Take home exam Semisimple Lie algebras

- Date: June 3, 2013.
- Return date: June 17, 2013. Either electronically (single document, max. 5mb), or mailbox Opdam or Stokman, before 10am.
- Please do not forget to write your student number and email address on your work.
- Formulate carefully all the results you use.
- This is an individual take home exam, collaboration is not permitted.
- Always motivate your answer. Good luck!
- Weights: 1: 24 (a1;b2;c3;d3;e3;f3;g2;h2;i1;j2;k2), 2: 26 (a2;b1;c2;d3;e3;f3;g2;h2;i3;j2;k3), 3:19 (a3;b2;c2;d4;e3;f2;g3) and 4:21 (a1;b3;c2;d4;e3;f2;g2;h4).

Exercise 1. Let F be a field of characteristic unequal to two, in which the equations $x^{2}+1=0$ and $x^{2}+2=0$ have roots. Let $n \in \mathbb{N}$ with $n \geq 2$. Let $\mathfrak{g l}(n, F)$ denote the Lie algebra of all n by n matrices with coefficients in F. For $X \in \mathfrak{g l}(n, F)$ we denote by ${ }^{T} X$ its transpose.
(a) Let $g \in \operatorname{GL}(n, F)$ be an invertible n by n matrix. Show that the map c_{g} : $\mathfrak{g l}(n, F) \rightarrow \mathfrak{g l}(n, F)$ given by $c_{g}(Y):=g Y g^{-1}$ is an automorphism.
(b) Let $\mathfrak{g}:=\left\{X \in \mathfrak{g l}(n, F) \mid{ }^{T} X=-X\right\} \subset \mathfrak{g l}(n, F)$ be the subspace of skewsymmetric matrices. Show that \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}(n, F)$.
(c) Prove that the subalgebra $\mathfrak{g} \subset \mathfrak{g l}(n, F)$ defined in (b) is isomorphic to $\mathfrak{o}(n, F)$. (Hint: Distinguish the cases n being even and odd. In both cases, find an element $g \in \mathrm{GL}(n, F)$ such that $s=s^{-1}=g \cdot{ }^{T} g$, where s is the matrix used by Humphreys, Section 1.2 to define $\mathfrak{o}(n, F)$. Show that $c_{g}(\mathfrak{g})=\mathfrak{o}(n, F)$. It may be helpful to solve the cases $n=2$ and $n=3$ first.)
Assume from now on that F is algebraically closed and of characteristic zero, and that $n \geq 3$.
(d) Suppose that $\mathfrak{l} \subset \mathfrak{g l}(n, F)$ is a Lie subalgebra and $\mathfrak{s} \subset \mathfrak{l}$ an ideal. Suppose that $\lambda \in \mathfrak{s}^{*}$ is a linear functional, and define $V_{\lambda}:=\left\{v \in F^{n} \mid X v=\lambda(X) v \forall X \in \mathfrak{s}\right\}$. Show that $V_{\lambda} \subset F^{n}$ is a subrepresentation of F^{n} for \mathfrak{l}.
(e) In the situation of (d), suppose that \mathfrak{l} acts irreducibly on F^{n}. Show that $Z(\mathfrak{l})$ consists of the subalgebra $\mathfrak{l} \cap F .1_{n} \subset \mathfrak{l}$ (where $1_{n} \in \mathrm{GL}(n, F)$ denotes the identity matrix), and that \mathfrak{l} is reductive (i.e. $\operatorname{Rad}(\mathfrak{l})=Z(\mathfrak{l}))$.
(f) Show that the orthogonal subalgebra $\mathfrak{o}(n, F) \subset \mathfrak{g l}(n, F)$ is semisimple. (Hint: Observe that $\mathfrak{l} \subset \mathfrak{g l}(n, F)$ acts irreducibly on F^{n} if and only if the associative subalgebra $L \subset \operatorname{End}\left(F^{n}\right)$ generated by the identity matix 1_{n} and \mathfrak{l} satisfies $L=\operatorname{End}\left(F^{n}\right)$. Use this to show that $\mathfrak{o}(n, F)$ acts irreducibly on F^{n}.)
Assume in the rest of this exercise that $n=2 l \geq 6$.
(g) Show that the intersection \mathfrak{h} of the diagonal subalgebra $\delta \subset \mathfrak{g l}(n, F)$ with $\mathfrak{o}(n, F)$ consists of the matrices of the form $\operatorname{Diag}\left(x_{1}, x_{2}, \ldots, x_{l},-x_{1},-x_{2}, \ldots,-x_{l}\right)$ (with $\left(x_{1}, x_{2}, \ldots, x_{l}\right) \in F^{l}$ arbitrary). Show that \mathfrak{h} a Cartan subalgebra.
(h) Describe the root space decomposition and the root system Φ of $\mathfrak{o}(n, F)$ with respect to its Cartan subalgebra \mathfrak{h} as in (g) explicitly. Conclude that $\mathfrak{o}(n, F)$ (and hence \mathfrak{g}) is a simple Lie algebra of rank l.
(i) Describe the weight lattice of Φ explicitly.
(j) Give the weight space decomposition of $V=F^{n}$ with respect to $\mathfrak{h} \subset \mathfrak{o}(n, F)$.
(k) Show that the set of weights of $V=F^{n}$ is an orbit under the Weyl group $W(\Phi)$ of the root system Φ of $\mathfrak{o}(n, F)$ with respect to \mathfrak{h}.

