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Many questions in science are causal

Climatology: Economy:

Neuroscience:Medicine:
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Contents of this tutorial

Causality is clearly an important notion in daily life and in science.

But how should we formalize the notion of causality?

How to reason about causality?

How can we discover causal relations from data?

How to obtain causal predictions?

How do they differ from ordinary predictions in ML?

That is what you will learn in this tutorial!
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Probabilistic Inference vs. Causal Inference

Probabilistic Inference (traditional statistics / machine learning)

Models the distribution of the data

Focuses on predicting consequences of observations

Useful e.g. in medical diagnosis: given the symptoms of the patient,
what is the most likely disease?

Causal Inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?

Causal reasoning is essential to answer questions of the type: given the
circumstances, what action should we take to achieve a certain goal?
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Causation 6= Correlation
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Causal relations

Definition (Informal)

Let X and Y be two distinct variables of system. X causes Y if changing
X (intervening on X ) leads to a change of Y .

Causal graph represents causal relationships between variables graphically.

Example

X1 X2

X1 and X2 are
causally unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause X3

X1 X2

X3

X1 and X2 have a
common effect X3
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Direct causation

Let V = {X1, . . . ,XN} be a set of variables.

Definition (Informal)

If Xi causes Xj even if all other variables V \ {Xi ,Xj} are hold fixed at
some values, then

we say that Xi causes Xj directly with respect to V

we indicate this in the causal graph on V by a directed edge Xi → Xj

Example

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 does not cause X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}
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Direct vs. indirect causation: Example

Each stone causes all subsequent stones to topple.

Each stone only directly causes the next neighboring stone to topple.

Causal graph:

X1 X2 X3 · · · X7 X8 X9
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Perfect interventions: Example

Suppose we intervene by keeping the second stone fixed in an “upright”
position (e.g. by glueing it to the floor), an operation that we denote by
do(X2 = upright).

Before the intervention, the causal graph is:

X1 X2 X3 X4 · · · X7 X8 X9

After the intervention do(X2 = upright), the causal graph is:

X1 X2 X3 X4 · · · X7 X8 X9

If we keep the second stone fixed, it is no longer affected by the other
stones.
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Perfect interventions

Definition (Informal)

A perfect (“surgical”) intervention on a set of variables X ⊆ V , denoted
do(X = ξ), is an externally enforced change of the system that ensures
that X takes on value ξ and leaves the rest of the system untouched.

The concept of perfect intervention assumes modularity: the causal
system can be divided into two parts, X and V \ X , and we can make
changes to one part while keeping the other part invariant.

Note

The intervention changes the causal graph by removing all edges that point
towards variables in X (because none of the variables can now cause X ).
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Confounders: Definition

Informally: a confounder is a latent common cause.

Definition

Consider three variables X ,Y ,H. H confounds X and Y if:

1 H causes X directly w.r.t. {X ,Y ,H}
2 H causes Y directly w.r.t. {X ,Y ,H}

Example

X Y

H

X Y

H
H2 H3

X Y

H

X Y

H

X Y

H

X Y

H
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Confounders: Example

Wealth might confound chocolate consumption and Nobel prize winners.

W

C N
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Confounders: Graphical notation

We denote latent confounders by bidirected edges in the causal graph:

Example

X Y ≡ X Y

H

, X Y

H
H2 H3

, . . .

X Y ≡ X Y

H

, X Y

H
H3

, . . .

X Y ≡ X Y

H

, X Y

H
H2

, . . .
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Causal Cycles: Definition and Example

Let X ,Y be two variables in a system.

Definition

If X causes Y and X causes Y , then X and Y form a causal cycle.

Example (Damped Coupled Harmonic Oscillators)

Two masses, connected by a spring, suspended from
the ceiling by another spring.

Variables: vertical equilibrium positions Q1 and Q2.

Q1 causes Q2.

Q2 causes Q1.

Causal graph:

Q1 Q2

Cannot be modeled with acyclic causal model!

Q1

Q2
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Cycles: Relevance in Climatology

“Part of the uncertainty around future climates relates to important feedbacks
between different parts of the climate system: air temperatures, ice and snow

albedo (reflection of the sun’s rays), and clouds.” [Ahlenius, 2007]
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Cycles: Relevance in Biology

“Feedback mechanisms may be critical to allow cells to achieve the fine balance
between dysregulated signaling and uncontrolled cell proliferation (a hallmark of
cancer) as well as the capacity to switch pathways on or off when needed for
physiologic purposes.” [McArthur, 2014]

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 17 / 131



Graph Terminology

Definition

A graph G that consists of directed and bidirected edges is called
Directed Mixed Graph (DMG).

If i1 → i2 → · · · → ik in G then i1 is ancestor of ik : i1 ∈ anG(ik).

G is called cyclic if it contains a directed cycle:

i1 i2 . . . ik

The strongly-connected component of a node i ∈ G is the set of
nodes j ∈ G such that i and j are each other’s ancestors.

If G does not contain such a directed cycle, it is called acyclic, and
known as an Acyclic Directed Mixed Graph (ADMG).

If, in addition, G does not contain any bidirected edges, it is called a
Directed Acyclic Graph (DAG).
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Defining Causality in terms of Probabilities?

When looking for a more quantitative treatment of causality, it is a natural
idea to try to define causality in terms of probabilities.

A näıve example of such an attempt could be:

Attempt at a definition

Given two binary random variables A,B. If

A precedes B in time, and

p(B = 1 |A = 1) > p(B = 1 |A = 0)

then A causes B.

This does not work, as exemplified by Simpson’s paradox.

Exercise

Please make Exercise 1.1.
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Simpson’s Paradox

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? I.e., would you use this drug if you are ill?

Note: Big data and deep learning do not help us here!
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Quantitative Models of Causality

Problems like these have historically prevented statisticians from
considering causality.

