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Many questions in science are causal

Climatology: Economy:

Neuroscience:Medicine:
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Contents of this Tutorial

Causality is clearly an important notion in daily life and in science.

But how should we formalize the notion of causality?

How to reason about causality?

How can we discover causal relations from data?

How to obtain causal predictions?

How do they differ from ordinary predictions in ML?

That is what you will learn in this tutorial!
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Probabilistic Inference vs. Causal Inference

Traditional statistics, machine learning

Models the distribution of the data

Focuses on predicting consequences of observations

Useful e.g. in medical diagnosis: given the symptoms of the patient,
what is the most likely disease?

Causal Inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?

Causal reasoning is essential to answer questions of the type: given the
circumstances, what action should we take to achieve a certain goal?
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Outline

1 Qualitative Causality: Causal Graphs

2 Quantifying Causality: Structural Causal Models

3 Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
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Causation 6= Correlation
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Causal Relations

Definition (Informal)

Let A and B be two distinct variables of system. A causes B (A 99KB) if
changing A (intervening on A) leads to a change of B.

Causal graph represents causal relationships between variables graphically.

Example

X1 X2

X1 and X2 are
causally unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause X3

X1 X2

X3

X1 and X2 have a
common effect X3
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Direct causation

Let V = {X1, . . . ,XN} be a set of variables.

Definition

If Xi causes Xj even if all other variables V \ {Xi ,Xj} are hold fixed at
arbitrary values, then

we say that Xi causes Xj directly with respect to V

we indicate this in the causal graph on V by a directed edge Xi → Xj

Example

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 does not cause X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}
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Direct vs. indirect causation: example

Each stone causes all subsequent stones to topple.

Each stone only directly causes the next neighboring stone to topple.

Causal graph:

X1 X2 X3 · · · X7 X8 X9
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Perfect interventions

Definition (Informal)

A perfect (“surgical”) intervention on a set of variables X ⊆ V , denoted
do(X = ξ), is an externally enforced change of the system that ensures
that X takes on value ξ and leaves the rest of the system untouched.

The concept of perfect intervention assumes modularity: the causal
system can be divided into two parts, X and V \ X , and we can make
changes to one part while keeping the other part invariant.

Note

The intervention changes the causal graph by removing all edges that point
towards variables in X (because none of the variables can now cause X ).
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Perfect interventions: Example

Consider the 9 dominoes stones, and the perfect intervention that enforces
X2 to be in “upright” position.

Before the intervention, the causal graph is:

X1 X2 X3 X4 · · · X7 X8 X9

After the perfect intervention do(X2 = upright), the causal graph is:

X1 X2 X3 X4 · · · X7 X8 X9
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Confounders: Definition

Informally: a confounder is a latent common cause.

Definition

Consider three variables X ,Y ,H. H confounds X and Y if:

1 H causes X directly w.r.t. {X ,Y ,H}
2 H causes Y directly w.r.t. {X ,Y ,H}

Example

X Y

H

X Y

H
H2 H3

X Y

H

X Y

H

X Y

H

X Y

H
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Confounders: Example

Wealth confounds chocolate consumption and Nobel prize winners.
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Confounders: Graphical notation

We denote latent confounders by bidirected edges in the causal graph:

Example

X Y ≡ X Y

H

, X Y

H
H2 H3

, . . .

X Y ≡ X Y

H

, X Y

H
H3

, . . .

X Y ≡ X Y

H

, X Y

H
H2

, . . .
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Cycles: Definitions

Let A,B be two variables in a system.

Definition

If A causes B and B causes A, then A and B are involved in a causal cycle.

Let G be a Directed Mixed Graph with directed and bidirected edges.

Definition

G is cyclic if it contains a directed cycle i1 i2 . . . ik

If G does not contain such a directed cycle, it is called acyclic, and known
as an Acyclic Directed Mixed Graph (ADMG). If in addition, G does not
contain any bidirected edges, it is called a Directed Acyclic Graph (DAG).
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Cycles: Toy example

Example (Damped Coupled Harmonic Oscillators)

Two masses, connected by a spring, suspended from
the ceiling by another spring.

Variables: vertical equilibrium positions Q1 and Q2.

Q1 causes Q2.

Q2 causes Q1.

Causal graph:

Q1 Q2

Cannot be modeled with acyclic causal model!

