
QUANTUM INVARIANTS I

Recall that U is the quantized universal enveloping algebra of sl2 over K = k(q
1
2 ), where

k is an algebraically closed field of characteristic zero. In this text we show that the braided
monoidal category Modfd

U of finite dimensional type 1 U -modules over K is semisimple, and
we describe the simple modules explicitly. We use the results to represent the skein cate-
gory in Modfd

U .

Convention: In this syllabus all U -modules are considered over K unless specified explicitly
otherwise. In other words, an U -module will mean a K-module M together with an K-
algebra homomorphism π : U → EndK(M) (or equivalently, a K-module M with a K-
bilinear left action U ×M →M , given by (u,m) 7→ um(= π(u)(m))).

1. Highest weight modules of U

Recall that U is the associative unital algebra over K with generators K±1, E, F and
relations

KK−1 = 1 = K−1K, EF − FE =
K −K−1

q − q−1
,

KEK−1 = q2E, KFK−1 = q−2F.

For a left U -module M and λ ∈ K× we write Mλ for the K-eigenspace with eigenvalue λ,

Mλ = {m ∈M | Km = λm}.

Definition 1.1. Let M be a left U-module and λ ∈ K×.
(i) An element m ∈ M is called a highest weight vector of weight λ if 0 6= m ∈ Mλ and
Em = 0.
(ii) M is called a highest weight module of highest weight λ if M = Um with m ∈ M a
highest weight vector of weight λ.

Remark 1.2. If M is a highest weight module of highest weight λ, then the spectrum (=set
of eigenvalues) SpecM(K) of the action of K on M satisfies λ ∈ SpecM(K) ⊆ λq2Z≤0 .
Indeed, if m ∈ M is the highest weight vector of highest weight λ, then M is spanned by
{F im}i∈Z≥0

(use here that {F iEjK l}i,j∈Z≥0,l∈Z is a K-basis of U and the fact thatM = Um)

and K(F im) = q−2iλF im. In particular, the highest weight of a highest module is unique.

Let λ ∈ K× and let

M(λ) =
⊕

n∈Z≥0

Kmn(λ)

1
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be an infinite dimensional K-vector space with K-linear basis {mn(λ)}n∈Z≥0
. Set m−1(λ) :=

0 in M(λ). Recall the q-number

(m)q2 :=
q2m − 1

q2 − 1
∈ K, m ∈ Z≥0.

Proposition 1.3. (i) The following formulas uniquely define a left U-module structure on
M(λ),

Kmn(λ) = λq−2nmn(λ),

Emn(λ) =
(
n
)

q2

(
q2−2nλ− λ−1

q − q−1

)
mn−1(λ),

Fmn(λ) = mn+1(λ).

(1.1)

The resulting left U-module M(λ) is a highest weight module of weight λ, with highest
weight vector m0(λ).
(ii) Any highest weight left U-module M of weight λ is a quotient of M(λ).

Proof. (i) Consider I(λ) = UE+U(K −λ), the left ideal of U generated by E and K −λ.
The set

{F nEiKj | n, i ∈ Z≥0, j ∈ Z}
is a K-linear basis of U by the Poincaré-Birkhoff-Witt theorem, hence the elements

(1.2) F n + I(λ), n ≥ 0

form a K-linear basis of the quotient space U/I(λ). We now identify the K-vector space

M(λ) with U/I(λ) via the K-linear isomorphism M(λ)
∼−→ U/I(λ) mapping the distin-

guished K-basis element mn(λ) of M(λ) to F n + I(λ) ∈ U/I(λ) for all n ∈ Z≥0. With
this particular realization of M(λ) as quotient of U by the left ideal I(λ), it canonically
inherits a left U -module structure. Computing its action explicitly on the basis elements
(1.2) we obtain (1.1); the first equation follows from the relation KF n = q−2nF nK in U ,

Kmn(λ) = q−2nF nK + I(λ) = q−2nλ(F n + I(λ)) = q−2nλmn(λ).

The second equation of (1.1) follows from

Emn(λ) = EF n + I(λ)

= F nE +
(
n
)

q2F
n−1

(
q2−2nK −K−1

q − q−1

)
+ I(λ)

=
(
n
)

q2

(
q2−2nλ− λ−1

q − q−1

)
mn−1(λ),

with the obvious adjustments for n = 0. The third equation of (1.1) is trivial.
(ii) Let M be a highest weight U -module of highest weight λ, with highest weight vector
m. Consider U as left U -module by left multiplication in U (u · u′ := uu′ for u, u′ ∈ U).
Then the map U → M , defined by u 7→ um, is a surjective U -module morphism. Since
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m ∈ M is a highest weight vector of weight λ, it factors through the ideal I(λ), hence it
gives rise to a well defined surjective U -module morphism M(λ) = U/I(λ) →M . �

Definition 1.4. M(λ) is called the Verma module of highest weight λ ∈ K×.

A left U -module M has two trivial U -submodules, namely {0} and M .

Definition 1.5. A left U-module M is simple if M 6= {0} and if {0} and M are the only
U-submodules of M .

Under mild conditions we can now describe the finite dimensional simple left U -modules
over K as follows.

Proposition 1.6. Let λ ∈ K×, ε ∈ {±1} and n ∈ Z≥0.
(i) M(λ) is simple if λ 6∈ ±qZ≥0.
(ii) M(εqn) has a unique nontrivial U-submodule N(εqn), isomorphic to the Verma module
M(εq−2−n).
(iii) The left U-module L(ε, n) := M(εqn)/N(εqn) is a finite dimensional simple U-module
of dimension n+ 1. Furthermore, L(ε, n) ' L(ε′, n′) if and only if (ε, n) = (ε′, n′).
(iv) Let M be a finite dimensional, simple left U-module. If M has an eigenvector for the
action of K, then M ' L(ε, n) for a unique (ε, n) ∈ {±1} × Z≥0.

Proof. We start with some preliminary remarks before embarking on the proof of the four
statements. Let λ ∈ K× and let {0} 6= N ⊆M(λ) be a U -submodule. Fix 0 6= m ∈ N and
write

m =
∑
j∈J

cjmj(λ)

with cj ∈ K× and J a nonempty finite subset of Z≥0. For i ∈ J we then have

mi(λ) = c−1
i

∏
j∈J\i

(
K − q−2jλ

q−2iλ− q−2jλ

)
m ∈ N.