Nonetheless, different approaches have been proposed to model causality
in a quantitative way:

Potential outcome framework

Causal Bayesian Networks

Structural Causal Models (SCMs)

We will use SCMs, as they are arguably the most general of the three:

SCMs can model cycles naturally (close connections to ODE models
from physics, chemistry, biology, engineering, . . . )

Acyclic SCMs are closed under marginalization (can efficiently handle
latent variables)

SCMs can model counterfactuals (provides alternative to potential
outcome framework)

SCMs generalize Causal Bayesian Networks
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Structural Causal Models: Concepts

SCMs turn things upside down: rather than defining causality in terms of
probabilities, probability distributions are defined by a causal model,
thereby avoiding traps like Simpson’s paradox.

The system we are modeling is described by endogenous variables;
endogenous variables are:

observed,
modeled by structural equations.

The environment of the system is described by exogenous variables;
exogenous variables are:

latent (unobserved),
modeled by probability distributions,
not caused by endogenous variables,
provide the “source” of randomness.

Each endogenous variable has its own structural equation, which
describes how this variable depends on its direct causes.

SCMs are equipped with a notion of perfect intervention, which gives
them a causal semantics.
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Structural Causal Models: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
ES ∼ Ber(0.999)

Structural equations (one per endogenous variable):

X = fX (EX ) = EX

Y = fY (EY ) = EY

S = fS(X ,Y ,ES) = X ∧ Y ∧ ES

Causal graph:

X Y

S

Augmented graph:

EX EY

ES

X Y

S
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Structural Causal Models: Formal Definition

Definition ([Wright, 1921, Pearl, 2000, Bongers et al., 2018])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = 〈X ,E, f ,PE〉 with:

1 a product of standard measurable spaces X =
∏

i∈I Xi

(domains of the endogenous variables)

2 a product of standard measurable spaces E =
∏

j∈J Ej
(domains of the exogenous variables)

3 a measurable mapping f : X × E → X
(the causal mechanism)

4 a product probability measure PE =
∏

j∈J PEj on E
(the exogenous distribution)

Definition

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..
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Structural Causal Models: Example

Example

Augmented graph Ga(M):

X1X2

X3 X4

X5

E1E2

E3

E4

E5

Graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

Formally:

(X ,E, f ,PE) =
(
∏5

i=1R,
∏5

j=1R, (f1, . . . , f5),
∏5

j=1 PEj )

Informally:

X1 = f1(E1) E1 ∼ PE1
X2 = f2(E1,E2) E2 ∼ PE2
X3 = f3(X1,X2,X5,E3) E3 ∼ PE3
X4 = f4(X1,X4,E4) E4 ∼ PE4
X5 = f5(X3,X4,E5) E5 ∼ PE5
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(Augmented) Graphs

Definition

The components of the causal mechanism usually do not depend on all
variables: for i ∈ I,

Xi = fi (xpaIi
, epaJi

)

where fi only depends on paIi ⊆ I (the endogenous parents of i) and
paJi ⊆ J (the exogenous parents of i).

Definition

The augmented graph Ga(M) of SCM M is a directed graph with nodes
I∪̇J and an edge k → i iff k ∈ paIi ∪̇paJi is a parent of i ∈ I.

Definition

The graph G(M) of SCM M is a DMG with nodes I, directed edges
k → i iff k ∈ paIi , and bidirected edges k ↔ i iff paJi ∩ paJk 6= ∅.
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Unique Solvability

Definition

An SCM M is said to be uniquely solvable w.r.t. O ⊆ I if there exists a
measurable mapping gO : X (paH(O)\O)∩I × EpaH(O)∩J → XO such that
for PE -almost every e for all x ∈ X :

xO = gO(x(paH(O)\O)∩I , epaH(O)∩J ) ⇐⇒ xO = fO(x , e).

(Loosely speaking: if the structural equations for O provide a unique
solution for xO in terms of the other variables).

Example

An SCM with structural equations:
X1 = X1

X2 = X1 + X3

X3 = X3 + 1
is uniquely solvable w.r.t. {X2} but not w.r.t. any other subset.
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Simple SCMs

For simplicity we will here assume only a special subclass of SCMs:

Definition

We call an SCM M simple if it is uniquely solvable with respect to any
subset O ⊆ I.

Lemma

If G(M) is acyclic, M is simple.

The class of simple SCMs extends the class of acyclic SCMs by
allowing for (weak) cyclic causal relations, while preserving most of
the simplicity and convenience of acyclic SCMs.

The theory for non-simple SCMs is considerably more involved
[Bongers et al., 2018].

Simple SCMs induce modular SCMs (mSCMs)
[Forré and Mooij, 2017].
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Perfect Interventions

To interpret an SCM as a causal model, we also need to define its
semantics under interventions.

Definition (Perfect Interventions, [Pearl, 2000])

The perfect intervention do(XI = ξI ) enforces XI to attain value ξI .

This changes the SCM M = 〈X ,E, f ,PE〉 into the intervened SCM
Mdo(XI=ξI ) = 〈X ,E, f̃ ,PE〉 where

f̃i (x , e) =

{
ξi i ∈ I

fi (xpaIi
, epaJi

) i /∈ I .

Interpretation: overrides default causal mechanisms that normally
would determine the values of the intervened variables.

In the (augmented) graph, the intervention removes all incoming
edges with an arrowhead at any intervened variable i ∈ I .
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Interventions: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
EZ ∼ Ber(0.999)

Structural equations (one per endogenous variable):

X = EX

Y = EY

S = X ∧ Y ∧ ES

Causal graph:

X Y

S

Augmented graph:

EX EY

ES

X Y

S
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Interventions: Example

Endogenous variables (binary):

X : the battery is charged
Y : the start engine is operational
S : the car starts

Exogenous variables (latent, independent, binary):

EX ∼ Ber(0.95)
EY ∼ Ber(0.99)
EZ ∼ Ber(0.999)

Structural equations (one per endogenous variable):
after loosing the key do(S = 0):

X = EX

Y = EY

S = 0

Causal graph:

X Y

S

Augmented graph:

EX EY

ES

X Y

S
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Interventions: Example

Example

Observational (no intervention):

Graph G(M):

X1X2

X3 X4

X5

SCM M:

X1 = f1(E1) E1 ∼ PE1
X2 = f2(E1,E2) E2 ∼ PE2
X3 = f3(X1,X2,X5,E3) E3 ∼ PE3
X4 = f4(X1,X4,E4) E4 ∼ PE4
X5 = f5(X3,X4,E5) E5 ∼ PE5

Intervention do(X3 = ξ3):

Intervened Graph G(Mdo(X3=ξ3)):

X1X2

X3 X4

X5

Intervened SCM Mdo(X3=ξ3):

X1 = f1(E1) E1 ∼ PE1
X2 = f2(E1,E2) E2 ∼ PE2
X3 = ξ3 E3 ∼ PE3
X4 = f4(X1,X4,E4) E4 ∼ PE4
X5 = f5(X3,X4,E5) E5 ∼ PE5
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Observational Distribution(s)

Definition (Reminder)

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..

