QUANTUM INVARIANTS I

Recall that U is the quantized universal enveloping algebra of sly over K = k(q%), where
k is an algebraically closed field of characteristic zero. In this text we show that the braided
monoidal category Modéd of finite dimensional type 1 U-modules over K is semisimple, and
we describe the simple modules explicitly. We use the results to represent the skein cate-
gory in ModJ&d.

Convention: In this syllabus all U-modules are considered over K unless specified explicitly
otherwise. In other words, an U-module will mean a K-module M together with an K-
algebra homomorphism 7 : U — Endg(M) (or equivalently, a K-module M with a K-
bilinear left action U x M — M, given by (u,m) — um(= m(u)(m))).

1. HIGHEST WEIGHT MODULES OF U

Recall that U is the associative unital algebra over K with generators K*!, E, F' and
relations

K—-K!
KK'=1=K"'K, EF —FE = ——,
q—q
KEK™' = ¢E, KFK™' =¢7%F.

For a left U-module M and A € K* we write M), for the K-eigenspace with eigenvalue A,
My={meM | Km=Am}.

Definition 1.1. Let M be a left U-module and A\ € K*.

(i) An element m € M 1is called a highest weight vector of weight \ if 0 # m € M, and
Em = 0.

(ii) M s called a highest weight module of highest weight X if M = Um with m € M a
highest weight vector of weight X.

Remark 1.2. If M is a highest weight module of highest weight A, then the spectrum (=set
of eigenvalues) Spec,,(K) of the action of K on M satisfies A\ € Spec,,(K) C Ag?Z<o.
Indeed, if m € M is the highest weight vector of highest weight A, then M is spanned by
{F'm}icz., (use here that { F"EIK'}; jez. ez is a K-basis of U and the fact that M = Um)
and K (F'm) = q~%AF'm. In particular, the highest weight of a highest module is unique.

Let A € K* and let
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be an infinite dimensional K-vector space with K-linear basis {1, (\) }nez.,- Set m_1(\) :=
0 in M(A). Recall the g-number

q2m_1
¢ —1

(m)g = e K, m € Zso.

Proposition 1.3. (i) The following formulas uniquely define a left U-module structure on
M(N),

Km,(\) = A\g”?"m,(\),
(1.1) Ema(A) = (1) . (&

q—q! ) ()
Fm,(A) = mu1(N).

The resulting left U-module M(X) is a highest weight module of weight X, with highest
weight vector mo(\).
(ii) Any highest weight left U-module M of weight X is a quotient of M(\).
Proof. (i) Consider I(\) = UE 4+ U(K — \), the left ideal of U generated by FE and K — \.
The set

{F'"E'K? | n,i € Zso, j €7}
is a K-linear basis of U by the Poincaré-Birkhoff-Witt theorem, hence the elements
(1.2) F"+1(N), n >0
form a K-linear basis of the quotient space U/I(\). We now identify the K-vector space
M (X) with U/I()\) via the K-linear isomorphism M (\) — U/I(\) mapping the distin-
guished K-basis element m,,(A) of M(A) to F" + I(\) € U/I()) for all n € Z>o. With
this particular realization of M(\) as quotient of U by the left ideal I()\), it canonically

inherits a left U-module structure. Computing its action explicitly on the basis elements
(1.2) we obtain (1.1); the first equation follows from the relation K F™ = ¢ ?"F"K in U,

Km,(\) = ¢ "F"K +I(\) = ¢ " " + I(\) = ¢ 2" dm, (N).
The second equation of (1.1) follows from
Em,(\) = EF"+ I()\)

2-2n -1
" w1 (¢ TK - K
=F"E+ (n) " ( e ) + I(\)
2-2n -1
q A—A

= () (2 ) e
with the obvious adjustments for n = 0. The third equation of (1.1) is trivial.
(ii) Let M be a highest weight U-module of highest weight A, with highest weight vector

m. Consider U as left U-module by left multiplication in U (u -« := uv’ for u,u’ € U).
Then the map U — M, defined by u — wum, is a surjective U-module morphism. Since




QUANTUM INVARIANTS I 3

m € M is a highest weight vector of weight A, it factors through the ideal I(\), hence it
gives rise to a well defined surjective U-module morphism M(\) = U/I(\) — M. 0

Definition 1.4. M(\) is called the Verma module of highest weight \ € K*.
A left U-module M has two trivial U-submodules, namely {0} and M.

Definition 1.5. A left U-module M is simple if M # {0} and if {0} and M are the only
U-submodules of M.

Under mild conditions we can now describe the finite dimensional simple left U-modules
over K as follows.

Proposition 1.6. Let A € K*, e € {£1} and n € Zxy.

(i) M(N) is simple if X ¢ +q>=0.

(ii) M (eq™) has a unique nontrivial U-submodule N(eq"), isomorphic to the Verma module
M(eg*™).

(iii) The left U-module L(e,n) := M(eq™)/N(eq™) is a finite dimensional simple U-module
of dimension n + 1. Furthermore, L(e,n) ~ L(¢',n’) if and only if (e,n) = (¢',n’).

(iv) Let M be a finite dimensional, simple left U-module. If M has an eigenvector for the
action of K, then M ~ L(e,n) for a unique (e,n) € {1} X Z>o.

Proof. We start with some preliminary remarks before embarking on the proof of the four
statements. Let A € K* and let {0} # N C M(\) be a U-submodule. Fix 0 # m € N and

write
m = Z cim;(N)
jeJ
with ¢; € K* and J a nonempty finite subset of Z~,. For ¢ € J we then have

—1 K — q_2j)‘
jeJ\i

Furthermore, if m;(A) € N for a given i > 1, then acting by E we conclude from the
previous proposition that m;_1(\) € N if X # +¢"~ 1.