Q1

Q2
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Cycles: Relevance in Climatology

“Part of the uncertainty around future climates relates to important feedbacks
between different parts of the climate system: air temperatures, ice and snow

albedo (reflection of the sun’s rays), and clouds.” [Ahlenius, 2007]
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Cycles: Relevance in Biology

“Feedback mechanisms may be critical to allow cells to achieve the fine balance
between dysregulated signaling and uncontrolled cell proliferation (a hallmark of
cancer) as well as the capacity to switch pathways on or off when needed for
physiologic purposes.” [McArthur, 2014]
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Outline

1 Qualitative Causality: Causal Graphs

2 Quantifying Causality: Structural Causal Models

3 Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
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Defining Causality in terms of Probabilities?

It is a natural idea to try to define causality in terms of probabilities.

A näıve example of such an attempt could be:
if

A precedes B in time, and

p(B = 1 |A = 1) > p(B = 1 |A = 0)

then A causes B.

This does not work, as exemplified by Simpson’s paradox.
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Simpson’s Paradox

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? I.e., would you use this drug if you are ill?

Note: Big data and deep learning do not help us here!
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Quantitative Models of Causality

Problems like these have historically prevented statisticians from
considering causality.

Nonetheless, different approaches have been proposed to model causality
in a quantitative way:

Potential outcome framework

Causal Bayesian Networks

Structural Causal Models (SCMs)

We will discuss the latter modeling framework, because it is arguably the
most general of the three.
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Structural Causal Models: Concepts

SCMs turn things around: rather than defining causality in terms of
probabilities, probability distributions are defined by a causal model,
thereby avoiding traps like Simpson’s paradox.

The system we are modeling is described by endogenous variables;
endogenous variables are:

observed,
modeled by structural equations.

The environment of the system is described by exogenous variables;
exogenous variables are:

latent,
modeled by probability distributions,
not caused by endogenous variables.

Each endogenous variable has its own structural equation, which
describes how this variable depends causally on other variables.

SCMs are equipped with a notion of perfect intervention, which gives
them a causal semantics.
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Structural Causal Models: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
ES ∼ Ber(0.999)

Structural equations (one per endogenous variable):

X = EX

Y = EY

S = X ∧ Y ∧ ES

X Y

S

EX EY

ES

X Y

S
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Structural Causal Models: Formal Definition

Definition ([Wright, 1921, Pearl, 2000, Bongers et al., 2018])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = 〈X ,E, f ,PE〉 with:

1 a product of standard measurable spaces X =
∏

i∈I Xi

(domains of the endogenous variables)

2 a product of standard measurable spaces E =
∏

j∈J Ej
(domains of the exogenous variables)

3 a measurable mapping f : X × E → X
(the causal mechanism)

4 a probability measure PE =
∏

j∈J PEj on E
(the exogenous distribution)

Definition

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..
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Structural Causal Models: Example

Example

Augmented functional graph Ga(M):

X1X2

X3 X4

X5

E1E2

E3

E4

E5

Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

Formally:

(X ,E, f ,PE) =
(
∏5

i=1R,
∏5

j=1R, (f1, . . . , f5),
∏5

j=1 PEj )

Informally:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .
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(Augmented) Functional Graphs

Definition

The components of the causal mechanism usually do not depend on all
variables: for i ∈ I,

Xi = fi (XpaIi
,EpaJi

)

where fi only depends on paIi ⊆ I (the endogenous parents of i) and
paJi ⊆ J (the exogenous parents of i).

Definition

The augmented functional graph Ga(M) of an SCMM is a directed graph
with nodes I∪̇J and an edge k → i iff k ∈ paIi ∪̇pa

J
i is a parent of i ∈ I.

Definition

The functional graph G(M) of an SCM M is a directed mixed graph with
nodes I, directed edges k → i iff k ∈ paIi , and bidirected edges k ↔ i iff
paJi ∩ paJk 6= ∅.
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Causal Graph

Proposition

If M has no self-loops, the causal graph of M is a subgraph of the
functional graph G(M).

In that case, generically:

The directed edges in G(M) represent direct causal effects w.r.t. I;

The bidirected edges in G(M) represent the existence of confounders
w.r.t. I;

A particular case of interest is:

Definition

We call the SCM M acyclic if G(M) is acyclic.