Definition

For (X ,E ) a solution of SCM M, we call PX an observational distribution
of M.

An important special case:

Proposition

If M is simple, then its observational distribution exists and is unique.

Definition

Given a simple SCM M and a fixed background measure on X , we denote
the density of the observational distribution as pM(x).
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Interventional Distribution(s)

A perfect intervention on M may change the distributions.

Definition

We call the family of sets of observational distributions of Mdo(XI=ξI ) (for
I ⊆ I, ξI ⊆ X I ) the interventional distributions of M.

Proposition

If M is simple, then all intervened SCMs Mdo(XI=ξI ) are simple, and
hence all interventional distributions of a simple SCM exist and are unique.

Definition ([Pearl, 2000])

Given a simple SCM M and a fixed background measure on X , we denote
the density of the interventional distributions as pM

(
x | do(XI = ξI )

)
Crucial difference with traditional probabilistic models: SCMs
simultaneously model all distributions that are obtained under all perfect
interventions on a system.
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Self-cycles

Definition

We say M has a self-cycle at i ∈ I if i ∈ paIM(i).

Example (Price-supply-demand)

Consider an SCM with three endogenous variables (Price, Supply and
Demand) modeling a free market:

S = αP + ES

D = βP + ED

P = P + (S − D)
S DP

The structural equation for P has a self-cycle that cannot be removed
without changing the observational and interventional distributions.

Self-cycles complicate matters considerably [Bongers et al., 2018].

Proposition

Simple SCMs are equivalent to SCMs without self-cycles.
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Causal Interpretation of Direct Edges

Definition

Let M be a simple SCM. If i → j ∈ G(M) we call i a direct cause of j
according to M.

We can now formalize our earlier informal definition of direct cause as a
sufficient condition:

Proposition

Let M be a simple SCM. If there exist interventions do(XI\{j} = ξ) and
do(XI\{j} = ξ′) such that ξI\{i ,j} = ξ′I\{i ,j} and ξi 6= ξ′i such that

PM(Xj | do(XI\{j} = ξ)) 6= PM(Xj | do(XI\{j} = ξ′))

then i is a direct cause of j according to M, i.e., i → j ∈ G(M).

(Interestingly, a necessary condition is not known)
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Causal Interpretation of Directed Paths

Definition

Let M be a simple SCM. If there exists a directed path
i → · · · → j ∈ G(M), i.e., if i ∈ anG(M)(j), then we call i a cause of j
according to M.

We can now formalize our earlier informal definition of cause as a sufficient
condition:

Proposition

Let M be a simple SCM. If there exist interventions do(Xi = ξ) and
do(Xi = ξ′) with ξ 6= ξ′ such that

PM(Xj | do(Xi = ξ)) 6= PM(Xj | do(Xi = ξ′))

then i is a cause of j according to M, i.e., i ∈ anG(M)(j).

(Interestingly, a necessary condition is not known)
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Causal Interpretation of Bidirected Edges

Definition

Let M be a simple SCM. If there exists a bidirected edge i ↔ j ∈ G(M),
then we call i and j confounded according to M.

We can formulate a sufficient condition for confoundedness:

Proposition

Let M be a simple SCM. If j → i /∈ G(M) and there exist an intervention
do(XI\{i ,j} = ξ) such that

PM(Xj | do(i , xi ), do(I \ {i , j}, ξ)) 6= PM(Xj |Xi = xi , do(I \ {i , j}, ξ))

then i and j are confounded according to M.

(Again, a necessary condition is not known)
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Marginalization: “Integrating out” a subsystem (Example)

Example

SCM for complete system:

Graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

X1 = f1(E1) E1 ∼ PE1
X2 = f2(E1,E2) E2 ∼ PE2
X3 = f3(X1,X2,X5,E3) E3 ∼ PE3
X4 = f4(X1,X4,E4) E4 ∼ PE4
X5 = f5(X3,X4,E5) E5 ∼ PE5

Marginalizing out {X2,X4}:

X1X2

X3 X4

X5

Graph G(M\{2,4}):

X1

X3

X5

Marginalization M\{2,4}:
X1 = f1(E1) E1 ∼ PE1

E2 ∼ PE2
X3 = f3(X1, g2(E1,E2),X5,E3) E3 ∼ PE3

E4 ∼ PE4
X5 = f5(X3, g4(X1,E4),E5) E5 ∼ PE5
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Marginalization: Substituting equations

Given a simple SCM M and a subset of its endogenous variables L ⊆ I,
with complement O := I \ L, we can always “substitute out” the
structural equations for L:

X = f (X ,E )

⇐⇒
{
XL = fL(XL,XO,E )

XO = fO(XL,XO,E )

⇐⇒
{
XL = gL(XO,E )

XO = fO(XL,XO,E )

⇐⇒
{
XL = gL(XO,E )

XO = fO(gL(XO,E ),XO,E )

all hold a.s., where gL : XO × E → XL is the explicit solution of the
structural equations for XL, i.e.,

XL = gL(XO,E ) ⇐⇒ XL = fL(XL,XO,E ) a.s..
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Marginalization of an SCM

Definition ([Bongers et al., 2018])

Let M = 〈X I ,E, f ,PE〉 be a simple SCM, L ⊆ I a subset of endogenous
variables and O = I \ L. Then the marginalization of M on I \ L is
defined as the SCM M\L := 〈X I\L,E, f \L,PE〉, where the marginal

causal mechanism f \L is obtained by substitution:
f \L(xO, e) := fO

(
gL(xO, e), xO, e

)
.