(i) Let A ¢ +¢%20 and suppose that {0} # N C M()) is a U-submodule. Let i € Zsg
such that m;(\) € N. Since A ¢ +¢?>°, we conclude from the above remarks that the
highest weight vector mg(A) is also contained in N. Since M(\) = Umygy(A), we conclude
that N = M (), hence M()) is a simple U-module.

(ii) Suppose that A = e¢" (¢ € {£1}, n € Z>¢). Then Em,1(eq™) = 0 by the previous
proposition, hence N(eq") := D>, Km;(eg") is a U-submodule of M (eg"). It is a highest
weight module of highest weight eg~2~", with highest weight vector m,,1(eq"). It is easily
seen to be isomorphic to M (eq=2~") (hence it is simple by (i)).

Let 0 # N C M (eq™) be an U-submodule. Let i be the smallest nonnegative integer such
that m;(eq") € N. We conclude from the remarks so far that there are two posibilities:
i = 0 (in which case N = M(eq™)) or i = n+1 (in which case N = N(eg")). This completes
the proof of (ii).
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(iii) Let m : M(eq™) — L(e,n) be the canonical map. It is a surjective U-module
morphism. If M C L(e,n) is an U-submodule, then N(eq™) C 7~ (M) C M(eq™) is an
U-submodule of M(eq"), hence 71 (M) equals N(eq™) or M (eq™) by the observation in the
previous paragraph. Thus M = {0} or M = L(e,n), hence L(e,n) is a simple U-module.

Since N(eq") = @;>,1 Kmj(eq") it is clear that {m;(eq") + N(eq")}, is a K-linear
basis of L(e,n), hence dimg(L(e,n)) =n + 1.

If L(e,n) ~ L(¢’,n’) as U-modules then the corresponding sets of eigenvalues for the
actions of K on L(e,n) and L(€',n') should be the same. This forces (¢,n) = (¢/,n’).

(iv) Let M be a finite dimensional, simple left U-module with M) # {0} for some A € K*.
The algebraic sum > .- Mygs, in M is direct, since the summands are eigenspaces of
the action of K on M for different eigenvalues. But M is finite dimensional over K by
assumption, hence Mp.y # {0} for only finitely many s € Zso. Since E"M, C Mr,
there exists a m' € My and r € Zx, such that m := E"m’ € Mg, is nonzero while
Em = E™™'m/ = 0. Set u = ¢*"\. Since M is simple, we have M = Um, hence M
is a highest weight U-module of highest weight p, with highest weight vector m. Let
¢ : M(pn) — M be the corresponding surjective U-module morphism, characterized by
d(mo(p)) = m. Then Ker(¢) C M(u) is a nontrivial left U-submodule of M (u) and
M (u)/Ker(¢) ~ M. By the previous observations, p = eq™ for some ¢ € {£1} and
n € Zso, and Ker(¢) = N(eq™). Hence M ~ L(e, n). O

Corollary 1.7. For e € {1} and n € Z>( choose
m;(eq") :=m;(eq") + N(eq"), (7=0,...,n)

as K-linear basis of L(e,n) = M(eq")/N(eq"™). Furthermore setm_1(eq") = 0 = M,41(€q").
The U-action on L(e,n) is explicitly given by

Kmij(eq") = eq" ¥m;(eq"),
Emmj(eq") = eq " (j) o (n + 1= 7) 271 (eq"),
Fmij(eq”) = mjia(eq")
for7=0,...,n.
Proof. Direct computation. U
We now investigate the morphisms between U-modules.
Lemma 1.8. (i) Suppose M and N are non-isomorphic simple left U-modules. Then
Homy (M, N) = {0}.
(ii) If M is a highest weight module then Endy (M) = spang{Id,,}.

Proof. (i) Let ¢ € Homy (M, N). The kernel of ¢ is an U-submodule of M, hence it is {0}
or M. If ¢ is injective, then the image of ¢ is a nonzero U-submodule of N, hence it is
equal to N. In this case ¢ is an isomorphism, contradicting the fact that M 2 N. Thus
the kernel of ¢ is M, which means that ¢ = 0.
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(ii) Let A € K* be the highest weight of M. Choose a corresponding highest weight vector
m € M of highest weight A\. Then M, = spang{m} since M is a quotient of M (\), and
M (), is one-dimensional.

Fix now ¢ € Endy(M). By the previous paragraph we have ¢(m) = pum for some p € K.
Let now m’ € M. Since M is a highest weight module with highest weight vector m, there
exists an u € U so that m’ = um. Then ¢(m') = ¢(um) = ugp(m) = um’. We conclude
that ¢ = uldy,. O

Exercise 1.9. Recall that the linear dual V* = Homg (V,K) of a left U-module V is a left
U-module by

(X@)(v) == @(S(X)v), ¢eV', veV, Xel.
Show that L(e,n)* ~ L(e,n) as U-modules for all e € {1} and n € Zxy.

2. THE CATEGORY Mod]/' AGAIN
Recall that a left U-module M is of type 1 if
M =P M.
neZ

We defined before the braided monoidal category Mod{]d consisting of the finite dimensional
type 1 left U-modules. From the last section we immediately get the following explicit
description of the simple modules in Modéd.

Corollary 2.1. The simple U-modules in Mod]\" are the L(n) := L(+1,n) (n € Zsq), up
to isomorphism.

Exercise 2.2. Let M be a finite dimensional type 1 U-module and consider the subspace

M ={me M| Em=0}.

M= P M.

nEZzO

with Mg, = M0 My the space of highest weight vectors in M of highest weight q".

