TAKE HOME EXAM Semisimple Lie algebras

- Date: June 3, 2013.
- Return date: June 17, 2013. Either electronically (single document, max. 5mb), or mailbox Opdam or Stokman, before 10am.
- Please do not forget to write your student number and email address on your work.
- Formulate carefully all the results you use.
- This is an individual take home exam, collaboration is not permitted.
- Always motivate your answer. Good luck!
- Weights: 1: 24 (a1;b2;c3;d3;e3;f3;g2;h2;i1;j2;k2), 2: 26 (a2;b1;c2;d3;e3;f3;g2;h2;i3;j2;k3), 3:19 (a3;b2;c2;d4;e3;f2;g3) and 4:21 (a1;b3;c2;d4;e3;f2;g2;h4).
- **Exercise 1.** Let F be a field of characteristic unequal to two, in which the equations $x^2 + 1 = 0$ and $x^2 + 2 = 0$ have roots. Let $n \in \mathbb{N}$ with $n \ge 2$. Let $\mathfrak{gl}(n, F)$ denote the Lie algebra of all n by n matrices with coefficients in F. For $X \in \mathfrak{gl}(n, F)$ we denote by $^T X$ its transpose.
 - (a) Let $g \in GL(n, F)$ be an invertible *n* by *n* matrix. Show that the map $c_g :$ $\mathfrak{gl}(n, F) \to \mathfrak{gl}(n, F)$ given by $c_g(Y) := gYg^{-1}$ is an automorphism.
 - (b) Let $\mathfrak{g} := \{X \in \mathfrak{gl}(n, F) \mid TX = -X\} \subset \mathfrak{gl}(n, F)$ be the subspace of skewsymmetric matrices. Show that \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(n, F)$.
 - (c) Prove that the subalgebra $\mathfrak{g} \subset \mathfrak{gl}(n, F)$ defined in (b) is isomorphic to $\mathfrak{o}(n, F)$. (Hint: Distinguish the cases *n* being even and odd. In both cases, find an element $g \in \operatorname{GL}(n, F)$ such that $s = s^{-1} = g \cdot {}^T g$, where *s* is the matrix used by Humphreys, Section 1.2 to define $\mathfrak{o}(n, F)$. Show that $c_g(\mathfrak{g}) = \mathfrak{o}(n, F)$. It may be helpful to solve the cases n = 2 and n = 3 first.)

Assume from now on that F is algebraically closed and of characteristic zero, and that $n \geq 3$.

- (d) Suppose that $\mathfrak{l} \subset \mathfrak{gl}(n, F)$ is a Lie subalgebra and $\mathfrak{s} \subset \mathfrak{l}$ an ideal. Suppose that $\lambda \in \mathfrak{s}^*$ is a linear functional, and define $V_{\lambda} := \{v \in F^n \mid Xv = \lambda(X)v \,\forall X \in \mathfrak{s}\}$. Show that $V_{\lambda} \subset F^n$ is a subrepresentation of F^n for \mathfrak{l} .
- (e) In the situation of (d), suppose that \mathfrak{l} acts irreducibly on F^n . Show that $Z(\mathfrak{l})$ consists of the subalgebra $\mathfrak{l} \cap F.1_n \subset \mathfrak{l}$ (where $1_n \in \mathrm{GL}(n, F)$ denotes the identity matrix), and that \mathfrak{l} is reductive (i.e. $\mathrm{Rad}(\mathfrak{l}) = Z(\mathfrak{l})$).
- (f) Show that the orthogonal subalgebra $\mathfrak{o}(n, F) \subset \mathfrak{gl}(n, F)$ is semisimple. (Hint: Observe that $\mathfrak{l} \subset \mathfrak{gl}(n, F)$ acts irreducibly on F^n if and only if the *associative* subalgebra $L \subset \operatorname{End}(F^n)$ generated by the identity matix 1_n and \mathfrak{l} satisfies $L = \operatorname{End}(F^n)$. Use this to show that $\mathfrak{o}(n, F)$ acts irreducibly on F^n .)

Assume in the rest of this exercise that $n = 2l \ge 6$.

(g) Show that the intersection \mathfrak{h} of the diagonal subalgebra $\delta \subset \mathfrak{gl}(n, F)$ with $\mathfrak{o}(n, F)$ consists of the matrices of the form $\operatorname{Diag}(x_1, x_2, \ldots, x_l, -x_1, -x_2, \ldots, -x_l)$ (with $(x_1, x_2, \ldots, x_l) \in F^l$ arbitrary). Show that \mathfrak{h} a Cartan subalgebra.