Definition

For a DMG G and a subset L ⊆ I of nodes, the latent projection G\L is
defined as the DMG with nodes I \ L and edges

i → j iff there is a directed path i → `1 → · · · → `k → j in G with
`1, . . . , `k ∈ L
i ↔ j iff there is a path i ← `1 ← · · · ← `k1 ↔ `k1+1 → · · · → `k2 → j
in G with `1, . . . , `k1 , . . . , `k2 ∈ L
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Marginalization of an SCM: Properties

The marginalization preserves the causal semantics (restricted to the
remaining part of the system, I \ L):

Theorem ([Bongers et al., 2018])

Let M = 〈X I ,E, f ,PE〉 be a simple SCM and L ⊆ I a subset of
endogenous variables.

The marginalization M\L is interventionally equivalent to M w.r.t.
I \ L. I.e., the observational distribution and all interventional
distributions of M, marginalized onto X I\L, coincide with the

corresponding ones of M\L.

The graph G(M\L) of the marginalization of M on I \ L is always a
subgraph of the latent projection of G(M) on I \ L (some edges may
cancel out).

The marginal SCM M\L is simple.
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Modeling ODE fixed points with an SCM

Strong motivation for (cyclic) SCMs:

Theorem ([Mooij et al., 2013, Bongers and Mooij, 2018])

An ODE describing a dynamical system induces an SCM that models its
equilibrium states, and how these change under perfect interventions.

D:{
Ẋi (t) = fi (Xpa(i)),
Xi (0) = (X0)i

i ∈ I

Ddo(XI=ξI ):{
Ẋi (t) = 0,
Xi (0) = ξi

i ∈ I{
Ẋi (t) = fi (Xpa(i)),
Xi (0) = (X0)i

i /∈ I

MD:

Xi = Xi + fi (Xpa(i)) i ∈ I

MDdo(XI=ξI )
:

Xi = ξi i ∈ I

Xi = Xi + fi (Xpa(i)) i /∈ I

intervention

fixed points

intervention

fixed points

do(XI = ξI ) do(XI = ξI )
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From ODE to SCM: Example 1

Example (Damped coupled harmonic oscillators)

m1 m2 m3 m4

k0 k1 k2 k3 k4

X = 0 X = L

ODE D:

Ẍi =
ki
mi

(Xi+1 − Xi − li )−
ki−1
mi

(Xi − Xi−1 − li−1)− bi Ẋi

Structural Equations of induced SCM MD:

Xi =
ki (Xi+1 − li ) + ki−1(Xi−1 + li−1)

ki + ki+1

Graph of induced SCM G(MD):

X1 X2 X3 X4
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From ODE to SCM: Example 2

SEnzyme reaction: + E C P + E

kf

kr

kc

koki

d
dtS = ki − kfES + krC

d
dtE = −kfES + (kr + kc)C

d
dtC = kfES − (kr + kc)C

d
dtP = kcC − koP

Random differential equations:

S = kik
−1
f E

−1 − krk−1
f E

−1
C

E = k
−1
f (kr + kc)S

−1
C

C = kf (kr + kc)
−1
ES

P = kck
−1
o C

Structural causal model:

0 5 10 15 20 25 30 35
t (arbitrary unit)

2

1

0

1

2

Lo
g(

Co
nc

en
tra

tio
n)

S
E
C
P

t→∞

E S

C

P

d
dtS = ki − kfES + krC

d
dtE = η

d
dtC = kfES − (kr + kc)C

d
dtP = kcC − koP

Intervened RDE:

0 5 10 15 20 25 30 35
t (arbitrary unit)

2

1

0

1

2

Lo
g(

Co
nc

en
tra

tio
n)

S
E
C
P

S = kik
−1
f E

−1 − krk−1
f E

−1
C

E = η

C = kf (kr + kc)
−1
ES

P = kck
−1
o C

Intervened SCM:

t→∞

E S

C

P

do(E = η) do(E = η)

Figure 1: Example that illustrates how structural causal models can be used to describe the equilibrium solutions of
random differential equations (in this case, an enzyme reaction) and how these change under external interventions
(in this case, keeping the enzyme concentration E at a fixed value η). The diagram is commutative.

The advantage of SCMs over RDEs is that by not mod-
eling the transient random dynamics of the RDE, one ar-
rives at a more compact representation for learning and
prediction purposes of random systems that have reached
equilibrium. Another advantage is that the equilibrium
solutions of the RDE can be studied by statistical tools
applicable to SCMs. For example, one can marginal-
ize over a subset of the system’s variables and get an
even more parsimonious representation that preserves the
causal semantics (Bongers et al., 2016). This is illus-
trated in Figure 2 for the example of a damped cou-
pled harmonic oscillator, where we marginalize over the
momentum variables. Moreover, we can apply Markov
properties to the equilibrium solutions of the SCM by
using d-separation. This is also illustrated in Figure 2,
where we perform d-separation on the equilibrium solu-
tions of the intervened model and see that the position
variables Q1 and Q5 are independent given the posti-
tion variable Q3 which we held fixed. This enables the
study of stochastic and causal behavior of the equilib-
rium solutions of the RDE in terms of SCMs and hence
this sheds some new light on the concept of causality
as expressed within the framework of structural causal
models. Yet another advantage is that it is easier to deal
with confounders within the framework of SCMs, as we
only need to model the equilibrium distribution of these
confounders, and don’t need to model their dynamics.

In summary, we built a bridge between the world of ran-

dom differential equations and the world of structural
causal models. This allows us to study a plethora of
physical and engineering systems subject to time-varying
random disturbances within the framework of structural
causal models. We naturally extend the work of Mooij
et al. (2013) to the stochastic setting, which allows us to
address both cycles and confounders. In particular, we
relaxed the condition that the dynamical system has to
equilibrate to a single static equilibrium, and show that
if an RDE is sufficiently regular all equilibrium sample-
path solutions of the RDE are described by the solutions
of the associated SCM, while preserving the causal se-
mantics.