Show that

We now proceed to show that a finite dimensional type 1 U-module M is semisimple,
i.e. that M is isomorphic to a direct sum of the simple modules L(n) (n > 0).

Theorem 2.3. Let M € Ob(Mod/?). Then
M ~ @ L(n)%kn

TLEZEO
as U-modules, with k, = dimg (Mg.).

We give some preparatory results before embarking on the proof of the theorem.
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Lemma 2.4. Let M € Ob(Mod!") and let N C M be a U-submodule. Then N, M/N &
Ob(Mod{).
Proof. Only the statement that N is of type 1 requires proof. Clearly
BNnM.CNcM
nez

We have to show that the first inclusion is an equality. Let m € N and write m = Zj ey M
with J C Z finite and m; € M. Then

K —d’
m, = H q. me N
. q" — ¢
jeJI\{n}

for all n € J, hence m € @,,., N N Mn. O

neL

The following basic observation will be of use.

Lemma 2.5. Let M € Ob(Modéd). There exists a finite sequence of finite dimensional
type 1 U-submodules

{O}ZMQCMlCMQC"'CMT_1CMT:M

such that, for 1 < j <r, the quotient U-module M;/M;_y is simple (hence isomorphic to
L(n) for some n € Zsq). Such a sequence is called a composition series for M of length r.

Proof. Fix a nonzero module M € Ob(Mod{]d). Using induction to the K-dimension of M,
it suffices to show that there exists a U-submodule N C M such that M/N is simple.

If M is simple, then we are done (N = {0} does the job). If M is not simple, then
there exists an U-submodule {0} # L C M. The quotient U-module M := M/L is of type
1 and of strictly smaller dimension than M. By the induction hypothesis there exists an
U-submodule N C M such that M /N is simple.

Consider the canonical surjective U-module morphism 7 : M — M. Then N :=
7~ Y(N) C M is a U-submodule, hence N is of type 1, and M/N ~ M/N is simple.

O

A composition series does not have to be unique, but the subsequent simple quotients
are unique up to reshuffling (this is the Jordan-Holder theorem):

Lemma 2.6. Let M € Ob(Mod{/") and suppose that
{0} =MyCcMyC---CM_1CM =M,

2.1

(2.1) {0}=MygcM{C---CM, ,CM,=M

are two composition series of M. Then r = s and for some permutation o of {1,...,r} we
have
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Proof. We call two composition series (2.1) of M equivalent if r = s and if (2.2) holds true
for some permutation o of {1,...,r} (this is indeed an equivalence relation). We are thus
required to show that all composition series of M are equivalent.

We prove it by induction to the minimum min(r, s) of the lengths of the two composition
series. If it is zero (respectively one) then M = {0} (respectively M is simple), so there
is nothing to prove. Let (2.1) be two composition series of M with r, s > 2 and suppose
that the lemma is correct for composition series with one of the two composition series of
length < min(r, s). Without loss of generality we may assume that r < s.

Case (i): Suppose that M,_; = M!_,. We will denote this U-module by N. Then

{O}ZM()CMlC"'CMT,QCMrflzN,
{0y=MycM{C---CM,_ ,CM_,=N

are composition series for the U-submodule N of M. By the induction hypothesis, they
are equivalent, in particular r = s. Since M/M,_; = M/N = M/M]_,, the composition
series (2.1) for M are equivalent.

Case (ii): Suppose M,y # M. ;. Set N = M,y + M!_,. Then M, C N C M is a U-
submodule. The nonzero U-submodule N/M,_; of M /M, _; equals M /M, _, since M /M,_4
is simple, hence N = M. We thus obtain isomorphisms

M/Mr—l = (Mr—l + M;—l)/Mr—l = M;—l/(MT—l N M;—l)v

MMy = My + M_y)/M;_y = M,y /(M- 0 M,_,)
of U-modules. We choose now a composition series

{0}=KyC---CKy 1 CK,=M,_1NM._,

for M,_y N M!_,, which can be complemented to form a composition series for M in two
ways,
{0}=KycCc---CK, CKi;=M, ,\NM., , C M, 1 CM,
{0}=KyCc---CK; CKi=M, ,NM, ,CM. ,CM.

Clearly the two composition series (2.3) for M are equivalent.

The first composition series of (2.1), respectively the first composition series of (2.3),
contains a composition series for M,_; of length » — 1, respectively of length ¢t + 1. By the
induction hypothesis, these two composition series for M, _; are equivalent. In particular,
t = r — 2. It follows that the first composition series for M of (2.1) is equivalent to the
second composition series for M of (2.3).

The second composition series of (2.3), respectively the second composition series of
(2.1), contains a composition series for M. ; of length t + 1 = r — 1, respectively of
length s — 1. Again by the induction hypothesis, these two composition series for M]_,
are equivalent, in particular r = s. Consequently the second composition series for M of
(2.3) is equivalent to the second composition series for M of (2.1). By the transitivity of
the equivalence relation, we conclude now that the two composition series of (2.1) for M
are equivalent. O

(2.3)
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We can now prove the theorem in a special case.
Lemma 2.7. Let n € Z>q. Suppose that M € Ob(Modﬂd) has a composition series
{0} =MyCcMyC---CM,_yCM =M

with M;/M;_y ~ L(n) for all j = 1...,7. Then M is semisimple, i.e. M ~ L(n)*" as
U-modules.

Proof. Using that L(n)s» is one-dimensional and that L(n),m+2 = {0}, we claim that
M gni2 = {0}, Mjgn = M¢ . (with the notations from Exercise 2.2) and dimg (M5 .) = j.
We proceed by induction to j. It is clearly true for j = 1. Suppose it is true for j — 1. Let

be the canonical surjective morphism of U-modules. If m € M; n+2 then m € Ker(n;),
hence m € M;_y gn+2 = {0}. Thus M; = = {0}.