If in addition, G(M) doesn’t have bidirected edges, this leads to a causal
Bayesian network.
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Interventions

To interpret an SCM as a causal model, we also need to define its
semantics under interventions.

Definition (Perfect Interventions, [Pearl, 2000])

The perfect intervention do(XI = ξI ) enforces XI to attain value ξI .

This changes the SCM M = 〈X ,E, f ,PE〉 into the intervened SCM
Mdo(XI=ξI ) = 〈X ,E, f̃ ,PE〉 where

f̃i =

{
ξi i ∈ I

fi (XpaIi
,EpaJi

) i /∈ I .

Interpretation: overriding default causal mechanisms that normally
would determine the values of the intervened variables.

In the (augmented) functional graph, the intervention removes all
incoming edges with an arrowhead at any intervened variable i ∈ I .
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Interventions: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
EZ ∼ Ber(0.999)

Structural equations (one per endogenous variable):

after charging the battery do(X1 = 1):

X = EX

Y = EY

S = X ∧ Y ∧ ES

X Y

S

EX EY

ES

X Y

S
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Interventions: Example

Example

Observational (no intervention):
Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .

Intervention do(X3 = ξ3):
Functional graph G(Mdo(X3=ξ3)):

X1X2

X3 X4

X5

Structural Causal Model Mdo(X3=ξ3):

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = ξ3 PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .
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Observational Distributions

Remember:

Definition

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..

Definition

We call the set of probability distributions of the solutions X of an SCM
M the observational distributions of M.

An important special case:

Proposition

If M is acyclic, then it its observational distribution exists and is unique.
We denote its marginal density on X simply by p(x).
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Interventional Distributions

A perfect intervention on M may change the distributions.

Definition

We call the family of sets of probability distributions of the solutions of
Mdo(I ,ξI ) (for I ⊆ I, ξI ⊆ X I ) the interventional distributions of M.

Crucial difference with common statistical models: SCMs simultaneously
model the distributions under all perfect interventions on a system.

Definition

If M is acyclic, all its interventional distributions exist and are unique.
Following [Pearl, 2000], we denote their densities by p

(
x | do(XI = ξI )

)
.

We can now express “correlation does not imply causation” (or, as Pearl
says, “seeing is not doing”) more precisely:

p
(
y | do(X = x)

)
6= p(y |X = x) in general
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Representations of acyclic SCMs

For acyclic SCMs, we get the following relationships:

SCM

Functional Graph ⊇ Causal Graph

Direct causal relations
Causal relations
Confounders

Observational Distribution

(Conditional) Independences

Markov
Property
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Outline

1 Qualitative Causality: Causal Graphs

2 Quantifying Causality: Structural Causal Models

3 Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
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(Conditional) independences

Definition (Independence)

Given two random variables X ,Y , we write X ⊥⊥ Y and say that X is
independent of Y if

p(x , y) = p(x)p(y).

Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).

Definition (Conditional Independence)

Given a third random variable Z , we write X ⊥⊥ Y |Z and say that X is
(conditionally) independent from Y , given Z , if

p(x , y |Z = z) = p(x |Z = z)p(y |Z = z).

Intuitively, X is independent of Y if, given the value of Z , we do not learn
anything new about X when told the value of Y .
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(Directed) Paths

Definition (Paths, Ancestors)

Let G be a directed mixed graph.

A path q is a sequence of adjacent edges in which no node occurs
more than once.

A path in which each edge is of the form · · · → · · · is called directed.

If there is a directed path from X to Y , X is called a ancestor of Y .

The ancestors of Y are denoted anG(Y ), and include Y .

Example

X1X2

X3 X4

X5

X1 → X3 ← X1 is not a path.
X1 ↔ X2 → X3 is a path.

X1 → X4 → X5 is a directed path.
X4 → X5 ← X3 is not a directed path.

The ancestors of X3 are {X1,X2,X3}.
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Colliders and non-colliders

Definition (Colliders)

Let G be a directed mixed graph, and q a path on G.

A collider on q is a (non-endpoint) node X on q with precisely two
arrow heads pointing towards X on the adjacent edges:

→ X ←, → X ↔, ↔ X ←, ↔ X ↔

A non-collider on q is any node on the path which is not a collider.