More generally, any chemical reaction can be modeled as an SCM at
equilibrium. (Note: the SCM is in general underspecified, i.e., it does not
retain all information about the equilibrium states of the dynamical system
[Blom & Mooij, 2018]).
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SCMs and other Causal Modeling Frameworks

We can connect SCMs to the potential outcome framework (popular in
the statistical literature):

Definition

Given a simple SCM M and let E ∼ PE . For any subset I ⊆ I and value
ξI , define the potential outcome XξI := gMdo(XI=ξI )

(E ).

Also, we can connect SCMs to causal Bayesian networks:

Proposition

Given a simple SCM M with a graph G(M) that is

acyclic (i.e., has no directed cycles), and

causally sufficient (i.e., it has no bidirected edges).

Then M induces a Causal Bayesian Network 〈G(M), pM〉. Vice versa, for
every Causal Bayesian Network there exists an SCM that induces it.
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Seeing is not doing; but is doing necessary?

We can now express “correlation does not imply causation” (or, as Pearl
says, “seeing is not doing”) more precisely:

p
(
y | do(X = x)

)
6= p(y |X = x) in general

Do we really need to introduce this additional interventional semantics
(“the do-operator”) on top of the notion of conditioning that we already
are so familiar with in probability theory?

Not necessarily: we can introduce additional variables to get a purely
probabilistic model that can mimic the SCM.
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Extending an SCM with Intervention Variables

Definition

Given a simple SCM M with discrete endogenous domains Xi . Define an
extended SCM M̂ by (i) for each endogenous variable Xi with i ∈ I , add
an endogenous intervention variable Ci , taking values in the space
Xi ∪ {∅}; (ii) replace the causal mechanism f by f̂ with:

f̂Xi
(x , c , e) =

{
ci ci ∈ Xi (“set by perfect intervention”)

fi (x , e) ci = ∅ (“observational default”)

and f̂Ci
(εi ) = εi where εi ∼ PCi

with strictly positive density.

Proposition

For any intervention target I ⊆ I and intervention value ξI ∈ XI :

pM(x | do(XI = ξI )) = pM̂(x |CI = ξI ,CI\I = ∅)

All interventional distributions of M can be obtained by conditioning pM̂.
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Simple SCMs: Overview

SCM

Intervened SCM
Interventional
Distribution

Marginal SCM

Augmented Graph

Graph

d/σ-separations

(Potential) Direct
Causes

(Potential) Causes

(Potential) Confounders

Observational Distribution

(Conditional) Independences

Markov
Property

Faithfulness
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(Conditional) independences

Definition (Independence)

Given two random variables X ,Y , we write X ⊥⊥ Y and say that X is
independent of Y if

p(x , y) = p(x)p(y).

Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).

Definition (Conditional Independence)

Given a third random variable Z , we write X ⊥⊥ Y |Z and say that X is
(conditionally) independent from Y , given Z , if

p(x , y |Z = z) = p(x |Z = z)p(y |Z = z).

Intuitively, X is independent of Y if, given the value of Z , we do not learn
anything new about X when told the value of Y .
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(Directed) Paths

Definition (Paths, Ancestors)

Let G be a directed mixed graph.

A path q is a sequence of adjacent edges in which no node occurs
more than once.

A directed path is of the form i1 → i2 → · · · → ik .

If there is a directed path from X to Y , X is called an ancestor of Y .

The ancestors of Y are denoted anG(Y ), and include Y .

Example

X1X2

X3 X4

X5

X1 → X3 ← X1 is not a path.
X1 ↔ X2 → X3 is a path.

X1 → X4 → X5 is a directed path.
X4 → X5 ← X3 is not a directed path.

The ancestors of X3 are {X1,X2,X3}.
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Colliders and non-colliders

Definition (Colliders)

Let G be a directed mixed graph, and q a path on G.

A collider on q is a (non-endpoint) node X on q with precisely two
arrowheads pointing towards X on the adjacent edges:

→ X ←, → X ↔, ↔ X ←, ↔ X ↔

A non-collider on q is any node on the path which is not a collider.

Example

X1X2

X3 X4

X5

The path X3 → X5 ← X4 contains a collider X5.
The path X1 ↔ X2 → X3 contains no collider.
X5 is a non-collider on X5 ↔ X3 ← X1.
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d-Blocked paths

Definition

Let G be a directed mixed graph. Given a path q on G, and a set of nodes
S , we say that S d-blocks q if q contains

a non-collider which is in S , or

a collider which is not an ancestor of S .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is d-blocked by ∅.
X3 → X5 ← X4 is d-blocked by {X1}.
X3 → X5 ← X4 is not d-blocked by {X5}.
X3 ← X2 ↔ X1 → X4 is d-blocked by {X1}.
X3 ← X2 ↔ X1 → X4 is not d-blocked by {X5}.
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d-separation

Definition (d-separation)

Let G be a directed mixed graph. For three sets X ,Y ,Z of nodes in G, we
say that X and Y are d-separated by Z iff all paths between a node in X

and a node in Y are d-blocked by Z , and write X ⊥G Y |Z .

Example

X1X2

X3 X4

X5

X3 and X4 are d-separated by {X1}.
X3 and X4 are d-separated by {X1,X2}.
X3 and X4 are not d-separated by ∅.
X3 and X4 are not d-separated by {X1,X5}.
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Exercise

Please make Exercise 1.2
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Acyclic Global Markov Property

Theorem

For an acyclic SCM, the Global Markov Property holds:

X ⊥
G(M)

Y |Z =⇒ X ⊥⊥
pM

Y |Z

for all subsets X ,Y ,Z of nodes.

In words: every d-separation in the graph G(M) of M implies a
(conditional) independence in the (unique) observational distribution
associated to M.

For cyclic SCMs, the notion of d-separation is too strong in general. A
weaker notion called σ-separation has to be used instead
[Forré and Mooij, 2017]. For simple SCMs, a global Markov condition
using σ-separation can then be shown to hold.
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Reichenbach’s Principle

Reichenbach’s Principle of Common Cause

The dependence X 6⊥⊥ Y implies that X → Y , Y → X , or X ↔ Y (or any
combination of these three).