Furthermore, if mi(λ) ∈ N for a given i ≥ 1, then acting by E we conclude from the
previous proposition that mi−1(λ) ∈ N if λ 6= ±qi−1.
(i) Let λ 6∈ ±qZ≥0 and suppose that {0} 6= N ⊆ M(λ) is a U -submodule. Let i ∈ Z≥0

such that mi(λ) ∈ N . Since λ 6∈ ±qZ≥0 , we conclude from the above remarks that the
highest weight vector m0(λ) is also contained in N . Since M(λ) = Um0(λ), we conclude
that N = M(λ), hence M(λ) is a simple U -module.
(ii) Suppose that λ = εqn (ε ∈ {±1}, n ∈ Z≥0). Then Emn+1(εq

n) = 0 by the previous
proposition, henceN(εqn) :=

⊕
j≥n+1 Kmj(εq

n) is a U -submodule ofM(εqn). It is a highest

weight module of highest weight εq−2−n, with highest weight vector mn+1(εq
n). It is easily

seen to be isomorphic to M(εq−2−n) (hence it is simple by (i)).
Let 0 6= N ⊆M(εqn) be an U -submodule. Let i be the smallest nonnegative integer such

that mi(εq
n) ∈ N . We conclude from the remarks so far that there are two posibilities:

i = 0 (in which case N = M(εqn)) or i = n+1 (in which case N = N(εqn)). This completes
the proof of (ii).
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(iii) Let π : M(εqn) → L(ε, n) be the canonical map. It is a surjective U -module
morphism. If M ⊆ L(ε, n) is an U -submodule, then N(εqn) ⊆ π−1(M) ⊆ M(εqn) is an
U -submodule of M(εqn), hence π−1(M) equals N(εqn) or M(εqn) by the observation in the
previous paragraph. Thus M = {0} or M = L(ε, n), hence L(ε, n) is a simple U -module.

Since N(εqn) =
⊕

j≥n+1 Kmj(εq
n) it is clear that {mi(εq

n) + N(εqn)}n
i=0 is a K-linear

basis of L(ε, n), hence dimK(L(ε, n)) = n+ 1.
If L(ε, n) ' L(ε′, n′) as U -modules then the corresponding sets of eigenvalues for the

actions of K on L(ε, n) and L(ε′, n′) should be the same. This forces (ε, n) = (ε′, n′).
(iv) Let M be a finite dimensional, simple left U -module with Mλ 6= {0} for some λ ∈ K×.
The algebraic sum

∑∞
s=0Mq2sλ in M is direct, since the summands are eigenspaces of

the action of K on M for different eigenvalues. But M is finite dimensional over K by
assumption, hence Mq2sλ 6= {0} for only finitely many s ∈ Z≥0. Since ErMλ ⊆ Mq2rλ

there exists a m′ ∈ Mλ and r ∈ Z≥0 such that m := Erm′ ∈ Mq2rλ is nonzero while
Em = Er+1m′ = 0. Set µ = q2rλ. Since M is simple, we have M = Um, hence M
is a highest weight U -module of highest weight µ, with highest weight vector m. Let
φ : M(µ) → M be the corresponding surjective U -module morphism, characterized by
φ(m0(µ)) = m. Then Ker(φ) ⊂ M(µ) is a nontrivial left U -submodule of M(µ) and
M(µ)/Ker(φ) ' M . By the previous observations, µ = εqn for some ε ∈ {±1} and
n ∈ Z≥0, and Ker(φ) = N(εqn). Hence M ' L(ε, n). �

Corollary 1.7. For ε ∈ {±1} and n ∈ Z≥0 choose

mj(εq
n) := mj(εq

n) +N(εqn), (j = 0, . . . , n)

as K-linear basis of L(ε, n) = M(εqn)/N(εqn). Furthermore set m−1(εq
n) = 0 = mn+1(εq

n).
The U-action on L(ε, n) is explicitly given by

Kmj(εq
n) = εqn−2jmj(εq

n),

Emj(εq
n) = εq1−n

(
j
)

q2

(
n+ 1− j

)
q2mj−1(εq

n),

Fmj(εq
n) = mj+1(εq

n)

for j = 0, . . . , n.

Proof. Direct computation. �

We now investigate the morphisms between U -modules.

Lemma 1.8. (i) Suppose M and N are non-isomorphic simple left U-modules. Then

HomU(M,N) = {0}.
(ii) If M is a highest weight module then EndU(M) = spanK{IdM}.

Proof. (i) Let φ ∈ HomU(M,N). The kernel of φ is an U -submodule of M , hence it is {0}
or M . If φ is injective, then the image of φ is a nonzero U -submodule of N , hence it is
equal to N . In this case φ is an isomorphism, contradicting the fact that M 6' N . Thus
the kernel of φ is M , which means that φ = 0.
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(ii) Let λ ∈ K× be the highest weight of M . Choose a corresponding highest weight vector
m ∈ M of highest weight λ. Then Mλ = spanK{m} since M is a quotient of M(λ), and
M(λ)λ is one-dimensional.

Fix now φ ∈ EndU(M). By the previous paragraph we have φ(m) = µm for some µ ∈ K.
Let now m′ ∈M . Since M is a highest weight module with highest weight vector m, there
exists an u ∈ U so that m′ = um. Then φ(m′) = φ(um) = uφ(m) = µm′. We conclude
that φ = µIdM . �

Exercise 1.9. Recall that the linear dual V ∗ = HomK(V,K) of a left U-module V is a left
U-module by

(Xφ)(v) := φ(S(X)v), φ ∈ V ∗, v ∈ V, X ∈ U.
Show that L(ε, n)∗ ' L(ε, n) as U-modules for all ε ∈ {±1} and n ∈ Z≥0.

2. The category Modfd
U again

Recall that a left U -module M is of type 1 if

M =
⊕
n∈Z

Mqn .

We defined before the braided monoidal category Modfd
U consisting of the finite dimensional

type 1 left U -modules. From the last section we immediately get the following explicit
description of the simple modules in Modfd

U .

Corollary 2.1. The simple U-modules in Modfd
U are the L(n) := L(+1, n) (n ∈ Z≥0), up

to isomorphism.

Exercise 2.2. Let M be a finite dimensional type 1 U-module and consider the subspace

M e = {m ∈M | Em = 0}.
Show that

M e =
⊕

n∈Z≥0

M e
qn

with M e
qn = M e ∩Mqn the space of highest weight vectors in M of highest weight qn.

We now proceed to show that a finite dimensional type 1 U -module M is semisimple,
i.e. that M is isomorphic to a direct sum of the simple modules L(n) (n ≥ 0).

Theorem 2.3. Let M ∈ Ob(Modfd
U ). Then

M '
⊕

n∈Z≥0

L(n)⊕kn

as U-modules, with kn = dimK(M
e
qn).