- (h) Describe the root space decomposition and the root system Φ of $\mathfrak{o}(n, F)$ with respect to its Cartan subalgebra \mathfrak{h} as in (g) explicitly. Conclude that $\mathfrak{o}(n, F)$ (and hence \mathfrak{g}) is a simple Lie algebra of rank l.
- (i) Describe the weight lattice of Φ explicitly.
- (j) Give the weight space decomposition of $V = F^n$ with respect to $\mathfrak{h} \subset \mathfrak{o}(n, F)$.
- (k) Show that the set of weights of $V = F^n$ is an orbit under the Weyl group $W(\Phi)$ of the root system Φ of $\mathfrak{o}(n, F)$ with respect to \mathfrak{h} .
- **Exercise 2.** In this exercise F denotes an algebraically closed field of characteristic zero. Consider the classical Lie subalgebra $L := \mathfrak{o}(8, F) \subset \mathfrak{gl}(8, F)$ given by

$$L = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathfrak{gl}(4, F) \& {}^{T}a = -d, {}^{T}b = -b, {}^{T}c = -c \}$$

with its Cartan subalgebra $H := \delta \cap \mathfrak{o}(8, F)$ as in exercise 1. Recall that the root system Φ of L with respect to H has type D_4 .

- (a) Show that the subset $B \subset L$ defined by requiring that a is upper triangular and c = 0, is a Borel (i.e. maximal solvable) subalgebra containing H.
- (b) Describe Φ explicitly as a set of linear functionals on H, and describe the set $\Phi^+ := \{ \alpha \in \Phi \mid L_\alpha \subset B \}$ of positive roots corresponding to B, and its basis $\Delta \subset \Phi^+$, explicitly.
- (c) Recall that the defining representation $V = F^8$ of L is irreducible. Show that its highest weight λ is a fundamental weight. Draw the Dynkin diagram $D_L = D(\Phi, \Delta)$ of Φ with respect to Δ , and mark the vertex which corresponds to λ .

Let $E_{\mathbb{Q}} \subset H^*$ be the \mathbb{Q} -linear subspace spanned by Φ , and let $E = \mathbb{R} \otimes_{\mathbb{Q}} E_{\mathbb{Q}}$. We will identify the group $\Gamma(D_L)$ of automorphisms of the Dynkin diagram canonically with the group $\Gamma(\Phi, \Delta) \subset \operatorname{GL}(E)$ of automorphisms of Φ preserving Δ (cf. Section 12.2 of Humphreys' book). The latter group will also be identified with the subgroup of $\operatorname{GL}(H^*)$ preserving Φ and Δ as in Section 14.2 of Humphreys' book.

(d) Show that there exists a subgroup $\Gamma(L)$ of the group $\operatorname{Aut}(L, B, H)$ of automorphisms of L preserving B and H, which is isomorphic to the group $\Gamma(D_L)$ via the homomorphism $\gamma \to {}^t(\gamma|_H)^{-1}$ (where we have denoted the transpose of a linear endomorphism ϕ by ${}^t\phi$).

We fix a subgroup $\Gamma(L) \subset \operatorname{Aut}(L, B, H)$ as in (d) for the remaining part of this exercise, and we identify $\Gamma(L)$ and $\Gamma(D_L)$ via the isomorphism described in (d).

(e) Let $\gamma \in \Gamma(L)$, and let V_{γ} denote the representation of L obtained from the defining representation V by precomposing with γ^{-1} . In other words, V_{γ} is the representation of L with underlying vector space V, in which $X \in L$ acts by $\gamma^{-1}(X)$. Prove that V_{γ} is an irreducible L module with highest weight equal to $\gamma(\lambda)$. Give the explicit description of the sets of weights and the highest

weights of all equivalence classes of irreducible representations of the form V_{γ} , as linear functionals on H.

(f) Let \mathfrak{g} be a semisimple Lie algebra over F with Borel subalgebra \mathfrak{b} and Cartan subalgebra $\mathfrak{h} \subset \mathfrak{b}$, and let $\tau \in \operatorname{Aut}(\mathfrak{g}, \mathfrak{b}, \mathfrak{h})$ be an automorphism of \mathfrak{g} preserving \mathfrak{b} and \mathfrak{h} . Let $\pi : \mathfrak{g} \to \mathfrak{gl}(U)$ be a finite dimensional irreducible \mathfrak{g} -module over F, with highest weight μ . Suppose that $\tau(\mu) = \mu$. Prove that there exists a $g_{\tau} \in \operatorname{GL}(U)$ such that for all $X \in \mathfrak{g}$:

$$\pi(\tau^{-1}(X)) = c_{g_{\tau}}(\pi(X))$$

Show that the canonical image $\overline{g_{\tau}}$ of g_{τ} in PGL(U) is unique.