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Proof of Reichenbach’s Principle

Assuming that p(X ,Y ) is generated by an acyclic SCM, we can easily
prove Reichenbach’s Principle by applying the Global Markov property:

Proof

X ⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

X 6⊥⊥ Y

X Y

(The proof can be extended to include the cyclic case)
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Selection Bias

Reichenbach’s Principle may fail in case of selection bias.

Definition

If a data set is obtained by only including samples conditional on some
event, selection bias may be introduced.

Example

X Y

S

X : the battery is charged
Y : the start engine is operational
S : the car starts

A car mechanic (who only observes cars for which S = 0) will observe
a dependence between X and Y : X 6⊥⊥ Y | S .

When the car mechanic invokes Reichenbach’s Principle without
realizing that he is selecting on the value of S (maybe S is a latent
variable), a wrong conclusion will be drawn.
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Faithfulness Assumption

Let M be an acyclic SCM.

We have seen that the Global Markov Property holds:

X ,Y ⊥
G(M)

Z =⇒ X ⊥⊥
pM

Y |Z

for all subsets X ,Y ,Z of nodes.

Definition (Faithfulness Assumption)

For all subsets X ,Y ,Z of nodes,

X ,Y ⊥
G(M)

Z ⇐= X ⊥⊥
pM

Y |Z

Note: Faithfulness holds generically, i.e., up to measure-zero sets of
parameters [Meek, 1995]. In other words, SCM parameters need to be
carefully tuned in order to violate the faithfulness assumption.
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Faithfulness Violations

Faithfulness violations may occur e.g. in case of parameter cancellations or
deterministic relations.

Example (Parameter cancellation)

Consider an SCM M:

X = EX

Y = X + EY

Z = X − Y + EZ

X

Y

Z

Then:
Z ⊥⊥ pM X but Z 6⊥G(M) X .

Example (Deterministic relation)

Consider an SCM M:

X = EX

Y = X

Z = Y + EZ

X

Y

Z

Then:
Z ⊥⊥ pM Y |X but Z 6⊥G(M) Y |X .

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 62 / 131



Simple SCMs: Overview

SCM

Intervened SCM
Interventional
Distribution

Marginal SCM

Augmented Graph

Graph

d/σ-separations

(Potential) Direct
Causes

(Potential) Causes

(Potential) Confounders

Observational Distribution

(Conditional) Independences

Markov
Property

Faithfulness
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Causal Inference: Predicting Causal Effects

One important task (“causal inference”) is the prediction of causal effects.

Definition

The causal effect of X on Y is defined as p
(
y | do(X = x)

)
.

Special cases:

X binary: E
(
Y | do(X = 1)

)
− E

(
Y | do(X = 0)

)
X ,Y linearly related: ∂

∂xE
(
Y | do(X = x)

)

Note: In general, since p
(
y | do(X = x)

)
6= p(y |X = x), we cannot use

standard supervised learning (regression, classification) for this task.

Two approaches can be used:

Experimentation (Randomized Controlled Trials, A/B-testing)

Apply the Back-door Criterion (if causal graph is known)
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Causal discovery by experimentation

Experimentation (e.g., Randomized Controlled Trials, A/B-testing, . . . )
provides the gold standard for causal effect estimation.
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Identifiability: Example

If we cannot do experiments. . . Can we express p
(
y | do(X = x)

)
in terms

of the observational distribution?

Example

X Y

p
(
y | do(X = x)

)
=

p(y |X = x)

Yes!

X Y

H

p
(
y | do(X = x)

)
=
∫
p(h)p(y | x , h) dh

6=
p(y |X = x) =

∫
p(h | x)p(y | x , h) dh

No!

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 67 / 131



Identifiability: Example

If we cannot do experiments. . . Can we express p
(
y | do(X = x)

)
in terms

of the observational distribution?

Example

X Y

p
(
y | do(X = x)

)
=

p(y |X = x)

Yes!

X Y

H

p
(
y | do(X = x)

)
=
∫
p(h)p(y | x , h) dh

6=
p(y |X = x) =

∫
p(h | x)p(y | x , h) dh

No!

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 67 / 131



Adjustment for covariates

We have seen that for the following causal graph,

X Y

H

adjusting for the confounder H, yields the causal effect of X on Y :∫
p(h)p(y | x , h) dh = p

(
y | do(X = x)

)
More generally, given a causal graph: which variables H could we adjust
for in order to express the causal effect of X on Y in terms of the
observational distribution?

A sufficient condition is given by the Back-door Criterion.
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The Back-door Criterion

Theorem (Back-door Criterion (Pearl, 2000))

Let M be an acyclic SCM M with disjoint subsets of endogenous
variables {X}, {Y }, H . Let Ĝ be G(M) extended with an intervention
node IX → X . If

1 H ⊥Ĝ IX ;

2 Y ⊥Ĝ IX | {X} ∪H ,

then H is called admissible for adjustment to find the causal effect of X
on Y , i.e., this causal effect is given by:

pM
(
y | do(X = x)

)
=

∫
pM(y | x ,h)pM(h) dh.

For the special case H = ∅, this should be read as:

pM
(
y | do(X = x)

)
= pM(y | x).
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The Back-door Criterion: Example

Example

G(M): X1X2

X3 X4

X5

Ĝ: X1X2I2

X3 X4

X5

The sets of variables that are admissible for adjustment to get the causal
effect of X2 on X5 are: {X1}, {X1,X4}. Therefore:

p(x5 | do(X2 = x2)) =

∫
p(x5 | x1, x2)p(x1) dx1

=

∫
p(x5 | x1, x2, x4)p(x1, x4) dx1 dx4

Some sets of variables that are not admissible for adjustment to get the
causal effect of X2 on X5 are: {X3}, {X1,X3}.
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Exercise

Please make Exercise 2.2
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Simpson’s Paradox

Remember Simpson’s paradox:

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? I.e., would you use this drug if you are ill?

The answer depends on the causal relationships between the variables!
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Resolving Simpson’s paradox

The crux to resolving Simpson’s paradox is to realize:

Seeing 6= doing

p(R = 1 |D = 1): the probability that somebody recovers, given the
observation that the person took the drug.

p
(
R = 1 | do(D = 1)

)
: the probability that somebody recovers, if we

force the person to take the drug.