We give some preparatory results before embarking on the proof of the theorem.
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Lemma 2.4. Let M ∈ Ob(Modfd
U ) and let N ⊆ M be a U-submodule. Then N,M/N ∈

Ob(Modfd
U ).

Proof. Only the statement that N is of type 1 requires proof. Clearly⊕
n∈Z

N ∩Mqn ⊆ N ⊂M.

We have to show that the first inclusion is an equality. Let m ∈ N and write m =
∑

j∈J mj

with J ⊂ Z finite and mj ∈Mqj . Then

mn =

 ∏
j∈J\{n}

K − qj

qn − qj

m ∈ N

for all n ∈ J , hence m ∈
⊕

n∈ZN ∩Mqn . �

The following basic observation will be of use.

Lemma 2.5. Let M ∈ Ob(Modfd
U ). There exists a finite sequence of finite dimensional

type 1 U-submodules

{0} = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mr−1 ⊂Mr = M

such that, for 1 ≤ j ≤ r, the quotient U-module Mj/Mj−1 is simple (hence isomorphic to
L(n) for some n ∈ Z≥0). Such a sequence is called a composition series for M of length r.

Proof. Fix a nonzero module M ∈ Ob(Modfd
U ). Using induction to the K-dimension of M ,

it suffices to show that there exists a U -submodule N ( M such that M/N is simple.
If M is simple, then we are done (N = {0} does the job). If M is not simple, then

there exists an U -submodule {0} 6= L ( M . The quotient U -module M := M/L is of type
1 and of strictly smaller dimension than M . By the induction hypothesis there exists an
U -submodule N ⊂M such that M/N is simple.

Consider the canonical surjective U -module morphism π : M → M . Then N :=
π−1(N) ⊂M is a U -submodule, hence N is of type 1, and M/N 'M/N is simple.

�

A composition series does not have to be unique, but the subsequent simple quotients
are unique up to reshuffling (this is the Jordan-Hölder theorem):

Lemma 2.6. Let M ∈ Ob(Modfd
U ) and suppose that

{0} = M0 ⊂M1 ⊂ · · · ⊂Mr−1 ⊂Mr = M,

{0} = M ′
0 ⊂M ′

1 ⊂ · · · ⊂M ′
s−1 ⊂M ′

s = M
(2.1)

are two composition series of M . Then r = s and for some permutation σ of {1, . . . , r} we
have

(2.2) Mj/Mj−1 'M ′
σ(j)/M

′
σ(j)−1, j = 1, . . . , r.
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Proof. We call two composition series (2.1) of M equivalent if r = s and if (2.2) holds true
for some permutation σ of {1, . . . , r} (this is indeed an equivalence relation). We are thus
required to show that all composition series of M are equivalent.

We prove it by induction to the minimum min(r, s) of the lengths of the two composition
series. If it is zero (respectively one) then M = {0} (respectively M is simple), so there
is nothing to prove. Let (2.1) be two composition series of M with r, s ≥ 2 and suppose
that the lemma is correct for composition series with one of the two composition series of
length < min(r, s). Without loss of generality we may assume that r ≤ s.
Case (i): Suppose that Mr−1 = M ′

s−1. We will denote this U -module by N . Then

{0} = M0 ⊂M1 ⊂ · · · ⊂Mr−2 ⊂Mr−1 = N,

{0} = M ′
0 ⊂M ′

1 ⊂ · · · ⊂M ′
s−2 ⊂M ′

s−1 = N

are composition series for the U -submodule N of M . By the induction hypothesis, they
are equivalent, in particular r = s. Since M/Mr−1 = M/N = M/M ′

r−1, the composition
series (2.1) for M are equivalent.
Case (ii): Suppose Mr−1 6= M ′

s−1. Set N = Mr−1 +M ′
s−1. Then Mr−1 ( N ⊂ M is a U -

submodule. The nonzero U -submodule N/Mr−1 of M/Mr−1 equals M/Mr−1 since M/Mr−1

is simple, hence N = M . We thus obtain isomorphisms

M/Mr−1 = (Mr−1 +M ′
s−1)/Mr−1 'M ′

s−1/(Mr−1 ∩M ′
s−1),

M/M ′
s−1 = (Mr−1 +M ′

s−1)/M
′
s−1 'Mr−1/(Mr−1 ∩M ′

s−1)

of U -modules. We choose now a composition series

{0} = K0 ⊂ · · · ⊂ Kt−1 ⊂ Kt = Mr−1 ∩M ′
s−1

for Mr−1 ∩M ′
s−1, which can be complemented to form a composition series for M in two

ways,

{0} = K0 ⊂ · · · ⊂ Kt−1 ⊂ Kt = Mr−1 ∩M ′
s−1 ⊂Mr−1 ⊂M,

{0} = K0 ⊂ · · · ⊂ Kt−1 ⊂ Kt = Mr−1 ∩M ′
s−1 ⊂M ′

s−1 ⊂M.
(2.3)

Clearly the two composition series (2.3) for M are equivalent.
The first composition series of (2.1), respectively the first composition series of (2.3),

contains a composition series for Mr−1 of length r− 1, respectively of length t+ 1. By the
induction hypothesis, these two composition series for Mr−1 are equivalent. In particular,
t = r − 2. It follows that the first composition series for M of (2.1) is equivalent to the
second composition series for M of (2.3).

The second composition series of (2.3), respectively the second composition series of
(2.1), contains a composition series for M ′

s−1 of length t + 1 = r − 1, respectively of
length s − 1. Again by the induction hypothesis, these two composition series for M ′

s−1

are equivalent, in particular r = s. Consequently the second composition series for M of
(2.3) is equivalent to the second composition series for M of (2.1). By the transitivity of
the equivalence relation, we conclude now that the two composition series of (2.1) for M
are equivalent. �
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We can now prove the theorem in a special case.

Lemma 2.7. Let n ∈ Z≥0. Suppose that M ∈ Ob(Modfd
U ) has a composition series

{0} = M0 ⊂M1 ⊂ · · · ⊂Mr−1 ⊂Mr = M

with Mj/Mj−1 ' L(n) for all j = 1 . . . , r. Then M is semisimple, i.e. M ' L(n)⊕r as
U-modules.

Proof. Using that L(n)qn is one-dimensional and that L(n)qn+2 = {0}, we claim that
Mj,qn+2 = {0}, Mj,qn = M e

j,qn (with the notations from Exercise 2.2) and dimK(M
e
j,qn) = j.