- (g) Let $1 \neq \gamma \in \Gamma(L)$ be such that $\gamma(\lambda) = \lambda$. Find an explicit matrix $g_{\gamma} \in \operatorname{GL}(V)$ such that $\gamma^{-1}(X) = c_{g_{\gamma}}(X)$ for all $X \in L$.
- (h) Suppose that $\gamma \in \Gamma(L)$ is such that $\gamma(\lambda) \neq \lambda$. Does there exist an element $g \in \operatorname{GL}(V)$ such that $c_g(X) = \gamma(X)$? Explain your answer.
- (i) Compute the set of weights of $\Lambda^2(V)$. Prove that $\Lambda^2(V)$ is isomorphic to the adjoint representation of $L = \mathfrak{o}(8, F)$. Show that its highest weight is also a fundamental weight.
- (j) Show that the representations $\Lambda^2(V_{\gamma})$ are mutually equivalent for al $\gamma \in \Gamma(L)$.
- (k) Suppose that $\gamma_1, \gamma_2 \in \Gamma(L)$ are such that $\lambda_1 \neq \lambda_2$, where $\lambda_i := \gamma_i(\lambda)$ for $i \in \{1, 2\}$. Describe the decomposition in irreducibles of $V_{\gamma_1} \otimes V_{\gamma_2}$.
- **Exercise 3.** Let L be a Lie algebra over an algebraically closed field F of characteristic zero. A Lie algebra homomorphism $\chi : L \to F$ is called a linear character of L. Denote $\widehat{L} \subset L^*$ for the subspace of linear characters.
 - (a) Prove that $\widehat{L} \simeq (L/[L, L])^*$ as vector spaces.
 - (b) Show that $\widehat{L} = \{0\}$ if L is semisimple.

In the remainder of the exercise we assume that L is a semisimple Lie algebra over F. Let $H \subset L$ be a Cartan subalgebra and $\Phi = \Phi(L, H) \subset H^*$ the associated root system. Choose a base Δ of Φ and write Φ^+ for the corresponding set of positive roots. Consider the Lie subalgebra

$$B := H \oplus \bigoplus_{\alpha \in \Phi^+} L_\alpha$$

of L, where $L_{\alpha} \subset L$ is the root space of L associated to the root $\alpha \in \Phi$.

(c) Show that $B \simeq H^*$ as vector spaces.

For $\lambda \in H^*$ we write $I_B(\lambda)$ for the left ideal of the universal enveloping algebra $\mathcal{U}(B)$ generated by $h - \lambda(h) 1$ $(h \in H)$ and by L_{α} $(\alpha \in \Phi^+)$, where 1 stands for the unit element of $\mathcal{U}(B)$.

(d) Prove that $\operatorname{Dim}_F(\mathcal{U}(B)/I_B(\lambda)) = 1$.

Consider now the left ideal $I(\lambda)$ of the universal enveloping algebra $\mathcal{U}(L)$ generated by $h - \lambda(h) 1$ $(h \in H)$ and by L_{α} $(\alpha \in \Phi^+)$. Let $N_{-} \subset L$ be the Lie subalgebra generated by the $L_{-\alpha}$ $(\alpha \in \Phi^+)$.

- (e) Show that there exists a unique linear isomorphism $\mathcal{U}(N_{-}) \otimes_{F} I_{B}(\lambda) \xrightarrow{\sim} I(\lambda)$ mapping $X \otimes_{F} Y$ to XY for $X \in \mathcal{U}(N_{-})$ and $Y \in I_{B}(\lambda)$ (here we view $\mathcal{U}(N_{-})$ and $\mathcal{U}(B)$ as subalgebras of $\mathcal{U}(L)$ in the canonical way).
- (f) Prove that the left $\mathcal{U}(L)$ -module $Z(\lambda) := \mathcal{U}(L)/I(\lambda)$, considered as *L*-module, is standard cyclic.
- (g) Show that $Z(\lambda) \simeq \mathcal{U}(N_{-})$ as vector spaces.
- **Exercise 4.** Let F be an algebraically closed field of characteristic zero and set $A := F[z_1, z_2]$ for the associative F-algebra of polynomials over F in two commuting variables z_1, z_2 . If $p \in A$ is given explicitly by $p = \sum_{k,l=0}^{\infty} c_{k,l} z_1^k z_2^l$ ($c_{k,l} \in F$ all but finitely many zero) and $a, b \in A$, then we write $p(a, b) := \sum_{k,l=0}^{\infty} c_{k,l} a^k b^l \in A$. With this notation, we in particular have $p(z_1, z_2) = p$.

