How Occam's razor provides a neat definition of direct causation

Alexander Gebharter · Gerhard Schurz

Duesseldorf Center for Logic and Philosophy of Science Heinrich Heine University Duesseldorf

27.07.2014

27.07.2014

1 / 23

Alexander Gebharter · Gerhard Schurz Occam's razor & direct causation

Outline

- Woodward's interventionist theory of causation
- Reconstructing Woodward's theory
- $\textcircled{O} \text{ Result 1: CMC + Min + IE} \Rightarrow \text{direct causation Woodward style}$
- $\textcircled{O} \ \mbox{Result 2: CMC + Min + IE}_S \Rightarrow \mbox{direct causation Woodward style}$

Woodward's interventionist theory of causation

$\mathsf{Definition}~(\mathsf{IV}_\mathsf{W})$

I is an intervention variable for X wr.t. Y iff

- 11. / causes X.
- 12. I acts as a switch for all other variables that cause X.
- 13. Any directed path from I to Y goes through X.
- 14. I is (statistically) independent of any variable Z that causes Y and that is on a directed path that does not go through X.

I = on is an intervention on X w.r.t. Y iff I is an intervention variable for X w.r.t. Y and I = on forces X to take a certain value x. (cf. Woodward, 2003, p. 98)

27.07.2014

Woodward's interventionist theory of causation

Definition (DC_W)

A necessary and sufficient condition for X to be a (type-level) direct cause of Y w.r.t. a variable set V is that there be a possible intervention on X that will change Y or the probability distribution of Y when one holds fixed at some value all other variables Z_i in V. (Woodward, 2003, p. 59)

Open questions/concerns:

- What is a "possible" intervention?
 - \Rightarrow logically/conceptually possible maybe not restrictive enough...
- Applicable to all kinds of variable sets **V**?
 - \Rightarrow problems with sets containing variables for which there are no interventions in the sense of (IV_W)...

27.07.2014

Outline

- Woodward's interventionist theory of causation
- Reconstructing Woodward's theory
- $\textcircled{O} \text{ Result 1: CMC + Min + IE} \Rightarrow \text{direct causation Woodward style}$
- Result 2: CMC + Min + $IE_S \Rightarrow$ direct causation Woodward style

27.07.2014

Definition (IV)

- $I_X \in \mathbf{V}$ is an intervention variable for X w.r.t. Y in $\langle \mathbf{V}, E, P
 angle$ iff
- (a) I_X is exogenous and there is a path $\pi: I_X \longrightarrow X$ in $\langle \mathbf{V}, E \rangle$,
- (b) for every on-value of I_X there is an X-value x such that $Dep(x, I_X = on)$ and $P(x|I_X = on) = 1$,
- (c) all paths $I_X \longrightarrow ... \longrightarrow Y$ in $\langle \mathbf{V}, E \rangle$ have the form $I_X \longrightarrow ... \longrightarrow X \longrightarrow ... \longrightarrow Y$,
- (d) I_X is independent from every variable C (in **V** or not in **V**) which causes Y over a path not going through X. (cf. Woodward, 2008)

Alexander Gebharter · Gerhard Schurz Occam's razor & direct causation

Definition (IE)

- $M'=\langle {f V}', E', P'
 angle$ is an *i*-expansion of $M=\langle {f V}, E, P
 angle$ w.r.t. Y iff
- (a) $\mathbf{V}' = \mathbf{V} \dot{\cup} \mathbf{V}_{\mathbf{I}}$, where $\mathbf{V}_{\mathbf{I}}$ contains for every $X \in \mathbf{V}$ different from Y an intervention variable *I* w.r.t. Y (and nothing else),
- (b) for all $Z_i, Z_j \in \mathbf{V} \colon Z_i \longrightarrow Z_j$ in E' iff $Z_i \longrightarrow Z_j$ in E,
- (c) for every X-value x of every $X \in \mathbf{V}$ different from Y there is an *on*-value of the corresponding intervention variable I_X such that $Dep(x, I_X = on)$ and $P'(x|I_X = on) = 1$,
- (d) $P'_{\mathbf{l}=\mathbf{off}} \uparrow \mathbf{V} = P$,
- (e) P'(I = on), P'(I = off) > 0.

27.07.2014

We reconstruct Woodward's (2003) definition of direct causation as a partial definition:

Definition (DC)

If there exist *i*-expansions $\langle \mathbf{V}', E', P' \rangle$ of $\langle \mathbf{V}, E, P \rangle$ w.r.t. Y, then: $X \in \mathbf{V}$ is a direct cause of $Y \in \mathbf{V}$ w.r.t. \mathbf{V} iff $Dep(Y, I_X = on | \mathbf{I}_Z = \mathbf{on})$ holds in some *i*-expansions, where I_X is an intervention variable for X w.r.t. Y in $\langle \mathbf{V}', E', P' \rangle$ and \mathbf{I}_Z is the set of all intervention variables in $\langle \mathbf{V}', E', P' \rangle$ different from I_X .