Exercise 2. In this exercise F denotes an algebraically closed field of characteristic zero. Consider the classical Lie subalgebra $L:=\mathfrak{o}(8, F) \subset \mathfrak{g l}(8, F)$ given by

$$
L=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathfrak{g r}(4, F) \quad \&{ }^{T} a=-d,{ }^{T} b=-b,{ }^{T} c=-c\right\}
$$

with its Cartan subalgebra $H:=\delta \cap \mathfrak{o}(8, F)$ as in exercise 1. Recall that the root system Φ of L with respect to H has type D_{4}.
(a) Show that the subset $B \subset L$ defined by requiring that a is upper triangular and $c=0$, is a Borel (i.e. maximal solvable) subalgebra containing H.
(b) Describe Φ explicitly as a set of linear functionals on H, and describe the set $\Phi^{+}:=\left\{\alpha \in \Phi \mid L_{\alpha} \subset B\right\}$ of positive roots corresponding to B, and its basis $\Delta \subset \Phi^{+}$, explicitly.
(c) Recall that the defining representation $V=F^{8}$ of L is irreducible. Show that its highest weight λ is a fundamental weight. Draw the Dynkin diagram $D_{L}=D(\Phi, \Delta)$ of Φ with respect to Δ, and mark the vertex which corresponds to λ.
Let $E_{\mathbb{Q}} \subset H^{*}$ be the \mathbb{Q}-linear subspace spanned by Φ, and let $E=\mathbb{R} \otimes_{\mathbb{Q}} E_{\mathbb{Q}}$. We will identify the group $\Gamma\left(D_{L}\right)$ of automorphisms of the Dynkin diagram canonically with the group $\Gamma(\Phi, \Delta) \subset \mathrm{GL}(E)$ of automorphisms of Φ preserving Δ (cf. Section 12.2 of Humphreys' book). The latter group will also be identified with the subgroup of $\mathrm{GL}\left(H^{*}\right)$ preserving Φ and Δ as in Section 14.2 of Humphreys' book.
(d) Show that there exists a subgroup $\Gamma(L)$ of the group $\operatorname{Aut}(L, B, H)$ of automorphisms of L preserving B and H, which is isomorphic to the group $\Gamma\left(D_{L}\right)$ via the homomorphism $\gamma \rightarrow^{t}\left(\left.\gamma\right|_{H}\right)^{-1}$ (where we have denoted the transpose of a linear endomorphism ϕ by ${ }^{t} \phi$).
We fix a subgroup $\Gamma(L) \subset \operatorname{Aut}(L, B, H)$ as in (d) for the remaining part of this exercise, and we identify $\Gamma(L)$ and $\Gamma\left(D_{L}\right)$ via the isomorphism described in (d).
(e) Let $\gamma \in \Gamma(L)$, and let V_{γ} denote the representation of L obtained from the defining representation V by precomposing with γ^{-1}. In other words, V_{γ} is the representation of L with underlying vector space V, in which $X \in L$ acts by $\gamma^{-1}(X)$. Prove that V_{γ} is an irreducible L module with highest weight equal to $\gamma(\lambda)$. Give the explicit description of the sets of weights and the highest
weights of all equivalence classes of irreducible representations of the form V_{γ}, as linear functionals on H.
(f) Let \mathfrak{g} be a semisimple Lie algebra over F with Borel subalgebra \mathfrak{b} and Cartan subalgebra $\mathfrak{h} \subset \mathfrak{b}$, and let $\tau \in \operatorname{Aut}(\mathfrak{g}, \mathfrak{b}, \mathfrak{h})$ be an automorphism of \mathfrak{g} preserving \mathfrak{b} and \mathfrak{h}. Let $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(U)$ be a finite dimensional irreducible \mathfrak{g}-module over F, with highest weight μ. Suppose that $\tau(\mu)=\mu$. Prove that there exists a $g_{\tau} \in \mathrm{GL}(U)$ such that for all $X \in \mathfrak{g}$:

$$
\pi\left(\tau^{-1}(X)\right)=c_{g_{\tau}}(\pi(X))
$$

Show that the canonical image $\overline{g_{\tau}}$ of g_{τ} in $\operatorname{PGL}(U)$ is unique.
(g) Let $1 \neq \gamma \in \Gamma(L)$ be such that $\gamma(\lambda)=\lambda$. Find an explicit matrix $g_{\gamma} \in \operatorname{GL}(V)$ such that $\gamma^{-1}(X)=c_{g_{\gamma}}(X)$ for all $X \in L$.
(h) Suppose that $\gamma \in \Gamma(L)$ is such that $\gamma(\lambda) \neq \lambda$. Does there exist an element $g \in \mathrm{GL}(V)$ such that $c_{g}(X)=\gamma(X)$? Explain your answer.
(i) Compute the set of weights of $\Lambda^{2}(V)$. Prove that $\Lambda^{2}(V)$ is isomorphic to the adjoint representation of $L=\mathfrak{o}(8, F)$. Show that its highest weight is also a fundamental weight.
(j) Show that the representations $\Lambda^{2}\left(V_{\gamma}\right)$ are mutually equivalent for al $\gamma \in \Gamma(L)$.
(k) Suppose that $\gamma_{1}, \gamma_{2} \in \Gamma(L)$ are such that $\lambda_{1} \neq \lambda_{2}$, where $\lambda_{i}:=\gamma_{i}(\lambda)$ for $i \in\{1,2\}$. Describe the decomposition in irreducibles of $V_{\gamma_{1}} \otimes V_{\gamma_{2}}$.

Exercise 3. Let L be a Lie algebra over an algebraically closed field F of characteristic zero. A Lie algebra homomorphism $\chi: L \rightarrow F$ is called a linear character of L. Denote $\widehat{L} \subset L^{*}$ for the subspace of linear characters.
(a) Prove that $\widehat{L} \simeq(L /[L, L])^{*}$ as vector spaces.
(b) Show that $\widehat{L}=\{0\}$ if L is semisimple.

In the remainder of the exercise we assume that L is a semisimple Lie algebra over F. Let $H \subset L$ be a Cartan subalgebra and $\Phi=\Phi(L, H) \subset H^{*}$ the associated root system. Choose a base Δ of Φ and write Φ^{+}for the corresponding set of positive roots. Consider the Lie subalgebra

$$
B:=H \oplus \bigoplus_{\alpha \in \Phi^{+}} L_{\alpha}
$$

of L, where $L_{\alpha} \subset L$ is the root space of L associated to the root $\alpha \in \Phi$.
(c) Show that $\widehat{B} \simeq H^{*}$ as vector spaces.

For $\lambda \in H^{*}$ we write $I_{B}(\lambda)$ for the left ideal of the universal enveloping algebra $\mathcal{U}(B)$ generated by $h-\lambda(h) 1(h \in H)$ and by $L_{\alpha}\left(\alpha \in \Phi^{+}\right)$, where 1 stands for the unit element of $\mathcal{U}(B)$.
(d) Prove that $\operatorname{Dim}_{F}\left(\mathcal{U}(B) / I_{B}(\lambda)\right)=1$.

Consider now the left ideal $I(\lambda)$ of the universal enveloping algebra $\mathcal{U}(L)$ generated by $h-\lambda(h) 1(h \in H)$ and by $L_{\alpha}\left(\alpha \in \Phi^{+}\right)$. Let $N_{-} \subset L$ be the Lie subalgebra generated by the $L_{-\alpha}\left(\alpha \in \Phi^{+}\right)$.
(e) Show that there exists a unique linear isomorphism $\mathcal{U}\left(N_{-}\right) \otimes_{F} I_{B}(\lambda) \xrightarrow{\sim} I(\lambda)$ mapping $X \otimes_{F} Y$ to $X Y$ for $X \in \mathcal{U}\left(N_{-}\right)$and $Y \in I_{B}(\lambda)$ (here we view $\mathcal{U}\left(N_{-}\right)$ and $\mathcal{U}(B)$ as subalgebras of $\mathcal{U}(L)$ in the canonical way).
(f) Prove that the left $\mathcal{U}(L)$-module $Z(\lambda):=\mathcal{U}(L) / I(\lambda)$, considered as L-module, is standard cyclic.
(g) Show that $Z(\lambda) \simeq \mathcal{U}\left(N_{-}\right)$as vector spaces.

Exercise 4. Let F be an algebraically closed field of characteristic zero and set $A:=F\left[z_{1}, z_{2}\right]$ for the associative F-algebra of polynomials over F in two commuting variables z_{1}, z_{2}. If $p \in A$ is given explicitly by $p=\sum_{k, l=0}^{\infty} c_{k, l} z_{1}^{k} z_{2}^{l}\left(c_{k, l} \in F\right.$ all but finitely many zero) and $a, b \in A$, then we write $p(a, b):=\sum_{k, l=0}^{\infty} c_{k, l} a^{k} b^{l} \in A$. With this notation, we in particular have $p\left(z_{1}, z_{2}\right)=p$.