Let $\mathcal{D} \subseteq \operatorname{End}_F(A)$ be the unital subalgebra generated by z_i and ∂_i (i = 1, 2), where z_i is now interpreted as the linear operator on A defined by $p \mapsto z_i p$ and ∂_i is the linear operator on A satisfying $\partial_1(z_1^k z_2^l) = k z_1^{k-1} z_2^l$ respectively $\partial_2(z_1^k z_2^l) = l z_1^k z_2^{l-1}$ for $k, l \in \mathbb{Z}_{\geq 0}$. We write 1 for the unit element of \mathcal{D} , and $[\cdot, \cdot]$ for the Lie bracket of the Lie algebra $L(\mathcal{D})$ associated to \mathcal{D} (the commutator bracket).

(a) Show that $[z_i, z_j] = 0$, $[\partial_i, \partial_j] = 0$ and $[\partial_i, z_j] = \delta_{i,j} 1$, where $\delta_{i,j}$ is the Kronecker delta function ($\delta_{i,j} = 1$ if i = j and = 0 otherwise).

Let $\{h, x, y\}$ be the linear basis

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

of the Lie algebra $\mathfrak{sl}(2, F)$. Define a linear map $\rho : \mathfrak{sl}(2, F) \to \mathcal{D}$ by

$$\rho(X) := -(az_1 + bz_2)\partial_1 - (cz_1 + dz_2)\partial_2, \qquad X := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{sl}(2, F).$$

(b) Prove that $\rho : \mathfrak{sl}(2, F) \to L(\mathcal{D})$ is a homomorphism of Lie algebras.

We also write ρ for the canonical extension of the Lie algebra homomorphism ρ to a unital algebra homomorphism $\mathcal{U}(\mathfrak{sl}(2,F)) \to \mathcal{D}$. Composing $\rho : \mathcal{U}(\mathfrak{sl}(2,F)) \to \mathcal{D}$ with the canonical embedding $\mathcal{D} \hookrightarrow \operatorname{End}_F(A)$ turns A into an infinite dimensional $\mathcal{U}(\mathfrak{sl}(2,F))$ -module. The corresponding representation map $\mathcal{U}(\mathfrak{sl}(2,F)) \to$ $\operatorname{End}_F(A)$ is again denoted by ρ .

- (c) Show that A decomposes as a direct sum of finite dimensional $\mathfrak{sl}(2, F)$ -modules.
- (d) Give the explicit decomposition of A as direct sum of finite dimensional irreducible $\mathfrak{sl}(2, F)$ -modules (in other words, if L(m) $(m \in \mathbb{Z}_+)$ is the irreducible $\mathfrak{sl}(2, F)$ -module of dimension m + 1, determine the numbers $k_m \in \mathbb{Z}_{\geq 0}$ such

that $A \simeq \bigoplus_{m=0}^{\infty} k_m L(m)$, as $\mathfrak{sl}(2, F)$ -modules, where $k_m L(m)$ stands for the direct sum of k_m copies of L(m)).

Part (c) implies that $\rho(x)$ and $\rho(y)$ are locally nilpotent endomorphisms of A, hence we have well defined F-linear automorphisms $\exp(\rho(x))$ and $\exp(\rho(y))$ of A. (e) Let $p \in A$. Prove that

$$\exp(\rho(x))p = p(z_1 - z_2, z_2), \qquad \exp(\rho(y))p = p(z_1, z_2 - z_1).$$

Set $\sigma := \exp(\rho(x)) \exp(-\rho(y)) \exp(\rho(x)) \in \operatorname{Aut}_F(A)$.

(f) Prove that $\sigma(p) = p(-z_2, z_1)$ for $p \in A$.

(g) Show that $\sigma \rho(h) \sigma^{-1} = -\rho(h)$.

(h) Let V be a finite dimensional $\mathfrak{sl}(2, F)$ -module with representation map

$$\pi : \mathfrak{sl}_2(F) \to \operatorname{End}_F(V).$$

Set
$$V_n := \{ v \in V \mid \pi(h)v = nv \}$$
. Prove that
 $\exp(\pi(x)) \exp(-\pi(y)) \exp(\pi(x))V_n = V_{-n}, \quad \forall n \in \mathbb{Z}.$