Example

X1X2

X3 X4

X5

The path X3 → X5 ← X4 contains a collider X5.
The path X1 ↔ X2 → X3 contains no collider.
X5 is a non-collider on X5 ↔ X3 ← X1.
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Blocked paths

Definition

Let G be a directed mixed graph. Given a path q on G, and a set of nodes
S , we say that S blocks q if q contains

a non-collider which is in S , or

a collider which is not an ancestor of S .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is blocked by ∅.
X3 → X5 ← X4 is blocked by {X1}.
X3 → X5 ← X4 is not blocked by {X5}.

X3 ← X2 ↔ X1 → X4 is blocked by {X1}.
X3 ← X2 ↔ X1 → X4 is not blocked by {X5}.
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d-separation

Definition (d-separation)

Let G be a directed mixed graph. For three sets of nodes X ,Y ,Z of
nodes, we say that X and Y are d-separated by Z iff all paths between a
node in X and a node in Y are blocked by Z .

Example

X1X2

X3 X4

X5

X2 and X4 are not d-separated by ∅.
X2 and X4 are d-separated by X1.
X2 and X4 are not d-separated by X3.
X2 and X4 are d-separated by {X1,X3}. X2 and
X4 are not d-separated by {X1,X3,X5}.

Joris Mooij (UvA) Causality I 2018-07-03 40 / 59



d-separation

Definition (d-separation)

Let G be a directed mixed graph. For three sets of nodes X ,Y ,Z of
nodes, we say that X and Y are d-separated by Z iff all paths between a
node in X and a node in Y are blocked by Z .

Example

X1X2

X3 X4

X5

X2 and X4 are not d-separated by ∅.
X2 and X4 are d-separated by X1.
X2 and X4 are not d-separated by X3.
X2 and X4 are d-separated by {X1,X3}. X2 and
X4 are not d-separated by {X1,X3,X5}.

Joris Mooij (UvA) Causality I 2018-07-03 40 / 59



Global Markov Property

Theorem

For an acyclic SCM, the following Global Markov Property holds:

X ,Y d-separated by Z =⇒ X ⊥⊥ Y |Z

for all subsets X ,Y ,Z of nodes.

For cyclic SCMs, the notion of d-separation is too strong in general. A
weaker notion called σ-separation has to be used instead
[Forré and Mooij, 2017]. Under additional solvability conditions, a global
Markov condition using σ-separation can be shown to hold.
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Reichenbach’s Principle

Reichenbach’s Principle of Common Cause

The dependence X 6⊥⊥ Y implies that X → Y , Y → X , or X ↔ Y (or any
combination of these three).

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Proof of Reichenbach’s Principle

Assuming that p(X ,Y ) is generated by an acyclic SCM, we can easily
prove Reichenbach’s Principle by applying the Global Markov property:

Proof

X ⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

(The proof can be extended to include the cyclic case)
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Selection Bias

Reichenbach’s Principle may fail in case of selection bias.

Definition

If a data set is obtained by only including samples conditional on some
event, selection bias may be introduced.

Example

X Y

S

X : the battery is charged
Y : the start engine is operational
S : the car starts

A car mechanic (who only observes cars for which S = 0) will observe
a dependence between X and Y : X 6⊥⊥ Y | S .

When the car mechanic invokes Reichenbach’s Principle without
realizing that he is selecting on the value of S (maybe S is a latent
variable), a wrong conclusion will be drawn.
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Outline

1 Qualitative Causality: Causal Graphs

2 Quantifying Causality: Structural Causal Models

3 Markov Properties: From Graph to Conditional Independences

4 Causal Inference: Predicting Causal Effects
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Causal Inference: Predicting Causal Effects

One important task (“causal inference”) is the prediction of causal effects.

Definition

The causal effect of X on Y is defined as p
(
y | do(X = x)

)
.

Special cases:

X binary: E
(
Y | do(X = 1)

)
− E

(
Y | do(X = 0)

)
X ,Y linearly related: ∂

∂xE
(
Y | do(X = x)

)

Note: In general, since p
(
y | do(X = x)

)
6= p(y |X = x), we cannot use

standard supervised learning (regression, classification) for this task.

Two approaches can be used:

Experimentation (Randomized Controlled Trials, A/B-testing)

Apply the Back-door Criterion (if causal graph is known)
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Causal discovery by experimentation

Experimentation (e.g., Randomized Controlled Trials, A/B-testing, . . . )
provides the gold standard for causal effect estimation.
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Causal Inference for RCT

Proposition

The RCT assumptions

Y does not cause X (⇐= X precedes Y in time)

Y and X are unconfounded (⇐= randomization)

no selection bias (⇐= study design)

imply that X 6⊥⊥ Y iff X causes Y , and p
(
Y | do(X = x)

)
= p(y |X = x).

