X − [X, Y ], ∀X, Y ∈ g.

In other words, the Lie bracket of X, Y ∈ g, viewed as elements in g(T (g)), is forced to
equal [X, Y ] when projected onto U(g), where [X, Y ] is the Lie bracket of X and Y in the
Lie algebra g.

The tensor algebra T (g) has a natural cocommutative Hopf algebra structure, character-
ized by ε(X) = 0, ∆(X) = X ⊗ 1 + 1⊗X and S(X) = −X for all X ∈ g; the ideal I(g) is
a Hopf ideal of T (g), hence U(g) is a cocommutative Hopf algebra. A fundamental result,
which we state here without proof, is the Poincaré-Birkhoff-Witt theorem. It implies in
particular that the canonical linear map g→ U(g) is injective.

Theorem 2.1. If {a1, . . . , ar} is a k-linear basis of g, then the set of monomials

{am1
1 am2

2 · · · amr
r | mj ∈ Z≥0}

in U(g) is a k-linear basis of U(g).
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We consider now the case g = sl2 ' sl(k⊕2) of traceless 2× 2 matrices in detail. It is a
three dimensional vector space with basis

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

The Lie algebra structure is determined by

(2.1) [H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

The corresponding universal enveloping algebra U(sl2) thus is the associative, unital al-
gebra over k with generators H,E, F and defining relations (2.1). It has for instance
{H lFmEn | l,m, n ∈ Z≥0} as a linear basis.

Consider the Lie subalgebras b± ⊂ sl2 with b+ (respectively b−) the upper (respectively
lower) triangular matrices in sl2. Then b+ (respectively b−) is two-dimensional with k-
basis {H,E} (respectively {H,F}). The resulting universal enveloping algebra U(b+)
(respectively U(b−)) is isomorphic to the Hopf subalgebra of U(sl2) generated by H and
E (respectively H and F ).

2.2. The quantized universal enveloping algebra, as a Hopf algebra. Let k(q) be
the field of k-rational functions in the indeterminate q.

Definition 2.2. We denote U for the unital associative algebra over k(q) with generators
K,K−1, E and F with defining relations

KE = q2EK, KF = q−2FK,

KK−1 = 1 = K−1K, EF − FE =
K −K−1

q − q−1
.

(2.2)

In other words, U is the quotient algebra T (V )/J where V is the four dimensional k(q)-
vector space with basis {K,K−1, E, F} and J the two-sided ideal of the corresponding
tensor algebra T (V ) over k(q) generated by the elements KE − q2EK, KF − q−2FK,

KK−1 − 1, K−1K − 1 and EF − FE − K−K−1

q−q−1 .

To formally re-obtain U(sl2) from U one views K as qH and one takes the limit q → 1.
This idea is made mathematically more rigorous in the following exercise.

Exercise 2.3. Let v be a fixed nonzero element in the field k.
For v 6= ±1 let Uv be the unital associative algebra over k with generators K,K−1, E,F

and defining relations (2.2) in which q is replaced by v.

(i) Define Ûv for the unital associative algebra over k with generators K,K−1, E,F, L and
with defining relations

KK−1 =1 = K−1K, (v − v−1)L = K −K−1,
KEK−1 = v2E, LE − EL = v(EK +K−1E),

KFK−1 = v−2F, LF − FL = −v−1(FK +K−1F ),

EF − FE = L.
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Show that Uv ' Ûv as algebras when v 6= ±1.
(ii) Show that

U(sl2) ' Û1/(K − 1)

as algebras.

The following lemma gives the Poincaré-Birkhoff-Witt property of U .

Lemma 2.4. The set {F lKmEn |m ∈ Z, l, n ∈ Z≥0} is a k(q)-basis of U .

Proof. We follow the arguments in the proof of [1, Chpt. 1, Thm. 1.5].
By the commutation relations in U it is clear that {F lKmEn |m ∈ Z, l, n ∈ Z≥0} spans

U . We have to show it is a linear independent set.
We claim that there exists a unique algebra homomorphism

π : U → Endk(q)
(
k(q)[X, Y, Z±1]

)
satisfying

π(F )(Y sZnXr) = Y s+1ZnXr,

π(E)(Y sZnXr) = q−2nY sZnXr+1 +

(
qs − q−s

q − q−1

)
Y s−1

(
Zq1−s − Z−1qs−1

q − q−1

)
ZnXr,

π(K±1)(Y sZnXr) = q∓2sY sZn±1Xr

for r, s ∈ Z≥0 and n ∈ Z (the second term for the formula of π(E)(Y sZnXr) should be
read as zero if s = 0). Indeed, π is well defined as algebra homomorphism π : T (V ) →
Endk(q)