We proceed by induction to j. It is clearly true for j = 1. Suppose it is true for j − 1. Let

πj : Mj →Mj/Mj−1 ' L(n)

be the canonical surjective morphism of U -modules. If m ∈ Mj,qn+2 then m ∈ Ker(πj),
hence m ∈Mj−1,qn+2 = {0}. Thus Mj,qn+2 = {0}.

Since Mj is of type 1, there exists a nonzero m ∈ Mj,qn mapping under πj to a highest
weight vector of L(n). In particular m 6∈ Mj−1, hence Km + Mj−1,qn ⊆ Mj,qn is a direct
sum. Let v ∈Mj,qn , then for some c ∈ K we have v− cm ∈Mj,qn ∩Ker(πj) = Mj−1,qn . We
conclude that

Km⊕Mj−1,qn = Mj,qn ,

hence dimK(Mj,qn) = j. Since Mj−1,qn = M e
j−1,qn by the induction hypothesis, it remains

to show that Em = 0, but this is clear since Em ∈Mj,qn+2 = {0}.
Fix now a K-basis {v1, . . . , vr} of M e

qn . For j = 1, . . . , r the U -submodule Vj := Uvj ⊆M
generated by vj ∈M e

qn is a finite dimensional highest weight U -module of weight qn, with
highest weight vector vj. Thus Vj ' L(n) as U -modules. Write V for the U -submodule∑r

j=1 Vj of M . By construction, Vqn = ⊕r
i=1Kvi = Mqn . Let π : M → M/V be the

canonical surjective U -module morphism. Since M is of type 1, π(Mqn) = (M/V )qn . Then
Ker(π) ∩ Mqn = V ∩ Mqn = Vqn , hence (M/V )qn ' Mqn/Vqn = {0}. We claim that
M/V = {0}.

Suppose that M/V 6= {0}. Then we can construct composition series

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Ns−1 ⊂ Ns = V,

{0} = M0 ⊂ · · · ⊂M t−1 ⊂M t = M/V

with t ≥ 1. Then the above two composition series can be combined to give a composition
series for M ,

{0} = N0 ⊂ · · · ⊂ Ns = V = π−1(M0) ⊂ π−1(M1) ⊂ · · · ⊂ π−1(M t) = M.

Using the previous lemma, we conclude that π−1(M1)/V is a simple U -submodule of M/V ,
isomorphism to L(n). But this is impossible since (M/V )qn = {0}. Thus we conclude that
M = V =

∑r
j=1 Vj. Observe that dimK(M) = (n + 1)r equals

∑r
j=1 dimK(Vj) since
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Vj ' L(n), hence the sum M =
∑r

j=1 Vj is direct. We conclude that

M '
r⊕

j=1

Vj ' L(n)⊗r

as U -modules, as desired. �

Denote Z(U) = {X ∈ U | XY = Y X ∀Y ∈ U} for the center of U . Let M be a
left U -module. The map m 7→ Zm defines an endomorphism ZM ∈ EndU(M) (since Z
is central). This gives a natural transformation Z : IdC → IdC for the category C of left
U -modules since

f ◦ ZM = ZN ◦ f, f ∈ HomU(M,N).

Note that Z restricts to a natural transformation for the identity functors of the full
subcategory Modfd

U of C.
Write

(2.4) C = FE +
qK + q−1K−1

(q − q−1)2
∈ U.

Proposition 2.8. (i) C ∈ Z(U).
(ii) If M is highest weight U-module of highest weight λ ∈ K×, then

CM =
qλ+ q−1λ−1

(q − q−1)2
IdM .

In particular,

CL(n) =
q1+n + q−1−n

(q − q−1)2
IdL(n)

for n ∈ Z≥0.

Proof. (i) We have to show that C commutes with the algebraic generators K±1, E and F
of U . This is verified by direct computations. We show here the computation for E,

EC = EFE +
qEK + q−1EK−1

(q − q−1)2

=

(
FE +

K −K−1

q − q−1

)
E +

(
q−1K + qK−1

(q − q−1)2

)
E

=

(
FE +

(q − q−1)(K −K−1) + q−1K + qK−1

(q − q−1)2

)
E

=

(
FE +

qK + q−1K−1

(q − q−1)2

)
E = CE.
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(ii) Let M be a highest weight U -module of highest weight λ ∈ K×. Then CM = cM IdM

for some cM ∈ K by Lemma 1.8. To compute the constant cM , let m ∈ M be a highest
weight vector of M , so that Km = λm and Em = 0. Then

CM(m) = Cm =
qλ+ q−1λ−1

(q − q−1)2
m

by the explicit expression for the central element C. Hence cM = qλ+q−1λ−1

(q−q−1)2
. �

Exercise 2.9. Let λ, µ ∈ K×. Show that

qλ+ q−1λ−1

(q − q−1)2
=
qµ+ q−1µ−1

(q − q−1)2

if and only if λ = µ or λ = q−2µ−1.

The exercise in particular shows that C acts by different scalars on the simple U -modules
L(n) (n ∈ Z≥0) in Modfd

U .
To prove the theorem, we investigate CM for an arbitrary finite dimensional type 1

U -module M . We begin with the following basic observation.

Lemma 2.10. Let M be a finite dimensional type 1 U-module.
We have

M =
⊕
µ∈K

M(µ), M(µ) = {m ∈M | (CM − µIdM)nm = 0 for some n ∈ Z>0}.

Proof. We write

cn =
q1+n + q−1−n

(q − q−1)2
∈ K, n ∈ Z≥0

for the scalar such that CL(n) = cnIdL(n). Choose a composition series {0} = M0 ⊂ · · · ⊂
Mr−1 ⊂ Mr = M of M . Then Mj/Mj−1 ' L(nj) for some nj ∈ Z≥0 (1 ≤ j ≤ r).
Choosing a K-basis of M compatible with the composition series (so first fixing a basis of
M0, extending it to a basis of M1 and continuing this procedure until we have a K-basis
of M), we see that the characteristic polynomial of CM ∈ EndK(M) is of the form

det(CM − λIdM) =
r∏

j=1

(cnj
− λ)sj ∈ K[λ]

with sj = dimK(L(nj)). The characteristic function of CM ∈ EndK(M) thus decomposes
as a product of linear factors over K. A well known result from linear algebra now says
that there exists a K-basis of M such that the associated matrix of CM is in Jordan normal
form (see, e.g., [6, XIV, §2]). For a fixed Jordan block J of size t× t with eigenvalue µ ∈ K
on its diagonal we have (J − µI)t = 0, with I (resp. 0) the t × t unit matrix (resp zero
matrix). This proves the lemma. �
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We can now easily complete the proof of Theorem 2.3. Let M be a finite dimensional
type 1 U -module, and write

M =
⊕
µ∈K

M(µ)

for its generalized eigenspace decomposition under the action of C. Since C ∈ Z(U)
(thus CM ∈ EndU(M)), the generalized eigenspaces M(µ) are U -submodules of M . It thus
remains to show that the finite dimensional type 1 U -submodules M(µ) is semisimple.