Outline

- Woodward's interventionist theory of causation
- Reconstructing Woodward's theory
- $\textcircled{O} \text{ Result 1: CMC + Min + IE} \Rightarrow \text{direct causation Woodward style}$
- $\textcircled{O} \ \mbox{Result 2: CMC + Min + IE}_S \Rightarrow \mbox{direct causation Woodward style}$

27.07.2014

Definition (CMC)

A causal model $\langle \mathbf{V}, E, P \rangle$ satisfies the causal Markov condition iff every $X \in \mathbf{V}$ is probabilistically independent of all its non-effects conditional on its causal parents (cf. Spirtes et al., 2000, p. 29).

CMC is assumed to hold for causal models whose variable sets are causally sufficient:

Definition (causal sufficiency)

V is causally sufficient iff every common cause C of variables in **V** is in **V** or takes the same value c for all individuals in the domain. (cf. Spirtes et al, 2000, p. 22)

27.07.2014

For acyclic graphs, CMC is equivalent to the *d*-separation criterion (cf. Verma, 1986; Pearl, 1988, p. 119f):

Definition (d-separation criterion)

 $\langle \mathbf{V}, E, P \rangle$ satisfies the d-separation criterion iff the following holds for all $X, Y \in \mathbf{V}$ and $\mathbf{Z} \subseteq \mathbf{V} \setminus \{X, Y\}$: If X and Y are d-separated by Z in $\langle \mathbf{V}, E \rangle$, then $Indep(X, Y|\mathbf{Z})$.

Definition (d-separation, d-connection)

X and Y are *d*-separated by Z in $\langle V, E \rangle$ iff X and Y are not *d*-connected given Z in $\langle V, E \rangle$.

X and Y are d-connected given Z in $\langle V, E \rangle$ iff X and Y are connected by a causal path π in $\langle V, E \rangle$ such that no non-collider on π is in Z, while all colliders on π are in Z or have an effect in Z.

27.07.2014

Occam's razor (or the causal minimality/productivity condition):

Definition (Min)

If $\langle \mathbf{V}, E, P \rangle$ satisfies CMC, then $\langle \mathbf{V}, E, P \rangle$ satisfies Min iff no submodel $\langle \mathbf{V}, E', P \rangle$ with $E' \subset E$ also satisfies CMC (cf. Spirtes et al., 2000, p. 31).

Definition (Prod)

 $\langle \mathbf{V}, E, P \rangle$ satisfies Prod iff $Dep(X, Y | Par(Y) \setminus \{X\})$ holds for all $X, Y \in \mathbf{V}$ with $X \longrightarrow Y$ in $\langle \mathbf{V}, E \rangle$. (Schurz and Gebharter, 2014)

Theorem (1)

For acyclic causal models satisfying CMC, Min is equivalent with Prod.

27.07.2014

Theorem (2)

If $\langle \mathbf{V}, E, P \rangle$ is an acyclic causal model and for every $Y \in \mathbf{V}$ there is an *i*-expansion $\langle \mathbf{V}', E', P' \rangle$ of $\langle \mathbf{V}, E, P \rangle$ w.r.t. Y satisfying CMC and Min, then for all $X, Y \in \mathbf{V}$ (with $X \neq Y$) the following two statements are equivalent: (i) $X \longrightarrow Y$ in $\langle \mathbf{V}, E \rangle$.

(ii) $Dep(Y, I_X = on|I_Z = on)$ holds in some i-expansions of $\langle V, E, P \rangle$ w.r.t. Y, where I_X is an intervention variable for X w.r.t. Y in $\langle V', E', P' \rangle$ and I_Z is the set of all intervention variables in $\langle V', E', P' \rangle$ different from I_X .

 \Rightarrow Direct causation a la Woodward coincides with the graph theoretical notion of direct causation in systems $\langle \mathbf{V}, E, P \rangle$ with *i*-expansions w.r.t. every $\mathbf{Y} \in \mathbf{V}$ satisfying CMC and Min.

27.07.2014

Outline

- Woodward's interventionist theory of causation
- Reconstructing Woodward's theory
- $\textcircled{O} \text{ Result 1: CMC + Min + IE} \Rightarrow \text{direct causation Woodward style}$
- $\textcircled{O} \ \mbox{Result 2: CMC + Min + IE}_S \Rightarrow \mbox{direct causation Woodward style}$

27.07.2014

Definition (IV_S)

- $I_X \in \mathbf{V}$ is a stochastic intervention variable for X w.r.t. Y in $\langle \mathbf{V}, E, P
 angle$ iff
- (a) I_X is exogenous and there is a path $\pi: I_X \longrightarrow X$ in $\langle \mathbf{V}, E
 angle$,
- (b) for every on-value of I_X there is an X-value x such that $Dep(x, I_X = on)$,
- (c) all paths $I_X \longrightarrow ... \longrightarrow Y$ in $\langle \mathbf{V}, E \rangle$ have the form $I_X \longrightarrow ... \longrightarrow X \longrightarrow ... \longrightarrow Y$,
- (d) I_X is independent from every variable C (in **V** or not in **V**) which causes Y over a path not going through X.