(
k(q)[X, Y, Z±1]

)
, and J ⊂ Ker(π) since the generators of J are in the kernel of π

(check this!).
The elements π(F lKmEn)(1) = Y lZmXn (m ∈ Z, l, n ∈ Z≥0) are linear independent in

k(q)[X, Y, Z±1], hence so are the elements F lKmEn (m ∈ Z, l, n ∈ Z≥0) in U . �

In the following proposition we deform the Hopf algebra structure of U(sl2) to turn U
into a non commutative and non cocommutative Hopf algebra.

Proposition 2.5. The algebra U is a Hopf algebra with comultiplication characterized by

∆(K±1) = K±1 ⊗K±1,
∆(E) = E ⊗ 1 +K ⊗ E,
∆(F ) = F ⊗K−1 + 1⊗ F,

counit characterized by

ε(K±1) = 1, ε(E) = 0 = ε(F ),

and invertible antipode characterized by

S(K±1) = K∓1, S(E) = −K−1E, S(F ) = −FK.



QUANTUM DOUBLE AS A BRAIDED HOPF ALGEBRA AND QUANTUM sl2 9

Proof. The maps ∆, ε and S can be uniquely defined as algebra homomorphisms ∆ :
T (V )→ T (V )⊗2, ε : T (V )→ k(q) and S : T (V )→ T (V )op by the above defining formulas.
It is a direct verification that the resulting maps turn T (V ) into a Hopf algebra. Indeed,
the Hopf algebra axioms need only to be verified on the algebraic generators of T (V ), in
which case they follow by a direct check. For instance,

µ(S ⊗ Id)∆(E) = S(E)1 + S(K)E

= −K−1E +K−1E

= 0

= ε(E)1.

As the next step we need to verify that the two-sided ideal J ⊂ T (V ) is a Hopf ideal.
Consider the algebra maps ∆ : T (V ) → U ⊗ U and S : T (V ) → U op obtained by ∆ =
(π⊗π) ◦∆ and S = π ◦S, with π : T (V )→ U = T (V )/J the canonical map. It suffices to
prove that J is contained in the kernel of ε, ∆ and S. These are direct verifications again.
For instance,

∆(KEK−1) = (K ⊗K)(E ⊗ 1 +K ⊗ E)(K−1 ⊗K−1)
= KEK−1 ⊗ 1 +K ⊗KEK−1

= q2(E ⊗ 1 +K ⊗ E) = q2∆(E),

hence KEK−1−q2E ∈ Ker(∆). Finally, it is easy to produce the inverse of the antipode of
U . It is the unique algebra homomorphism U → U op satisfying K±1 7→ K∓1, E 7→ −EK−1
and F 7→ −KF . �

Remark 2.6. The conventions for the Hopf algebra U which we have chosen here are the
same as the ones in [3, 1], but they differ from the ones in [2, 4] (in [2, 4] the Hopf algebra
U cop is the quantized universal enveloping algebra of sl2).

Exercise 2.7. Fill in the details of the proof of Proposition 2.5.

As a consequence of Proposition 2.5, the category ModU of left U -modules over k(q) is
a monoidal category. We will show next week that a suitable full sub-category of ModU
is a braided monoidal category by realizing U as a quotient of a generalized quantum
double Dϕ(U+, U−), where U+ (resp. U−) is the Hopf sub-algebra of U generated by K±1,
E (respectively K±1, F ), and with ϕ : U+ × U− → k(q) a suitable nondegenerate Hopf
pairing.

Exercise 2.8. Show that U± ' T (V±)/J±, where V+ (resp. V−) is the three dimensional
k(q)-vector space with basis {K±1, E} (resp. {K±1, F}) and with J+ ⊂ T (V+) (resp. J− ⊂
T (V−)) the two-sided ideal generated by KK−1 − 1, K−1K − 1 and KE − q2EK (resp.
KK−1 − 1, K−1K − 1 and KF − q−2FK).

2.3. U as a quotient of a generalized quantum double. We start with the construc-
tion of the relevant Hopf pairing.
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Lemma 2.9. There exists a unique Hopf pairing

ϕ : U+ × U− → k(q)

satisfying

ϕ(E,F ) =
1

q−1 − q
, ϕ(E,Kξ) = 0 = ϕ(Kη, F ), ϕ(Kξ, Kη) = q−2ξη

for ξ, η ∈ {±1}.