Since M; is of type 1, there exists a nonzero m € M, ,» mapping under 7; to a highest
weight vector of L(n). In particular m ¢ M,_;, hence Km + M;_y ;» C M, is a direct
sum. Let v € M, s, then for some ¢ € K we have v —cem € M; »n NKer(m;) = M;_1 4n. We
conclude that

Km @ Mj—l,q” = Mj’qn7

hence dimg (M;4n) = j. Since Mj 1 = M;_; .. by the induction hypothesis, it remains
to show that E'm = 0, but this is clear since Em € M; 2 = {0}.

Fix now a K-basis {v,...,v,} of M. For j =1,...,r the U-submodule V; := Uv; € M
generated by v; € Mg, is a finite dimensional highest weight U-module of weight ¢", with
highest weight vector v;. Thus V; ~ L(n) as U-modules. Write V' for the U-submodule
> j—1 Vi of M. By construction, Vin = &]_Kv; = M. Let @ : M — M/V be the
canonical surjective U-module morphism. Since M is of type 1, m(Myn) = (M/V ). Then
Ker(m) " Mp» = VN Mpn = Vpn, hence (M/V)ypn ~ My /Vin = {0}. We claim that
MV = {0}.

Suppose that M/V # {0}. Then we can construct composition series

{O}:N()CNlC"'CNS_lCNs:‘/,
{O}:W0C~--Cﬁt,1cﬁt:M/V

with ¢ > 1. Then the above two composition series can be combined to give a composition
series for M,

{0} =Ny C---C NSZV:W_I(M()) Cﬂ'_l(Ml) (G CW_I(Mt> =M.

Using the previous lemma, we conclude that 7=1(M;)/V is a simple U-submodule of M/V,
isomorphism to L(n). But this is impossible since (M /V');» = {0}. Thus we conclude that
M =V =37V, Observe that dimg(M) = (n + 1)" equals )7, dimg(V}) since
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Vj =~ L(n), hence the sum M = 7" | Vj is direct. We conclude that

M ~ @ Vi~ L(n)®"
j=1

as U-modules, as desired. [l

Denote Z(U) = {X € U | XY =YX VY € U} for the center of U. Let M be a
left U-module. The map m +— Zm defines an endomorphism Z,, € Endy (M) (since Z
is central). This gives a natural transformation Z : Ide — Id¢ for the category C of left
U-modules since

foZy=2Zyof, f € Homy (M, N).

Note that Z restricts to a natural transformation for the identity functors of the full
fd
subcategory Modj; of C.
Write

qK + qflel

(2.4) C=FE+5 — =5

e U.

Proposition 2.8. (i) C € Z(U).
(ii) If M is highest weight U-module of highest weight A € K*, then

g\ + g At
Cy = ———Idy,.
(q—q71)?
In particular,
14+n —1-n
q +q
Cripy = —————Idrm,
M= g =gz

forn € Zxy.

Proof. (i) We have to show that C' commutes with the algebraic generators K+, E and F'
of U. This is verified by direct computations. We show here the computation for F,

¢EK + ¢ 'EK!

EC = EFE +
(q—q71)?
K- Kt g 'K 4+ gK1
:<FE+ﬁ>E+(ﬁ>E
q—q (¢q—q7Y)
:(FE+@—@*XK—K?U+Q*K+QK*)E
(q—q71)?
K —lK—l
_ (FEJrq(Jrq—l)Z)EZCE,
q—q
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(ii) Let M be a highest weight U-module of highest weight A € K*. Then Cy; = cpldyy
for some c¢); € K by Lemma 1.8. To compute the constant ¢y, let m € M be a highest
weight vector of M, so that Km = Am and Em = 0. Then

A+g At
(¢—q")
by the explicit expression for the central element C. Hence ¢y, = g AT O

(g—q=1)?
Exercise 2.9. Let A\, u € K*. Show that
S U s
(a—a?  (a—q¢)

if and only if \ = p or X = q2u~ .

The exercise in particular shows that C acts by different scalars on the simple U-modules
L(n) (n € Zso) in Mod/".

To prove the theorem, we investigate C; for an arbitrary finite dimensional type 1
U-module M. We begin with the following basic observation.

Lemma 2.10. Let M be a finite dimensional type 1 U-module.
We have

M = @M(#), My ={m e M | (Cy — pldps)"m = 0 for some n € Zo}.
neK

Proof. We write

14+n —1-—n
_l_
ﬁ S K, n e ZZO

for the scalar such that Cp,) = ¢,IdL@,). Choose a composition series {0} = My C --- C
M,y ¢ M, = M of M. Then M;/M;_y ~ L(nj) for some n; € Z>o (1 < j < 7).
Choosing a K-basis of M compatible with the composition series (so first fixing a basis of
My, extending it to a basis of M; and continuing this procedure until we have a K-basis
of M), we see that the characteristic polynomial of Cy; € Endg(M) is of the form

Cp =

det(C’M - /\IdM) = ﬁ(cn]. - )\)Sj € K[)\]

i=1

with s; = dimg(L(n;)). The characteristic function of Cy; € Endg(M) thus decomposes
as a product of linear factors over K. A well known result from linear algebra now says
that there exists a K-basis of M such that the associated matrix of C), is in Jordan normal
form (see, e.g., [6, XIV, §2]). For a fixed Jordan block J of size t x ¢ with eigenvalue p € K
on its diagonal we have (J — ul)t = 0, with I (resp. 0) the ¢ X ¢ unit matrix (resp zero
matrix). This proves the lemma. U
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We can now easily complete the proof of Theorem 2.3. Let M be a finite dimensional
type 1 U-module, and write
M =P M,

neK

for its generalized eigenspace decomposition under the action of C. Since C' € Z(U)