Choose a composition series

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nr = M(µ)

for M(µ). For 1 ≤ t ≤ r we thus have Nt/Nt−1 ' L(nt) for some nt ∈ Z≥0. The only
eigenvalue of CM(µ)

is µ, hence

µ =
q1+nt + q−1−nt

(q − q−1)2

for t = 1, . . . , r. This implies that nt = n is independent of t. Lemma 2.7 now shows that
M(µ) is semisimple, which completes the proof of Theorem 2.3.

Exercise 2.11. Let M be a finite dimensional type 1 U-module. Show that

dimK
(
EndU(M)

)
=

∞∑
n=0

dimK
(
M e

qn

)2
.

3. A representation of the skein category

In this section we give a representation of the skein category S(q−
1
2 ) over K. Recall that

S(q−
1
2 ) is the strict tensor category with objects the nonnegative integers Z≥0, and with

morphisms HomS(k, l) the linear skein Ekl(q
− 1

2 ) over K.
We call a strict tensor category M linear over K if the set HomM(U, V ) of morphisms

from U to V are vector spaces over K for all objects U and V of M, and if the tensor
product and composition maps

◦ : HomM(V,W )× HomM(U, V ) → HomM(U,W ),

⊗ : HomM(U, V )× HomM(U ′, V ′) → HomM(U ⊗ U ′, V ⊗ V ′)

are K-bilinear for all objects U, V, U ′, V ′,W ofM. The skein category S(q−
1
2 ) is an example

of a K-linear strict tensor category.
For K-linear strict tensor categories the constructions of last week on generators and

relations can be adjusted to encorporate the K-linearity of the category in a natural way.
As a consequence we get the following result.

Proposition 3.1. Let M be a K-linear strict tensor category with unit object I. Let V
be an object of M and suppose that φ ∈ HomM(V ⊗ V, I) and ψ ∈ HomM(I, V ⊗ V ) are
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morphisms satisfying

φ ◦ ψ = −(q + q−1)idI,

(φ⊗ idV ) ◦ (idV ⊗ ψ) = idV = (idV ⊗ φ) ◦ (ψ ⊗ idV ).

Then there exists a unique strict tensor functor F : S(q−
1
2 ) →M satisfying

(1) F (1) = V ,

(2) F : Ekl(q
− 1

2 ) → HomM(V ⊗k, V ⊗l) is K-linear,
(3) F (∪) = ψ and F (∩) = φ.

Proof. See appendix 4 for a detailed proof.
�

Composing the K-linear strict tensor functor F : S(q−
1
2 ) → M from Proposition 3.1

with the strict tensor functor
G : T → S(q−

1
2 )

from Section 4.4 in the syllabus of week 15, we obtain a strict tensor functor

P = F ◦G : T →M.

Given an isotopy class [T ] of a (k, l)-ribbon tangle T , we thus obtain an isotopy invariant
P ([T ]) ∈ HomM(V ⊗k, V ⊗l) of T . The invariant P ([T ]) for a (k, l)-ribbon tangle T can be
computed as follows. Represent T by a generic (k, l)-tangle diagram DT (with the proper
number of curls in the diagram to account for the framing of T ). Now view DT as element

in Ekl(q
− 1

2 ) and smoothen the crossings by the skein relation in Ekl(q
− 1

2 ). In the resulting
K-linear sum of (k, l)-tangle diagrams without crossings we get rid of a closed loop on the
cost of a factor −(q + q−1). We replace minima (respectively maxima) by the morphism
ψ (respectively φ) in M and we replace idr by idV ⊗r , while respecting the tensor product

and composition rules in both the categories S(q−
1
2 ) and M. The resulting morphism in

M is our desired invariant of T .
For ribbon links we immediately re-obtain the Kauffman bracket,

Corollary 3.2. In the above set-up we have

P ([T ]) = −(q + q−1)〈T 〉
q−

1
2
idI

for a ribbon link T .

We now are going to construct an explicit K-linear strict tensor functor Fsk : S(q−
1
2 ) →

M̃od
fd

U , where M̃od
fd

U is the strict monoidal category associated to Modfd
U by Mac Lane’s

coherence theorem. In passing from Modfd
U to M̃od

fd

U , we essentially get rid of the associa-
tivity constraint by fixing a particular paranthesis order in multiple tensor products. By

definition the objects in M̃od
fd

U are the finite sequences S = (M1,M2, . . . ,Mk) of objects

Mj in Modfd
U (k ∈ Z≥0). For such a sequence S we define

F (S) = ((· · · (M1 ⊗M2)⊗ · · · )⊗Mk−1)⊗Mk ∈ Ob(Modfd
U ),
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which should be read as the unit object L(0) = K if k = 0. The morphisms S → T for two

sequences S and T in M̃od
fd

U are by defininition the morphisms F (S) → F (T ) in Modfd
U .

Clearly M̃od
fd

U becomes a category in this way, and the map F , defined as the identity on

morphisms, defines an equivalence F : Modfd
U → M̃od

fd

U of categories. The next step is to

turn M̃od
fd

U in a strict tensor category. On objects, the tensor product is concatenation
with ∅ serving as unit object,

S ∗ S ′ = (M1, . . . ,Mk,M
′
1, . . . ,M

′
l )

for S = (M1, . . . ,Mk) and S ′ = (M ′
1, . . . ,M

′
l ). On morphisms, the tensor product is

more elaborate to construct: one uses the left/right unit constraint and the associativity
constraint to define natural isomorphisms ϕ(S, S ′) : F (S)⊗F (S ′) → F (S ∗S ′) (essentially
setting the parantheses in the right order), which then allows one to define

f ∗ f ′ = ϕ(T, T ′) ◦ (f ⊗ f ′) ◦ ϕ(S, S ′)−1

for morphisms f : S → T and f ′ : S ′ → T ′. Doing it carefully, we obtain a strict

monoidal category M̃od
fd

U , and F can be extended to an equivalence of tensor categories
(see [3, Section XI.5] for details). We abuse notations and write M1 ⊗ · · · ⊗Mk for S =

(M1, . . . ,Mk) ∈ Ob(M̃od
fd

U ) as well as for F (S) = ((· · · (M1 ⊗M2) ⊗ · · · ⊗Mk−1) ⊗Mk ∈
Ob(Modfd

U ).
Recall the two-dimensional vector representation V of U with basis v+ and v− and action

defined by

Kv± = q±1v±, Ev+ = 0 = Fv−, Ev− = v+, Fv+ = v−.