Proof. We use the notations and result of Exercise 2.8. By Lemma 2.8 in the syllabus of
last week we have a unique bialgebra pairing ϕ̃ : T (V+) × T (V−) → k(q) satisfying the
stated conditions, where T (V+) and T (V−) are Hopf algebras with comultiplication, counit
and antipode given by

∆(K±1) = K±1 ⊗K±1, ∆(E) = E ⊗ 1 +K ⊗ E,
ε(K±1) = 1, ε(E) = 0,

S(K±1) = K∓1, S(E) = −K−1E
for T (V+) and

∆(K±1) = K±1 ⊗K±1, ∆(F ) = F ⊗K−1 + 1⊗ F,
ε(K±1) = 1, ε(F ) = 0,

S(K±1) = K∓1, S(F ) = −FK
for T (V−), cf. Proposition 2.5. Using Exercise 2.5 in the syllabus of last week one ver-
ifies that ϕ̃ is in fact a Hopf pairing. For example, one of the equalities one needs to
check is ϕ̃(S(E), F ) = ϕ̃(E, S−1(F )), or equivalently ϕ̃(K−1E,F ) = ϕ̃(E,KF ). Using the
(co)multiplication axiom of ϕ̃, this is equivalent to verifying that

ϕ̃(K−1, K−1)ϕ̃(E,F ) + ϕ̃(K−1, F )ϕ̃(E, 1)

=ϕ̃(E,K)ϕ̃(1, F ) + ϕ̃(K,K)ϕ̃(E,F ).

By the defining identities of ϕ̃, both the left and the right hand side equal q−2(q−1 − q)−1.
It remains to show that the Hopf ideal J± ⊂ T (V±) is contained in IU± , where (recall

from last week)

IU+ = {X ∈ U+ | ϕ̃(X, Y ) = 0 ∀Y ∈ U−},
IU− = {Y ∈ U− | ϕ̃(X, Y ) = 0 ∀X ∈ U+}.

We discuss the argument for J+. We use the following
Claim: If ϕ̃(X, Y ) = 0 for the generators X of the two-sided ideal J+ and for Y ∈ V− ⊕ k,
then J+ ⊂ IU+ .
Proof of the claim: If ϕ̃(X, Y ) = 0 for the generators X of the two-sided ideal J+ and for
Y ∈ V− ⊕ k, then ϕ̃(X, Y ) = 0 for all X ∈ J+ and Y ∈ V− ⊕ k by the (co)multiplication
axiom for ϕ̃ and the fact that ∆(V−⊕k) ⊂ (V−⊕k)⊗2. It now also follows that ϕ̃(X, Y ) = 0
for all X ∈ J+ and Y ∈ T (V−), in view of the (co)multiplication axiom for ϕ̃ and the fact
that J+ is a Hopf ideal. Hence, J+ ⊂ IU+ .
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We now use the claim to show that J+ ⊂ IU+ . First note that J+ ⊂ Ker(ε), so ϕ̃(X, 1) = 0
for all X ∈ J+. The verifications of ϕ̃(X, Y ) = 0 for X a generator of the two-sided ideal
J+ and for Y ∈ V− are direct computations. For instance,

ϕ̃(KE − q2EK,F ) = ϕ̃(K,K−1)ϕ̃(E,F ) + ϕ̃(K,F )ϕ̃(E, 1)

− q2ϕ̃(E,K−1)ϕ̃(K,F )− q2ϕ̃(E,F )ϕ̃(K, 1)

=
q2

q−1 − q
+ 0 + 0− q2

q−1 − q
= 0.

The Hopf pairing ϕ̃ thus gives rise to a Hopf pairing ϕ : U+ × U− → k(q) by the formula
ϕ(X+J+, Y +J−) := ϕ̃(X, Y ) for X+J+ ∈ T (V+)/J+ = U+ and X+J− ∈ T (V−)/J− = U−.
This is the desired Hopf pairing. �

Proposition 2.10. Let D be the unital associative algebra over k(q) with generators
E,F,K±1 and K ′±1 and with defining relations

KK−1 = 1 = K−1K, KE = q2EK,

K ′K ′−1 = 1 = K ′−1K ′, K ′F = q−2FK ′,

K ′E = q2EK ′, KF = q−2FK,

KK ′ = K ′K, EF − FE =
K −K ′−1

q − q−1
.

Then D ' Dϕ(U+, U−) as algebras, with the isomorphism D → Dϕ(U+, U−) determined by

K±1 7→ K±1 ⊗ 1, K ′±1 7→ 1⊗K±1,
E 7→ E ⊗ 1, F 7→ 1⊗ F.