(thus Cy € Endy(M)), the generalized eigenspaces M,y are U-submodules of M. It thus

remains to show that the finite dimensional type 1 U-submodules M, is semisimple.
Choose a composition series

{0} =NoC Ny C---C N, =My,

for M. For 1 <t < r we thus have N;/N;_y ~ L(n;) for some n; € Z>o. The only
eigenvalue of Cyy,, is p, hence

ILL _ q1+nt + q—l—nz
(¢—q)?
for t =1,...,r. This implies that n; = n is independent of ¢t. Lemma 2.7 now shows that

M, is semisimple, which completes the proof of Theorem 2.3.

Exercise 2.11. Let M be a finite dimensional type 1 U-module. Show that

dimK (EndU(M)) = Z dlIIl]K (qun)Q
n=0

3. A REPRESENTATION OF THE SKEIN CATEGORY

In this section we give a representation of the skein category S (q’%) over K. Recall that
S (q_%) is the strict tensor category with objects the nonnegative integers Zx, and with
morphisms Homg(k, ) the linear skein Ey(q~2) over K.

We call a strict tensor category M linear over K if the set Hom (U, V') of morphisms
from U to V are vector spaces over K for all objects U and V' of M, and if the tensor
product and composition maps

o : Homy, (V, W) x Hom (U, V) — Hom (U, W),
® : Homp (U, V) x Hompa(U', V') — Homp(U @ U,V @ V')

are K-bilinear for all objects U, V, U’, V', W of M. The skein category S (q_%) is an example
of a K-linear strict tensor category.

For K-linear strict tensor categories the constructions of last week on generators and
relations can be adjusted to encorporate the K-linearity of the category in a natural way.
As a consequence we get the following result.

Proposition 3.1. Let M be a K-linear strict tensor category with unit object I. Let V'
be an object of M and suppose that ¢ € Homp(V @ V 1) and 1» € Hompm(I,V @ V) are
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morphisms satisfying
poh=—(q+q ")idy
(¢ ®@idy) o (idy ® ¥) = idy = (idv ® ¢) o (¥ ® idy).

Then there exists a unique strict tensor functor I : S(q’%) — M satisfying
(1) F(1) =V,
(2) F: E(q2) — Homp (VEF, V) is K-linear,
(3) F(U) =1 and F(N) = ¢.
Proof. See appendix 4 for a detailed proof.
O

Composing the K-linear strict tensor functor F' : S (q_%) — M from Proposition 3.1
with the strict tensor functor

G:T — S(g?)
from Section 4.4 in the syllabus of week 15, we obtain a strict tensor functor

P=FoG:T - M.

Given an isotopy class [T] of a (k,[)-ribbon tangle 7', we thus obtain an isotopy invariant
P([T]) € Homp (V®* V&) of T. The invariant P([T]) for a (k,[)-ribbon tangle T' can be
computed as follows. Represent T" by a generic (k,[)-tangle diagram Dy (with the proper
number of curls in the diagram to account for the framing of 7). Now view D7 as element

in Ej(q 2) and smoothen the crossings by the skein relation in Ej(¢~2). In the resulting
K-linear sum of (k,[)-tangle diagrams without crossings we get rid of a closed loop on the
cost of a factor —(q + ¢~'). We replace minima (respectively maxima) by the morphism
Y (respectively ¢) in M and we replace id, by idyer, while respecting the tensor product

and composition rules in both the categories S (q_%) and M. The resulting morphism in
M is our desired invariant of 7.
For ribbon links we immediately re-obtain the Kauffman bracket,

Corollary 3.2. In the above set-up we have
P(T)) = ~(g+ NI, yids
for a ribbon link T.

We now are going to construct an explicit K-linear strict tensor functor Fy : S (q_%) —
— fd — fd ) . i
Mod;; , where Mod,; is the strict monoidal category associated to Modéd by Mac Lane’s

. —— fd . . .
coherence theorem. In passing from Modéd to Mod;; , we essentially get rid of the associa-
tivity constraint by fixing a particular paranthesis order in multiple tensor products. By

— fd
definition the objects in Mod{] are the finite sequences S = (My, My, ..., My) of objects
M; in Mod}? (k € Zs). For such a sequence S we define

F(S)=((---(My ® My) @ ---) @ My_y) @ My, € Ob(Mod?),
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which should be read as the unit object L(0) = K if £ = 0. The morphisms S — T for two
— fd
sequences S and 7' in Mod{l are by defininition the morphisms F(S) — F(T) in Mod/".
— fd
Clearly Modé becomes a category in this way, and the map F', defined as the identity on

. . —— fd . .
morphisms, defines an equivalence F' : Mod{]d — Mod;; of categories. The next step is to

fd . . . . .
turn Mod;; in a strict tensor category. On objects, the tensor product is concatenation
with () serving as unit object,

S8 = (M,..., My, M, .. . M)

for S = (My,..., M) and S = (M],...,M]). On morphisms, the tensor product is
more elaborate to construct: one uses the left/right unit constraint and the associativity
constraint to define natural isomorphisms (S, 5") : F(S)® F(S") — F(S*.S’) (essentially
setting the parantheses in the right order), which then allows one to define

frf=eT.T)o(f®f)op(S )"
for morphisms f : S — T and f' : S — T’. Doing it carefully, we obtain a strict

— fd
monoidal category Mod;; , and F' can be extended to an equivalence of tensor categories
(see [3, Section XI.5] for details). We abuse notations and write M; ® --- ® M, for S =

(My,...,My) € Ob(Mod{Jd) as well as for FI(S) = ((++- (M1 Q@ My) @ -+ @ My_1) ® My, €
Ob(Mod/%).