Proof

X ⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y
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Identifiability: Example

Can we express p
(
y | do(X = x)

)
in terms of the observational density?

Example

X Y

p
(
y | do(X = x)

)
=

p(y |X = x)

Yes!

X Y

H

p
(
y | do(X = x)

)
=
∫
p(h)p(y | x , h) dh

6=

p(y |X = x) =
∫
p(h | x)p(y | x , h) dh

No!
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Adjustment for covariates

We have seen that for the following causal graph,

X Y

H

adjusting for the confounder H, yields the causal effect of X on Y :∫
p(h)p(y | x , h) dh = p

(
y | do(X = x)

)
More generally, given a causal graph: which covariates H could we adjust
for in order to express the causal effect of X on Y in terms of the
observational distribution?

A sufficient condition is given by the Back-door Criterion.
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The Back-Door Criterion

Theorem (Back-Door Criterion [Pearl, 2000])

For an acyclic SCM, nodes X , Y and set of nodes H : if

1 X ,Y /∈ H ;

2 X is not an ancestor of any node in H ;

3 H blocks all back-door paths X ← . . .Y (i.e., all paths between X
and Y that start with an incoming edge on X ).

then the causal effect of X on Y can be obtained by adjusting for H:

p
(
y | do(X = x)

)
=

∫
p(y | x ,h)p(h) dh.

For the special case H = ∅, this simply should be read as:

p
(
y | do(X = x)

)
= p(y | x).
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Simpson’s Paradox

Remember Simpson’s paradox:

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? I.e., would you use this drug if you are ill?

The answer depends on the causal relationships between the variables!
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Resolving Simpson’s paradox

The crux to resolving Simpson’s paradox is to realize:

Seeing 6= doing

p(R = 1 |D = 1): the probability that somebody recovers, given the
observation that the person took the drug.

p
(
R = 1 | do(D = 1)

)
: the probability that somebody recovers, if we

force the person to take the drug.

Simpson’s paradox only manifests itself if we misinterpret correlation as
causation by identifying p(r |D = d) with p

(
r | do(D = d)

)
.

We should prescribe the drug if
p
(
R = 1 | do(D = 1)

)
> p

(
R = 1 | do(D=0)

)
.

How to find the causal effect of the drug on recovery?

1 Randomized Controlled Trials

2 Back-Door Criterion (requires knowledge of causal graph)
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Back-Door Criterion for Simpson’s paradox

Example (Scenario 1)

H

D R

R: Recovery
D: Took drug
H: Gender

There is one back-door path: D ← H → R, which is blocked by {H}.
D is not an ancestor of H.

Therefore, adjust for {H} to obtain causal effect of drug on recovery:

p
(
r | do(D = d)

)
=
∑
h

p(r |D = d ,H = h)p(h)

So in scenario I, you should not take the drug: for both males and
females, taking the drug lowers the probability of recovery.
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Back-Door Criterion for Simpson’s paradox

Example (Scenario 2)

H

D R

R: Recovery
D: Took drug
H: Gender

There are no back-door paths.

D is an ancestor of H.

Do not adjust for {H} to obtain causal effect of drug on recovery:

p
(
r | do(D = d)

)
= p(r |D = d)

So in scenario II, you should take the drug: in the general population,
taking the drug increases the probability of recovery.

(If you think gender-changing drugs are unlikely, replace “gender” by
“high/low blood pressure”, for example).
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Conclusion

In Part I of this tutorial, we have discussed:

Causal Modeling by means of Structural Causal Models

Causal Reasoning by means of the Markov Property

Causal Prediction by means of RCTs and the Back-Door Criterion

Part II of this tutorial will focus on:

Causal Discovery: how to infer the causal graph from data?
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arXiv.org preprint, arXiv:1611.06221v2 [stat.ME].

Forré, P. and Mooij, J. M. (2017).
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arXiv.org preprint, arXiv:1710.08775 [math.ST].
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Cambridge University Press.
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Further reading II
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Thank you for your attention!

Randall Munroe, www.xkcd.org
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