(2.3)

Proof. We first compute the commutation relations of the elements K±1 ⊗ 1, E ⊗ 1 with
1⊗K±1 and 1⊗F in the generalized quantum double Dϕ(U+, U−) using the ”straightening
rule” for the multiplication in Dϕ(U+, U−). We claim that we get the following list of
relations in Dϕ(U+, U−),

(E ⊗ 1)(1⊗ F )− (1⊗ F )(E ⊗ 1) =
K ⊗ 1− 1⊗K−1

q − q−1
,

(E ⊗ 1)(1⊗K) = q−2(1⊗K)(E ⊗ 1),

(K ⊗ 1)(1⊗ F ) = q−2(1⊗ F )(K ⊗ 1),

(K ⊗ 1)(1⊗K) = (1⊗K)(K ⊗ 1).

(2.4)

We derive the second relation as an example, the others are left as an important exercise
(see below). We first note that∑

(K)

K(1) ⊗K(2) ⊗K(3) = (∆⊗ Id)(∆(K)) = K ⊗K ⊗K



12 QUANTUM DOUBLE AS A BRAIDED HOPF ALGEBRA AND QUANTUM SL2

in U± and ∑
(E)

E(1) ⊗ E(2) ⊗ E(3) = E ⊗ 1⊗ 1 +K ⊗ E ⊗ 1 +K ⊗K ⊗ E

in U+, in view of the explicit definitions of the Hopf algebra maps. By the straightening
rule in the generalized quantum double we compute in Dϕ(U+, U−),

(1⊗K)(E ⊗ 1) =
∑
(E)

ϕ(E(1), S(K))ϕ(E(3), K)(E(2) ⊗ 1)(1⊗K)

=ϕ(E,K−1)ϕ(1, K)(1⊗K) + ϕ(K,K−1)ϕ(1, K)(E ⊗ 1)(1⊗K)

+ ϕ(K,K−1)ϕ(E,K)(K ⊗ 1)(1⊗K)

=q2(E ⊗ 1)(1⊗K)

in view of the definition of ϕ.
Now we are ready to prove the proposition. By (2.4) and the fact that the canonical

linear embeddings U± → Dϕ(U+, U−) are algebra morphisms, we have a unique algebra
homomorphism φ : D → Dϕ(U+, U−) satisfying (2.3). It remains to show that φ is an
isomorphism.

By the defining relations in D it is clear that the set B = {EmK lF rK ′n | l, n ∈ Z, m, r ∈
Z≥0} ⊂ D of monomials is a spanning set of D over k(q). Clearly φ(B) is a k(q)-linear basis
of Dϕ(U+, U−), hence B is a k(q)-linear basis of D. The algebra morphism φ thus maps a
k(q)-linear basis of D to a k(q)-linear basis of Dϕ(U+, U−), hence it is an isomorphism. �

Exercise 2.11. Prove the remaining commutation relations (2.4) in Dϕ(U+, U−).

By the previous proposition the algebra D has a unique Hopf algebra structure such that
the algebra isomorphism D ∼−→ Dϕ(U+, U−) is an isomorphism of Hopf algebras. We have
the following description of the quantized universal enveloping algebra U of sl2 in terms of
the generalized quantum double D.

Corollary 2.12. The two-sided ideal (K −K ′) ⊂ D is a Hopf ideal. Furthermore,

D/(K −K ′) ' U

as Hopf algebras.

Proof. By Proposition 2.10 and the defining relations in U there is a unique algebra homo-
morphism U → D/(K −K ′) mapping K±1, E, F to their respective classes in the quotient
algebraD/(K−K ′). It can be easily inverted by the previous proposition. Indeed, it follows
from Proposition 2.10 and the defining relations in U that the assignments sending the gen-
erators E,F,K±1, K ′±1 of D to the elements E,F,K±1, K±1 in U respectively, uniquely
extend to an algebra homomorphism D → U . The kernel contains the two-sided ideal
(K −K ′), hence it gives rise to a well defined algebra homomorphism D/(K −K ′) → U .
This map clearly inverts the earlier constructed algebra homomorphism U → D/(K−K ′).

It is a standard check to verify that the two-sided ideal (K −K ′) ⊂ D is a Hopf ideal.
Comparing the explicit formulas for the Hopf algebra maps of U and the quotient Hopf
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algebra D/(K − K ′), one verifies that the constructed algebra isomorphism is in fact an
isomorphism of Hopf algebras. �
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