Recall the two-dimensional vector representation V' of U with basis v, and v_ and action
defined by

Kvy = ¢Flog, Ev, =0=Fo_, Ev_ =wvy, Fv, =v_.

We have V' ~ L(1) as U-modules, with the isomorphism given by the identification v, «
mo(q) and v_ < m;(q) of the associated distinguished bases. The 4-dimensional type 1
U-module V ® V thus is isomorphic to a direct sum of simple modules. To find out the
simple components we look for highest weight vectors in V' ® V. Observe that

(V@ V)g = spang{vy ® v},
(V@ V)i = spang{vy @ vy, 0- @ vy},
(V& V)~ =spang{v_ ®v_}.
It is easy to check that we = v, ® vy (respectively wy = v, ® v_ — qu_ ® vy ) is a highest
weight vector in V @ V of highest weight ¢* (respectively 1). Thus V, = Uws, (respectively
Vo = Uwp) is a U-submodule of V ® V, isomorphic to L(2) (respectively L(0)). Thus
VonVa={0} and Vy + Vo =V ® V (by a dimension count), hence V@ V ~ L(0) & L(2)
as U-modules.
A basis of V; is given by {ws, Fws, F?w,}. Rescaling, we obtain the concrete K-basis

{uo, ur, ug} = {vy @ vy, v ®@v_+¢ v Qv v ®@u_}
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We now fix two morphisms
¢ € Homy (V ® V,K), ¢ € Homy (K, V@ V)

such that ¢ o) = —(q + ¢~')Idx. The two morphisms are determined up to a nonzero
constant: other possible choices are (¢, ') = (cé, c™11)) for ¢ € K*. An explicit choice for
the morphisms are

v(1) =—(¢+q¢ vy @v- —qu-Dvy),
and

¢lv, =0, Py ®v_ —qu_®uy) =1

Corollary 3.3. We have a K-linear strict tensor functor FF S(q_%) — 1\7[:)/déd defined
by FgF(1) =V and
MUy =4,  FfN) =0
Proof. By Proposition 3.1 it suffices to show that
(3.1) (dy ® 6) o (6 © 1dy) = dy = (@ Tdy) o (Idy © 1),
which can be verified by a direct computation. U

Exercise 3.4. (i) Prove (3.1).
(ii) Definet = FF(UonN) =1 o ¢ € Endy(V®?). Show that

t(vy @vy) =0=t(v-®@uv_),
toy ®v_) = —¢ vy @ v_ + v @y,
tlv- ®vy) =vy QU — qu_ @ V4.
Denote Py, for the associated strict tensor functor
Py = F‘ikoG:T—M\//I\oa];d.
Then the endomorphism Py (X ) € Endy(V®?) is a solution of the Yang-Baxter equation.
Proposition 3.5. We have Py (X™) = cyy with respect to the braiding ¢ of Modéd.
Proof. With the notations from Exercise 3.4 we have
Py(X) = ¢ 2idyey + g7t

by the skein relation applied to G(X™) € El,l(q_%). The endomorphism ¢ is explicitly
computed in Exercise 3.4. Comparing the resulting formulas for P;,(X ") with the explicit
formula for ¢y, constructed before, we see that Py (X™) = cyy. O

At a later stage we shall construct for any M € Ob(Modﬂd) a strict tensor functor

T, — Mod{]d, with 7, the category of oriented ribbon tangles, such that X (with the
proper orientation) is mapped to cps . It is called the Reshetikhin-Turaev functor. Only
for M =V the restriction of the Reshetikhin-Turaev functor to a suitable full sub-category
of 7, factors through the skein category S (q_%).



QUANTUM INVARIANTS I 15

Remark 3.6. Let Cy be the full sub-category of Mod;, with objects V" (n > 0), where
V0 is the unit object K. Then Cy is canonically a K-linear strict tensor category and the
functor FF is an equivalence FF : S (q_%) = Cy of K-linear strict tensor categories.

4. APPENDIX A: GENERATORS AND RELATIONS FOR THE SKEIN CATEGORY

A strict tensor category M is called K-linear if for all objects U,V € Ob(M) the set
Hom (U, V) of morphisms U — V is a K-vector space and if the composition and tensor
product maps

o : Homp(V, W) x Hom, (U, V') — Homp (U, W),
® : Homp (U, V) x Hompa(U', V') — Homp(U @ U,V @ V')

are K-bilinear for all objects U, U’, V., V', W in M. The skein category S (q_%) is an example
of a K-linear strict tensor category.

Suppose we have a K-linear strict monoidal category M with the objects and morphisms
forming sets (the latter requirement is usually refered to by saying that M is small). Let
G be a set of morphisms in M such that the associated set Ag of elementary morphisms
with respect to G. We write A& (U, V) for the K-linear span of Ag(U, V) in Hom (U, V).
We say that G generates M if any morphism in M can be written as K-linear combination
of admissible compositions of elementary morphisms.

For two objects U and V in M we set W& (U, V) for the K-vector space with basis the
set w = wy * wg % - - - * w,, of admissible words in the alphabet Ag such that the source of
w,, equals U and the target of w; equals V. We now extend this by defining K-bilinear
maps

x: WE(V,W) x WEU, V) — WEU,W)

by requiring it to be concatenation (with respect to ) on admissable words in the alphabet
Ag. The * is associative in the usual sense.