We have V ' L(1) as U -modules, with the isomorphism given by the identification v+ ↔
m0(q) and v− ↔ m1(q) of the associated distinguished bases. The 4-dimensional type 1
U -module V ⊗ V thus is isomorphic to a direct sum of simple modules. To find out the
simple components we look for highest weight vectors in V ⊗ V . Observe that

(V ⊗ V )q2 = spanK{v+ ⊗ v+},
(V ⊗ V )1 = spanK{v+ ⊗ v+, v− ⊗ v+},

(V ⊗ V )q−2 = spanK{v− ⊗ v−}.

It is easy to check that w2 = v+ ⊗ v+ (respectively w0 = v+ ⊗ v− − qv− ⊗ v+) is a highest
weight vector in V ⊗ V of highest weight q2 (respectively 1). Thus V2 = Uw2 (respectively
V0 = Uv0) is a U -submodule of V ⊗ V , isomorphic to L(2) (respectively L(0)). Thus
V0 ∩ V2 = {0} and V0 + V2 = V ⊗ V (by a dimension count), hence V ⊗ V ' L(0)⊕ L(2)
as U -modules.

A basis of V2 is given by {w2, Fw2, F
2w2}. Rescaling, we obtain the concrete K-basis

{u0, u1, u2} = {v+ ⊗ v+, v+ ⊗ v− + q−1v− ⊗ v+, v− ⊗ v−}.
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We now fix two morphisms

φ ∈ HomU(V ⊗ V,K), ψ ∈ HomU(K, V ⊗ V )

such that φ ◦ ψ = −(q + q−1)IdK. The two morphisms are determined up to a nonzero
constant: other possible choices are (φ′, ψ′) = (cφ, c−1ψ) for c ∈ K×. An explicit choice for
the morphisms are

ψ(1) = −(q + q−1)(v+ ⊗ v− − qv− ⊗ v+),

and
φ|V2 ≡ 0, φ(v+ ⊗ v− − qv− ⊗ v+) = 1.

Corollary 3.3. We have a K-linear strict tensor functor F sk
V : S(q−

1
2 ) → M̃od

fd

U defined
by F sk

V (1) = V and
F sk

V (∪) = ψ, F sk
V (∩) = φ.

Proof. By Proposition 3.1 it suffices to show that

(3.1) (IdV ⊗ φ) ◦ (ψ ⊗ IdV ) = IdV = (φ⊗ IdV ) ◦ (IdV ⊗ ψ),

which can be verified by a direct computation. �

Exercise 3.4. (i) Prove (3.1).
(ii) Define t = F sk

V (∪ ◦ ∩) = ψ ◦ φ ∈ EndU(V ⊗2). Show that

t(v+ ⊗ v+) = 0 = t(v− ⊗ v−),

t(v+ ⊗ v−) = −q−1v+ ⊗ v− + v− ⊗ v+,

t(v− ⊗ v+) = v+ ⊗ v− − qv− ⊗ v+.

Denote PV for the associated strict tensor functor

PV := F sk
V ◦G : T → M̃od

fd

U .

Then the endomorphism PV (X+) ∈ EndU(V ⊗2) is a solution of the Yang-Baxter equation.

Proposition 3.5. We have PV (X+) = cV,V with respect to the braiding c of Modfd
U .

Proof. With the notations from Exercise 3.4 we have

PV (X+) = q−
1
2 idV⊗V + q

1
2 t

by the skein relation applied to G(X+) ∈ E1,1(q
− 1

2 ). The endomorphism t is explicitly
computed in Exercise 3.4. Comparing the resulting formulas for PV (X+) with the explicit
formula for cV,V constructed before, we see that PV (X+) = cV,V . �

At a later stage we shall construct for any M ∈ Ob(Modfd
U ) a strict tensor functor

Tor → M̃od
fd

U , with Tor the category of oriented ribbon tangles, such that X+ (with the
proper orientation) is mapped to cM,M . It is called the Reshetikhin-Turaev functor. Only
for M = V the restriction of the Reshetikhin-Turaev functor to a suitable full sub-category
of Tor factors through the skein category S(q−

1
2 ).
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Remark 3.6. Let CV be the full sub-category of M̃od
fd

U with objects V ⊗n (n ≥ 0), where
V ⊗0 is the unit object K. Then CV is canonically a K-linear strict tensor category and the
functor F sk

V is an equivalence F sk
V : S(q−

1
2 )

∼−→ CV of K-linear strict tensor categories.

4. Appendix A: generators and relations for the skein category

A strict tensor category M is called K-linear if for all objects U, V ∈ Ob(M) the set
HomM(U, V ) of morphisms U → V is a K-vector space and if the composition and tensor
product maps

◦ : HomM(V,W )× HomM(U, V ) → HomM(U,W ),

⊗ : HomM(U, V )× HomM(U ′, V ′) → HomM(U ⊗ U ′, V ⊗ V ′)

are K-bilinear for all objects U,U ′, V, V ′,W inM. The skein category S(q−
1
2 ) is an example

of a K-linear strict tensor category.
Suppose we have a K-linear strict monoidal category M with the objects and morphisms

forming sets (the latter requirement is usually refered to by saying that M is small). Let
G be a set of morphisms in M such that the associated set AG of elementary morphisms
with respect to G. We write AKG(U, V ) for the K-linear span of AG(U, V ) in HomM(U, V ).
We say that G generates M if any morphism in M can be written as K-linear combination
of admissible compositions of elementary morphisms.

For two objects U and V in M we set WK
G (U, V ) for the K-vector space with basis the

set w = w1 ∗ w2 ∗ · · · ∗ wm of admissible words in the alphabet AG such that the source of
wm equals U and the target of w1 equals V . We now extend this by defining K-bilinear
maps

∗ : WK
G (V,W )×WK

G (U, V ) → WK
G (U,W )

by requiring it to be concatenation (with respect to ∗) on admissable words in the alphabet
AG. The ∗ is associative in the usual sense.