Let $\mathcal{D} \subseteq \operatorname{End}_{F}(A)$ be the unital subalgebra generated by z_{i} and $\partial_{i}(i=1,2)$, where z_{i} is now interpreted as the linear operator on A defined by $p \mapsto z_{i} p$ and ∂_{i} is the linear operator on A satisfying $\partial_{1}\left(z_{1}^{k} z_{2}^{l}\right)=k z_{1}^{k-1} z_{2}^{l}$ respectively $\partial_{2}\left(z_{1}^{k} z_{2}^{l}\right)=$ $l z_{1}^{k} z_{2}^{l-1}$ for $k, l \in \mathbb{Z}_{\geq 0}$. We write 1 for the unit element of \mathcal{D}, and $[\cdot, \cdot]$ for the Lie bracket of the Lie algebra $L(\mathcal{D})$ associated to \mathcal{D} (the commutator bracket).
(a) Show that $\left[z_{i}, z_{j}\right]=0,\left[\partial_{i}, \partial_{j}\right]=0$ and $\left[\partial_{i}, z_{j}\right]=\delta_{i, j} 1$, where $\delta_{i, j}$ is the Kronecker delta function ($\delta_{i, j}=1$ if $i=j$ and $=0$ otherwise).
Let $\{h, x, y\}$ be the linear basis

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

of the Lie algebra $\mathfrak{s l}(2, F)$. Define a linear map $\rho: \mathfrak{s l}(2, F) \rightarrow \mathcal{D}$ by

$$
\rho(X):=-\left(a z_{1}+b z_{2}\right) \partial_{1}-\left(c z_{1}+d z_{2}\right) \partial_{2}, \quad X:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathfrak{s l l}(2, F) .
$$

(b) Prove that $\rho: \mathfrak{s l}(2, F) \rightarrow L(\mathcal{D})$ is a homomorphism of Lie algebras.

We also write ρ for the canonical extension of the Lie algebra homomorphism ρ to a unital algebra homomorphism $\mathcal{U}(\mathfrak{s l}(2, F)) \rightarrow \mathcal{D}$. Composing $\rho: \mathcal{U}(\mathfrak{s l}(2, F)) \rightarrow \mathcal{D}$ with the canonical embedding $\mathcal{D} \hookrightarrow \operatorname{End}_{F}(A)$ turns A into an infinite dimensional $\mathcal{U}(\mathfrak{s l}(2, F))$-module. The corresponding representation map $\mathcal{U}(\mathfrak{s l}(2, F)) \rightarrow$ $\operatorname{End}_{F}(A)$ is again denoted by ρ.
(c) Show that A decomposes as a direct sum of finite dimensional $\mathfrak{s l}(2, F)$-modules.
(d) Give the explicit decomposition of A as direct sum of finite dimensional irreducible $\mathfrak{s l}(2, F)$-modules (in other words, if $L(m)\left(m \in \mathbb{Z}_{+}\right)$is the irreducible $\mathfrak{s l}(2, F)$-module of dimension $m+1$, determine the numbers $k_{m} \in \mathbb{Z}_{\geq 0}$ such
that $A \simeq \bigoplus_{m=0}^{\infty} k_{m} L(m)$, as $\mathfrak{s l}(2, F)$-modules, where $k_{m} L(m)$ stands for the direct sum of k_{m} copies of $L(m)$).
Part (c) implies that $\rho(x)$ and $\rho(y)$ are locally nilpotent endomorphisms of A, hence we have well defined F-linear automorphisms $\exp (\rho(x))$ and $\exp (\rho(y))$ of A.
(e) Let $p \in A$. Prove that

$$
\exp (\rho(x)) p=p\left(z_{1}-z_{2}, z_{2}\right), \quad \exp (\rho(y)) p=p\left(z_{1}, z_{2}-z_{1}\right)
$$

Set $\sigma:=\exp (\rho(x)) \exp (-\rho(y)) \exp (\rho(x)) \in \operatorname{Aut}_{F}(A)$.
(f) Prove that $\sigma(p)=p\left(-z_{2}, z_{1}\right)$ for $p \in A$.
(g) Show that $\sigma \rho(h) \sigma^{-1}=-\rho(h)$.
(h) Let V be a finite dimensional $\mathfrak{s l}(2, F)$-module with representation map

$$
\pi: \mathfrak{s l}_{2}(F) \rightarrow \operatorname{End}_{F}(V) .
$$

Set $V_{n}:=\{v \in V \mid \pi(h) v=n v\}$. Prove that

$$
\exp (\pi(x)) \exp (-\pi(y)) \exp (\pi(x)) V_{n}=V_{-n}, \quad \forall n \in \mathbb{Z}
$$