Let W& be the set of elements w € WE(U, V) (U,V € Ob(M)). As before we have
a canonical map w — [w] from W& to the set of morphisms of M, which restricts to
a K-linear map W& (U,V) — Homp (U, V) for all objects U and V in M and which
maps an admissible word w = w; * wy * - -+ * w,, with the w; in the alphabet Ags to
[w] = wy 0wy 0 -+ 0w,. Observe that WE(U, V) — Homp (U, V) is surjective for all
objects U and V if G generates M. The equivalence relation ~, on W& is now defined
as r ~p 1 iff [r] = [r].

For U an object of M there are well-defined maps idy ® - : W& — W& and - ® idy :
WE — WE, defined as follows: restricted to W& (V, W), they are the K-linear maps

idy @ - WEV, W) - WEUV,U W),
. @idy WE(V,W) - WEV U, W e U)
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determined by
idy @ (wy * -+ wy,) = (idy @ wy) * -+ * (Idy @ wy,),

4.1
(41) (wy * -+ % wy,) ®idy = (w; ®idy) * -+ - * (W, ® idy)

where w = wy * - - - % wy, is an admissible word in W&(V, W) in the alphabet A (note that
the right hand sides in (4.1) are again admissible words in the alphabet Ag). The above
two maps on W& commute.

With these maps at hand, the procedure to incorporate relations on W5 is as follows.
We start with a set R C W& x W§ of elements (r,r’) having the same source and target:
r,r’ € WE(U,V) for some objects U and V. We enlarge R to a subset Ry of W& x Wg
and from R, to R in the same way as in the syllabus of three weeks ago. Then we say that
w ~g w for w,w' € W iff w,w' € WE(U,V) for some objects U and V and if w’ can be
obtained from w by a finite sequence of steps of the following form:

(1) Adding an element of the form A(w; *idy *ws — w1 *wy) with A € K, w; € WE(Y, V)
and wy € WE(U,Y') for some object Y.

(2) Adding an element of the form A(w; * 1’ % wy — wy * r * wy) for some A\ € K|
wy, € WE(Z,V), wy € WE(U,Y) and (r,') € R with 7, having source Y and
target Z.

Note: if [r] =[] for (r,7") € R, then ~p is stronger than ~ .

Definition 4.1. Let G be a set of morphisms of a K-linear strict tensor category M. Let
R C W& x W§ be a set of pairs (r,r') with v,7" having the same source and target. We
say that (G, R) is a presentation of M if G is a set of generators of M and if ~g agrees
with ~x on WE.

Analogous to Theorem 4.22 in the syllabus of three weeks ago one can now prove

Theorem 4.2. The skein category S(q_%) 1s generated as K-linear strict tensor category
by {U,N} with the set of defining relations being given by

R={((id; ®N) * (U®id,),id;), (N ®idy) * (id; ® U),idy), (N * U, — (g + ¢ ')idg)}.

Proof. We will use the following fact about the Ekl(q’%). Let Dy; be the K-vector space
with K-basis (representatives of) equivalence classes of planar isotopy classes of smooth
(no crossings and no loops) (k,l)-tangle diagrams. It is well known (see the proof of
Thm. 3.17 in the syllabus of three weeks ago) that Dy, is zero-dimensional if k + [ is odd,
and its dimension is the nth Catalan number if k 4+ [ = 2n. We define the (Kauffman)
diagram category D(q’%) as follows. The objects are Zs, and HomD(q,%)(k,l) = Dy,.

The composition is putting smooth tangle diagrams on top of each other, and removing
the loops on the cost of a factor —(q + ¢~1) for each removed loop.

It is clear that D(q_%) is a K-linear strict tensor category again: unit object is 0 and
tensor product is putting tangle diagrams next to each other. Furthermore, we have a
K-linear strict tensor functor F : D(q"2) — S(g~2) which is the identity on objects
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and which maps a smooth (k,[)-tangle diagram to its corresponding class in Ej(q~2) =

Homs(q,%)(k:,l). It is clear that F' : Dy — Eu(q 2) is surjective for all k,I € Zs,.
The injectivity of F' amounts to proving that the representatives of the planar isotopy
classes of the smooth (k, {)-tangle diagrams, viewed as elements in Ej (¢ 2), are K-linearly
independent. This requires an argument to which we come back in the syllabus of next
week (compare also with Theorem 3.17 in the syllabus of three weeks ago). Thus F' is an
equivalence of K-linear strict tensor categories.

Thus the theorem can be alternatively formulated that (G, R) is a presentation of the
diagram category D(q™2) as a K-linear strict tensor category. Taking a smooth (k,[)-
tangle diagram, it is planar isotopic to a generic smooth (k,[)-tangle diagram, which can
be written as [w] for an admissable word w in the elementary morphisms Ag. Thus G
generates D(q72).

First note that ~p is stronger than ~p for D = D(q~2). We show that w ~p w’ (s0
[w] = [w']) implies w ~p w' for w,w’ € WE. So suppose that w,w’ € Wg(k,1) satisfy
w ~p w', so [w] = [w'] in Dy;. Write {[u;]}ier for a set of representatives of planar isotopy
classes of smooth (k,[)-tangle diagrams (which is a basis of Dy;), then we can uniquely
write [w] = Y. Ai[u;] = [w'] for unique A; € K. On the other hand, let {v;};c; be the
canonical K-basis of W& (k, 1) consisting of admissable words in the elementary morphisms
Ag. There exists a unique surjective map o : J — [ and unique nonnegative integers
m; € Zxo such that

o) = d™lug), €

where d = —¢ — ¢~*. We now write in WE(k, 1),

(4.2) w=Y oy, w =Y iy
J J

for unique 415, p1; € K. The assumption is that

= Z plv] = Z 15 d™ g )]
J

in Homp(k, 1) equals
=D Hilosl = 3 iAoy,
J J
hence, for all i € I, we have
(4.3) Z pid™i = Z pid™ .
jeo=1(i) j€o (i)

So for w,w’ € WgE(k, 1) given by (4.2), such that the coefficients satisfy (4.3), we need to
show that w ~p w’. For this it suffices to show that

W ~on W =
E HJU] =: Wi ~YR W; += E M]UJ

jeo—1( jeo—1(
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for all ¢ € I. For this it suffices to show that for j, " € o7(i) we have d""9v; ~p d~"'vj.
This is easy and goes by the same (but simpler) argument as for ribbon tangles, as in the
proof of Theorem 4.22 in the syllabus of three weeks ago.