Let WK
G be the set of elements w ∈ WK

G (U, V ) (U, V ∈ Ob(M)). As before we have
a canonical map w 7→ [w] from WK

G to the set of morphisms of M, which restricts to
a K-linear map WK

G (U, V ) → HomM(U, V ) for all objects U and V in M and which
maps an admissible word w = w1 ∗ w2 ∗ · · · ∗ wm with the wi in the alphabet AG to
[w] = w1 ◦ w2 ◦ · · · ◦ wm. Observe that WK

G (U, V ) → HomM(U, V ) is surjective for all
objects U and V if G generates M. The equivalence relation ∼M on WK

G is now defined
as r ∼M r′ iff [r] = [r′].

For U an object of M there are well-defined maps idU ⊗ · : WK
G → WK

G and · ⊗ idU :
WK

G → WK
G , defined as follows: restricted to WK

G (V,W ), they are the K-linear maps

idU ⊗ · :WK
G (V,W ) → WK

G (U ⊗ V, U ⊗W ),

· ⊗ idU :WK
G (V,W ) → WK

G (V ⊗ U,W ⊗ U)
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determined by

idU ⊗ (w1 ∗ · · · ∗ wm) = (idU ⊗ w1) ∗ · · · ∗ (idU ⊗ wm),

(w1 ∗ · · · ∗ wm)⊗ idU = (w1 ⊗ idU) ∗ · · · ∗ (wm ⊗ idU)
(4.1)

where w = w1 ∗ · · · ∗wm is an admissible word in WK
G (V,W ) in the alphabet AG (note that

the right hand sides in (4.1) are again admissible words in the alphabet AG). The above
two maps on WK

G commute.
With these maps at hand, the procedure to incorporate relations on WK

G is as follows.
We start with a set R ⊂ WK

G ×WK
G of elements (r, r′) having the same source and target:

r, r′ ∈ WK
G (U, V ) for some objects U and V . We enlarge R to a subset R1 of WK

G ×WK
G

and from R1 to R̃ in the same way as in the syllabus of three weeks ago. Then we say that
w ∼R w′ for w,w′ ∈ WK

G iff w,w′ ∈ WK
G (U, V ) for some objects U and V and if w′ can be

obtained from w by a finite sequence of steps of the following form:

(1) Adding an element of the form λ(w1∗idY ∗w2−w1∗w2) with λ ∈ K, w1 ∈ WK
G (Y, V )

and w2 ∈ WK
G (U, Y ) for some object Y .

(2) Adding an element of the form λ(w1 ∗ r′ ∗ w2 − w1 ∗ r ∗ w2) for some λ ∈ K,

w1 ∈ WK
G (Z, V ), w2 ∈ WK

G (U, Y ) and (r, r′) ∈ R̃ with r, r′ having source Y and
target Z.

Note: if [r] = [r′] for (r, r′) ∈ R, then ∼R is stronger than ∼M.

Definition 4.1. Let G be a set of morphisms of a K-linear strict tensor category M. Let
R ⊂ WK

G ×WK
G be a set of pairs (r, r′) with r, r′ having the same source and target. We

say that (G,R) is a presentation of M if G is a set of generators of M and if ∼R agrees
with ∼M on WK

G .

Analogous to Theorem 4.22 in the syllabus of three weeks ago one can now prove

Theorem 4.2. The skein category S(q−
1
2 ) is generated as K-linear strict tensor category

by {∪,∩} with the set of defining relations being given by

R = {((id1 ⊗ ∩) ∗ (∪ ⊗ id1), id1), ((∩ ⊗ id1) ∗ (id1 ⊗ ∪), id1), (∩ ∗ ∪,−(q + q−1)id0)}.

Proof. We will use the following fact about the Ekl(q
− 1

2 ). Let Dkl be the K-vector space
with K-basis (representatives of) equivalence classes of planar isotopy classes of smooth
(no crossings and no loops) (k, l)-tangle diagrams. It is well known (see the proof of
Thm. 3.17 in the syllabus of three weeks ago) that Dkl is zero-dimensional if k + l is odd,
and its dimension is the nth Catalan number if k + l = 2n. We define the (Kauffman)

diagram category D(q−
1
2 ) as follows. The objects are Z≥0, and Hom

D(q−
1
2 )

(k, l) = Dkl.

The composition is putting smooth tangle diagrams on top of each other, and removing
the loops on the cost of a factor −(q + q−1) for each removed loop.

It is clear that D(q−
1
2 ) is a K-linear strict tensor category again: unit object is 0 and

tensor product is putting tangle diagrams next to each other. Furthermore, we have a
K-linear strict tensor functor F : D(q−

1
2 ) → S(q−

1
2 ) which is the identity on objects
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and which maps a smooth (k, l)-tangle diagram to its corresponding class in Ekl(q
− 1

2 ) =

Hom
S(q−

1
2 )

(k, l). It is clear that F : Dkl → Ekl(q
− 1

2 ) is surjective for all k, l ∈ Z≥0.

The injectivity of F amounts to proving that the representatives of the planar isotopy
classes of the smooth (k, l)-tangle diagrams, viewed as elements in Ekl(q

− 1
2 ), are K-linearly

independent. This requires an argument to which we come back in the syllabus of next
week (compare also with Theorem 3.17 in the syllabus of three weeks ago). Thus F is an
equivalence of K-linear strict tensor categories.

Thus the theorem can be alternatively formulated that (G,R) is a presentation of the

diagram category D(q−
1
2 ) as a K-linear strict tensor category. Taking a smooth (k, l)-

tangle diagram, it is planar isotopic to a generic smooth (k, l)-tangle diagram, which can
be written as [w] for an admissable word w in the elementary morphisms AG. Thus G

generates D(q−
1
2 ).

First note that ∼R is stronger than ∼D for D = D(q−
1
2 ). We show that w ∼D w′ (so

[w] = [w′]) implies w ∼R w′ for w,w′ ∈ WK
G . So suppose that w,w′ ∈ WK

G (k, l) satisfy
w ∼D w′, so [w] = [w′] in Dkl. Write {[ui]}i∈I for a set of representatives of planar isotopy
classes of smooth (k, l)-tangle diagrams (which is a basis of Dkl), then we can uniquely
write [w] =

∑
i λi[ui] = [w′] for unique λi ∈ K. On the other hand, let {vj}j∈J be the

canonical K-basis of WK
G (k, l) consisting of admissable words in the elementary morphisms

AG. There exists a unique surjective map σ : J → I and unique nonnegative integers
mj ∈ Z≥0 such that

[vj] = dmj [uσ(j)], j ∈ J,
where d = −q − q−1. We now write in WK

G (k, l),

(4.2) w =
∑

j

µjvj, w′ =
∑

j

µ′jvj

for unique µj, µ
′
j ∈ K. The assumption is that

[w] =
∑

j

µj[vj] =
∑

j

µjd
mj [uσ(j)]

in HomD(k, l) equals

[w′] =
∑

j

µ′j[vj] =
∑

j

µ′jd
mj [uσ(j)],

hence, for all i ∈ I, we have

(4.3)
∑

j∈σ−1(i)

µjd
mj =

∑
j∈σ−1(i)

µ′jd
mj .