Simpson’s paradox only manifests itself if we misinterpret correlation as
causation by identifying p(r |D = d) with p

(
r | do(D = d)

)
.

We should prescribe the drug if

p
(
R = 1 | do(D = 1)

)
> p

(
R = 1 | do(D=0)

)
.

How to find the causal effect of the drug on recovery?
1 Randomized Controlled Trials
2 Back-door Criterion (requires knowledge of causal graph)
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Exercise

Please make Exercise 2.3
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Back-door Criterion for Simpson’s paradox

Example (Scenario 1)

H

D RID

R: Recovery
D: Took drug
H: Gender

ID ⊥H;

ID ⊥R|D,H;

Therefore, adjust for {H} to obtain causal effect of drug on recovery:

p
(
r | do(D = d)

)
=
∑
h

p(r |D = d ,H = h)p(h)

So in scenario 1, you should not take the drug: for both males and
females, taking the drug lowers the probability of recovery.
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Back-door Criterion for Simpson’s paradox

Example (Scenario 2)

H

DID R

R: Recovery
D: Took drug
H: Gender

ID 6⊥ H (H is not admissible for adjustment);

ID ⊥R|D;

Do not adjust for {H} to obtain causal effect of drug on recovery:

p
(
r | do(D = d)

)
= p(r |D = d)

So in scenario 2, you should take the drug: in the general population,
taking the drug increases the probability of recovery.

(If you think gender-changing drugs are unlikely, replace “gender” by
“high/low blood pressure”, for example).

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 76 / 131



Causal Reasoning: Do-calculus [Pearl, 2000]

Pearl formulated three rules (the “do-calculus”) that can be used in
addition to the usual rules for probabilistic reasoning. For acyclic SCMs:

1 Inserting/deleting observations:

p
(
y | x , z , do(w)

)
= p

(
y | z , do(w)

)
if Y ⊥

Ĝdo(W )

X |Z

2 Inserting/deleting actions:

p
(
y | do(x), z , do(w)

)
= p

(
y | z , do(w)

)
if Y ⊥

Ĝdo(W )

IX |Z .

3 Action/observation exchange:

p
(
y | do(x), z , do(w)

)
= p

(
y | x , z , do(w)

)
if Y ⊥

Ĝdo(W )

IX |X ,Z

The do-calculus allows us to reason with (probabilistic) causal statements,
given (partial) knowledge of the causal structure. These rules are more
powerful than the Back-door Criterion for causal prediction purposes.
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Causal Discovery

We have seen how to perform causal reasoning, given the causal model.
But how do we get the causal model in the first place?

Establishing causal relations from data (“causal discovery”) is one of the
fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the
gold standard for causal discovery is a randomized,
controlled experiment.

More recently, causal discovery methods from purely
observational data have been developed, starting with
the work of Spirtes, Gleimour, Scheines, Pearl and
others.

These ideas have inspired causal discovery methods that combine
observational and interventional data in various ways.
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Randomized Controlled Trials [Fisher, 1935]

Z

D R

G: Z

D R

CGRCT :

R: Recovery, D: Drug, Z : latent confounders (e.g., genetics), C : coin flip.

Divide patients into two groups: treatment and control randomly
(e.g., by a coin flip).

Patients in the treatment group are forced to take a drug, and
patients in the control group are forced to not take the drug (but to
take a placebo instead): D = C .

Estimating the causal effect of the drug now becomes a standard
statistical exercise, as p(R |D = C ) = p(R | do(D = C )).

Gold standard for causal discovery.

All evidence-based medicine is based on this idea.
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Causal Discovery from Observational Data

Controlled experiments can be expensive, time-consuming, unethical,
impractical or even infeasible.

Intriguing alternative: causal discovery from purely observational data
[Spirtes et al., 2000, Pearl, 2000]!

SCM

GraphObservational Distribution

Observational Data

Causal
Discovery

Disclaimer: Works only under strong assumptions and with (possibly
very) large sample sizes.
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Approaches to Causal Discovery from Observational Data I

Conditional-independence constraint-based

Independence patterns in the data constrain the possible causal graphs.

LCD (Cooper, 1997)

Y-Structures (Mani & Cooper, 2004)

PC (Spirtes & Gleimour & Scheines, 2000), IC (Pearl, 2000)

FCI (Spirtes & Meek & Richardson, 1995; Zhang, 2008)

. . .

General constraint-based

Similar, but exploiting more general types of constraints in the data.

Verma constraints (Robins (1986), Verma & Pearl (1990), Tian &
Pearl (2002))

Nested Markov Models (Richardson, Evans, Robins, Shpitser (2017))

Algebraic Constraints (Van Ommen & Mooij (2017))

. . .
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Approaches to Causal Discovery from Observational Data II

Likelihood-based approaches

Score penalized likelihoods of possible causal graphs and select the best
one(s).

Bayesian Network Learning (Heckerman, Geiger, Chickering, 1995)

Greedy Equivalence Search (Chickering, 2002)

. . .

Restrictions on functional causal relations and noise distributions

Minimize the “complexity” of causal models.

LINGAM (Kano, Shimizu, 2003; Shimizu et al., 2006)

Additive Noise Models (Hoyer et al., 2006)

Post-Nonlinear Model (Zhang & Hyvärinen, 2009)

. . .
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Constraint-based Causal Discovery

From the pattern of conditional independences in the data we can
reconstruct a set of possible underlying causal graphs, even when allowing
for latent confounders [Spirtes et al., 2000].

X1 X2 X3 X4

2 0.1 0.2 0.5
2 0.13 0.21 0.49
2 0.23 0.21 0.51
5 0.5 0.19 0.52
5 0.6 0.18 0.51
2 0.2 0.22 0.92
2 0.23 0.21 0.99
5 0.53 1.2 0.95
5 0.55 1.19 0.97

Data

X2 6⊥⊥ X4

X2 ⊥⊥ X4 |X3

X1 ⊥⊥ X2

X1 6⊥⊥ X2 |X3

. . .