27.07.2014

Definition (IE_s)

 $M' = \langle \mathbf{V}', E', P' \rangle$ is a stochastic *i*-expansion of $M = \langle \mathbf{V}, E, P \rangle$ for X w.r.t. Y iff

- (a) $\mathbf{V}' = \mathbf{V} \dot{\cup} \mathbf{V}_{I_X}$, where \mathbf{V}_{I_X} contains a stochastic intervention variable I_X for X w.r.t. Y (and nothing else),
- (b) for all $Z_i, Z_j \in \mathbf{V}: Z_i \longrightarrow Z_j$ in E' iff $Z_i \longrightarrow Z_j$ in E,
- (c) for every X-value x of every $X \in \mathbf{V}$ different from Y there is an *on*-value of the corresponding intervention variable I_X such that $Dep(x, I_X = on)$,

(d)
$$P'_{I_X = off} \uparrow \mathbf{V} = P$$

(e)
$$P'(I_X = on), P'(I_X = off) > 0.$$

27.07.2014

- To establish a direct causal relationship $X \longrightarrow Y$, Woodward (2003) needs to block probability propagation between X and Y over indirect paths.
- Alternatively one can block all indirect paths between X and Y by conditionalizing on $Par(Y) \setminus \{X\}$.

We reconstruct the stochastic variant of Woodward's (2003) definition of direct causation as a partial definition:

Definition (DC_S)

If there exist stochastic *i*-expansions $\langle \mathbf{V}', E', P' \rangle$ of $\langle \mathbf{V}, E, P \rangle$ for X w.r.t. Y, then: $X \in \mathbf{V}$ is a direct cause of $Y \in \mathbf{V}$ w.r.t. \mathbf{V} iff $Dep(Y, I_X = on|Par(Y) \setminus \{X\})$ holds in some stochastic *i*-expansions, where I_X is an intervention variable for X w.r.t. Y in $\langle \mathbf{V}', E', P' \rangle$.

27.07.2014

Theorem (3)

If $\langle \mathbf{V}, E, P \rangle$ is an acyclic causal model and for all $X, Y \in \mathbf{V}$ (with $X \neq Y$) there is a stochastic i-expansion $\langle \mathbf{V}', E', P' \rangle$ of $\langle \mathbf{V}, E, P \rangle$ for X w.r.t. Y satisfying CMC and Min, then for all $X, Y \in \mathbf{V}$ (with $X \neq Y$) the following two statements are equivalent:

(i)
$$X \longrightarrow Y$$
 in $\langle \mathbf{V}, E \rangle$.

(ii) $Dep(Y, I_X = on|Par(Y) \setminus \{X\})$ holds in some stochastic i-expansions of $\langle \mathbf{V}, E, P \rangle$ for X w.r.t. Y.

⇒ The stochastic version of direct causation a la Woodward coincides with the graph theoretical notion of direct causation in systems $\langle \mathbf{V}, E, P \rangle$ with stochastic *i*-expansions for every $X \in \mathbf{V}$ w.r.t. every $Y \in \mathbf{V}$ (with $X \neq Y$) satisfying CMC and Min.

27.07.2014

Conclusion

- Woodward's interventionist theory of causation
- Reconstructing Woodward's theory
- $\textcircled{O} \text{ Result 1: CMC + Min + IE} \Rightarrow \text{direct causation Woodward style}$
- $\textcircled{O} \ \mbox{Result 2: CMC + Min + IE}_S \Rightarrow \mbox{direct causation Woodward style}$

27.07.2014

Many thanks!

Alexander Gebharter · Gerhard Schurz Occam's razor & direct causation

27.07.2014 22 / 23

References

- J. Pearl (1988). *Probabilistic Reasoning in Expert Systems*. San Mateo, MA: Morgan Kaufmann.
- G. Schurz, and A. Gebharter (2014). Causality as a theoretical concept: Explanatory warrant and empirical content of the theory of causal nets. To appear in *Synthese*.
- P. Spirtes, C. Glymour, and R. Scheines (2000). *Causation, Prediction, and Search*. Cambridge, MA: MIT Press.
- T. S. Verma (1986). Causal networks: Semantics and expressiveness. Technical report R-65, Cognitive Systems Laboratory, University of California, Los Angeles.
- J. Woodward (2003). *Making Things Happen*. Oxford: Oxford University Press.
- J. Woodward (2008). Response to Strevens. *Philosophy and Phenomenological Research, LXXVII*(1), 193-212.

27.07.2014