So for w,w′ ∈ WK
G (k, l) given by (4.2), such that the coefficients satisfy (4.3), we need to

show that w ∼R w′. For this it suffices to show that∑
j∈σ−1(i)

µjvj =: wi ∼R w′i :=
∑

j∈σ−1(i)

µ′jvj
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for all i ∈ I. For this it suffices to show that for j, j′ ∈ σ−1(i) we have d−mjvj ∼R d−mj′vj′ .
This is easy and goes by the same (but simpler) argument as for ribbon tangles, as in the
proof of Theorem 4.22 in the syllabus of three weeks ago.

�

We call a strict tensor functor F : M→N between K-linear strict tensor categories M
and N K-linear if F : HomM(U, V ) → HomN (F (U), F (V )) is K-linear for U, V ∈ Ob(M).
We have now the direct analog of Theorem 4.24 in the syllabus of three weeks ago, with
the extra assumption that the categories are K-linear and that the strict tensor functor F
is K-linear. In other words, we conclude that Proposition 3.1 holds true.

5. Appendix B: tensor product decompositions

For r, s ∈ Z≥0 the tensor product module L(r)⊗L(s) is finite dimensional and of type 1,
hence it decomposes as a direct sum of the simple U -modules L(n) (n ≥ 0). The following
theorem (quantum Clebsch-Gordon decomposition) gives a more precise statement.

Theorem 5.1. For r, s ∈ Z≥0 we have

L(r)⊗ L(s) ' L(|r − s|)⊕ L(|r − s|+ 2)⊕ · · · ⊕ L(r + s− 2)⊕ L(r + s)

as U-modules.

Proof. It suffices to prove the theorem for r ≥ s (indeed, L(r)⊗ L(s) ' L(s)⊗ L(r) since

Modfd
U is a braided category). In this case we are asked to prove that

L(r)⊗ L(s) '
s⊕

l=0

L(r − s+ 2l).

The dimension over K of the left hand side is (r+1)(s+1), which agrees with the dimension
of the right hand side since

s∑
l=0

(r − s+ 2l + 1) = (r + 1)(s+ 1).

To prove the theorem it thus suffices to construct highest weight vectors wl ∈ L(r)⊗ L(s)
of highest weight r − s+ 2l + 1 for l = 0, . . . , s. First note that

(L(r)⊗ L(s))qr−s+2l = spanK{mn(qr)⊗ms−l−n(qs)}s−l
n=−l

for l = 0, . . . , s. Now a vector

wl =
s−l∑

n=−l

cn(mn(qr)⊗ms−l−n(qs)) ∈ (L(r)⊗ L(s))qr−s+2l , cn ∈ K

satisfies Ewl = 0 if and only if

cn+1 = −qn−r−s

(
s− l − n

)
q2

(
l + n+ 1

)
q2(

n+ 1
)

q2

(
r − n

)
q2

cn (n = −l, . . . , s− l − 1)
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(note that the denominators are nonzero). There is a nontrivial solution to these recurrence
relations, hence there exists a highest weight vector of highest weight qr−s+2l in L(r)⊗L(s)
for all l ∈ {0, . . . , s}. �

The following result should be compared to Theorem 3.17 in the syllabus of three weeks
ago.

Corollary 5.2. For k, l ∈ Z≥0 we have

DimK
(
HomU(V ⊗k, V ⊗l)

)
=


0, if k + l odd,

1
n+1

(
2n

n

)
, if k + l = 2n even.

Proof. For n ∈ Z≥0 we have

(5.1) V ⊗n '
⊕

j∈Z≥0

L(n)⊗cj(n)

for unique cj(n) ∈ Z≥0. For n = 0 we read the left hand side as L(0) = K (the unit object

in Modfd
U ), so that c0(0) = 1 and cj(0) = 0 for j ≥ 1. By the above theorem we have the

recurrence relations

(5.2) c0(n) = c1(n− 1), cj(n) = cj+1(n− 1) + cj−1(n− 1) (j ≥ 1)

for n ≥ 1. These recurrence relations, together with the initial conditions c0(0) = 1 and
cj(0) = 0 (j ≥ 1), determine the coefficients cj(n) uniquely. Now define the polynomial
Vj(y) of degree j ≥ 0 by

Vj(x+ x−1) =
xj+1 − x−j−1

x− x−1
=

j∑
l=0

xj−2l.

It is the character of the simple sl2-module of dimensional j + 1 or, from the viewpoint of
orthogonal polynomials, a Chebyshev polynomial of the second kind (up to a rescaling of
the variable). The Vj(y)’s satisfy V0(y) = 1 and the recurrence relation

yVj(y) = Vj+1(y) + Vj−1(y), j ≥ 1.

By induction to n we conclude from the recurrence relations for the cj(n) and the Vj(y)
that

yn =
∞∑

j=0

cj(n)Vj(y)

(this is in fact the equivalent reformulation of (5.1) for the characters of the associated
sl2-modules). Since

Vj(2 cos(θ)) =
sin((j + 1)θ)

sin(θ)
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we have the orthogonality relations

1

π

∫ π

−π

Vi(2 cos(θ))Vj(2 cos(θ)) sin2(θ)dθ = δi,j.

We conclude that

DimK
(
HomU(V ⊗k, V ⊗l)

)
=

∞∑
j=0

cj(k)cj(l)

=
1

π

∫ π

−π

(2 cos(θ))k+l sin2(θ)dθ

= − 1

4π

k+l∑
r=0

(
k + l
r

)∫ π

−π

ei(2r−k−l)θ(e2iθ + e−2iθ − 2)dθ.

The latter expression is zero if k + l is odd. If k + l = 2n is even, then it equals(
2n
n

)
−
(

2n
n− 1

)
=

1

n+ 1

(
2n
n

)
the nth Catalan number. �

Combining the results of section 3 in the syllabus of four weeks ago with Theorem 3.17
in the syllabus of three weeks ago, we conclude

Corollary 5.3. The Temperley-Lieb algebra TLn(q
1
2 ) is isomorphic to EndU(L(1)⊗n) as

algebra over K. The explicit isomorphism has been constructed in Exercise 3.14 of the
syllabus of week 14.
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