O

We call a strict tensor functor F': M — N between K-linear strict tensor categories M
and N K-linear if F': Homa(U, V') — Homp (F(U), F(V)) is K-linear for U,V € Ob(M).
We have now the direct analog of Theorem 4.24 in the syllabus of three weeks ago, with

the extra assumption that the categories are K-linear and that the strict tensor functor F
is K-linear. In other words, we conclude that Proposition 3.1 holds true.

5. APPENDIX B: TENSOR PRODUCT DECOMPOSITIONS

For r, s € Zq the tensor product module L(r) ® L(s) is finite dimensional and of type 1,
hence it decomposes as a direct sum of the simple U-modules L(n) (n > 0). The following
theorem (quantum Clebsch-Gordon decomposition) gives a more precise statement.

Theorem 5.1. Forr,s € Z>y we have
Lry®@ L(s) ~ L(lr—s|)® L(lr —s|+2)®---@® Lr+s—2)® L(r+s)
as U-modules.

Proof. 1t suffices to prove the theorem for r > s (indeed, L(r) ® L(s) ~ L(s) ® L(r) since
Mod{]d is a braided category). In this case we are asked to prove that

L(r)® L(s) ~ éL(r — s+ 2l).

The dimension over K of the left hand side is (r+1)(s+1), which agrees with the dimension
of the right hand side since

s

dr—s+204+1)=(r+1)(s+1).
1=0
To prove the theorem it thus suffices to construct highest weight vectors w; € L(r) ® L(s)
of highest weight r — s+ 20+ 1 for [ =0,...,s. First note that
(L(r) ® L(s))gr—++21 = spang {in(q") ® Ms—1-n(¢°) ;21
for [ =0,...,s. Now a vector

s—1

wi =Y a(Mn(q") @ Meein(q)) € (L(r) @ L(s))grsizr, ¢y €K

n=-—I

satisfies Fw; = 0 if and only if
(s—l—n)qQ(Z—i—n—i—l)
(n + 1)q2 (7’ — n)q2

n—r—s

Cnil = —(q qQCn n=-1,....,s—1—1)
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(note that the denominators are nonzero). There is a nontrivial solution to these recurrence
relations, hence there exists a highest weight vector of highest weight ¢"~** in L(r)® L(s)
forall 1 € {0,...,s}. O

The following result should be compared to Theorem 3.17 in the syllabus of three weeks
ago.

Corollary 5.2. For k,l € Z>y we have

0, if k + 1 odd,

. Rk RN\ _
DlmK(HomU(V Vv >) ) L <2n> ’ if K+ 1 = 2n even.

Proof. For n € Zx( we have
(5.1) Ver ~ @ L(n)®s™
JEZL>0

for unique ¢;(n) € Z>o. For n = 0 we read the left hand side as L(0) = K (the unit object

in Mod/%), so that ¢o(0) = 1 and ¢;(0) = 0 for j > 1. By the above theorem we have the
recurrence relations

(5.2) con)=am—1),  ¢h)=¢uh-1)+¢an-1) (G =1)

for n > 1. These recurrence relations, together with the initial conditions ¢y(0) = 1 and
¢j(0) =0 (j > 1), determine the coefficients ¢;(n) uniquely. Now define the polynomial
Vi(y) of degree j > 0 by

I+l il

j
E j2[
o —g 1l

=0

Vi(z + r) =

It is the character of the simple sly-module of dimensional j 4 1 or, from the viewpoint of
orthogonal polynomials, a Chebyshev polynomial of the second kind (up to a rescaling of
the variable). The V;(y)’s satisfy V;(y) = 1 and the recurrence relation

yV;i(y) = Vi(y) + Visa(y), j > 1

By induction to n we conclude from the recurrence relations for the c¢;(n) and the V;(y)
that

= (n)V(y)
=0
(this is in fact the equivalent reformulation of (5.1) for the characters of the associated
slp-modules). Since

sin((j + 1)6)
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we have the orthogonality relations

. /7r Vi(2cos(0))V;(2 cos()) sin?(0)dd = & ;.

™

—Tr

We conclude that

Dimy (Homy (VE*, V&) = f: cj(k)e;(l)

! / " (2 cos(8))F sin?(0)do

™

—T

kel .
_ 1 (k + l) / (k020 | (=20 _ 9
dr s r

—T

The latter expression is zero if k 4+ [ is odd. If £ + [ = 2n is even, then it equals

()= (1) = ()

the nth Catalan number. O

Combining the results of section 3 in the syllabus of four weeks ago with Theorem 3.17
in the syllabus of three weeks ago, we conclude

Corollary 5.3. The Temperley-Lieb algebra TLn(q%) is isomorphic to Endy(L(1)®") as
algebra over K. The explicit isomorphism has been constructed in Fxercise 3.14 of the
syllabus of week 14.
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