CIs
X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

Possible Causal Graphs
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Causal Discovery from Observational Data: V-Structure

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

4

X

Y

blue: Z = 0, red: Z = 1

X Y

Z

X ⊥⊥ Y , X 6⊥⊥ Y |Z ,
X 6⊥⊥ Z , X 6⊥⊥ Z |Y ,
Y 6⊥⊥ Z , Y 6⊥⊥ Z |X .

Question: What is the causal relation between X , Y and Z?

Hint: Assume an acyclic, faithful SCM without latent confounders
generated the data, and assume no selection bias or measurement error

Answer: X causes Z ; Y causes Z ; X and Y causally unrelated

Note: Strong assumptions, but no experiments needed!
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Markov equivalence classes for three variables

X ⊥⊥ Y , X ⊥⊥ Y | Z
Y ⊥⊥ Z , Y ⊥⊥ Z | X
Z ⊥⊥ X , Z ⊥⊥ X | Y

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

Y ⊥⊥ X , Y ⊥⊥ X | Z
Y ⊥⊥ Z , Y ⊥⊥ Z | X

X

Y Z

X

Y Z

Z ⊥⊥ X , Z ⊥⊥ X | Y
Z ⊥⊥ Y , Z ⊥⊥ Y | X

X

Y Z

X

Y Z

X ⊥⊥ Y , X ⊥⊥ Y | Z
X ⊥⊥ Z , X ⊥⊥ Z | Y

X

Y Z

X

Y Z

Z ⊥⊥ X | Y

X

Y Z

X

Y Z

X

Y Z

X ⊥⊥ Y | Z

X

Y Z

X

Y Z

X

Y Z

Y ⊥⊥ Z | X

X

Y Z

X

Y Z

X

Y Z

Z ⊥⊥ X

X

Y Z

X ⊥⊥ Y

X

Y Z

Y ⊥⊥ Z

X

Y Z

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 88 / 131



Exercise

Please make Exercise 2.4
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Causal Discovery from Observational Data: Y-Structure
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black: X3 = 0, red: X3 = 1

Question: What is the causal relation between X3 and X4?
Hint: Assume an acyclic, faithful SCM generated the data, and assume no
selection bias or measurement error.

Answer: X3 causes X4 and they are not confounded. The causal effect of
X3 on X4 satisfies p(x4 | do(X3 = x3)) = p(x4 | x3).

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 90 / 131



Causal Discovery from Observational Data: Y-Structure
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X2 ⊥⊥ X4 |X3

X1 X2
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X4

black: X3 = 0, red: X3 = 1

Question: What is the causal relation between X3 and X4?
Hint: Assume an acyclic, faithful SCM generated the data, and assume no
selection bias or measurement error.

Answer: X3 causes X4 and they are not confounded. The causal effect of
X3 on X4 satisfies p(x4 | do(X3 = x3)) = p(x4 | x3).
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Hardness of Causal Discovery

Appendix B. Causal Orderings and Adjacency Matrices 223

d Number of DAGs with d nodes
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505

Table B.1: The number of DAGs depending on the number d of nodes, taken from http:

//oeis.org/A003024 [OEIS Foundation Inc., 2017]. The length of the numbers grows
faster than any linear term.

Source: [Peters et al., 2017]
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State-of-the-art Causal Discovery: (Augmented) FCI

[Spirtes et al., 2000, Spirtes et al., 1999, Ali et al., 2005, Zhang, 2008]

Source: [Claassen & Heskes, 2011]
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FCI: Example (“Extended Y-structure”)

Independences: Z ⊥⊥ U, Z ⊥⊥ Y |X

U Z

X

Y

R0a

U Z

X

Y

R0b

U Z

X

Y

R1

U Z

X

Y

R2b

U Z

X

Y

R4b

U Z

X

Y
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Local Causal Discovery (LCD)

Local Causal Discovery: simple causal discovery algorithm (Cooper, 1997).

Definition

If for three variables X ,Y ,Z :

Y 6∈ an(X ) ∧ Z 6∈ an(X ) ∧ X 6⊥⊥ Y ∧ Y 6⊥⊥ Z ∧ X ⊥⊥ Z |Y ,

then (X ,Y ,Z ) is an LCD triplet.

Theorem

If an acyclic, faithful SCM generated the data without selection bias or
measurement error, the only causal graphs that yield an LCD triplet are:

X Y Z X Y Z X Y Z

Therefore, Y ∈ an(Z ) and p(Z | do(Y = y)) = p(Z |Y = y).
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Exercise

Please make Exercise 2.5
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Causal Discovery: Example Application

Protein Abundance Data:
(Sachs et al, 2005)

1
2

3
4

5
6

7
8

Raf Mek PLCg PIP2 PIP3 Erk Akt PKA PKC p38 JNK

Condition Reagent Intervention
1 - observational
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 inhibits PIP2/PIP3 activity
7 PMA activates PKC + global
8 β2CAMP activates PKA + global

Causal Graph:
(“Signalling network”)

Raf

Mek

Erk

Plcg

PIP2

PKC

PIP3

Akt

PKA

P38Jnk

(depicted here: “consensus” network)
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Causal Discovery by Experimentation: Example

0 2 4 6 8 10
0

2

4

6

8

10

ln Raf

ln
 M

e
k

Each dot is a measurement in a single
human immune system cell

Raf: abundance of phosphorylized Raf

Mek: abundance of phosphorylized Mek

blue = baseline,
red = reagent U0126 added

Question: What is the causal relation between Raf and Mek?

Hint: U0126 inhibits Mek.

Answer: Mek causes Raf
(Changing activity of Mek changes abundance of Raf.)

Note: How did we know that “U0126 inhibits Mek” in the first place?
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LCD: Example

pErk : abundance of phosphorylized Erk in each cell

pS6: abundance of phosphorylized S6 in cell

I : green = baseline, red = PMA-IONO activator added

pErk
-2 0 2 4 6 8

p
S

6

-2

-1

0

1

2

3

4

5

6

7

8
Streptonigrin: 1.0e-01, 0.0e+00

(X ,Y ,Z ) is
LCD triplet iff:

Y 6∈ an(X )
Z 6∈ an(X )
X 6⊥⊥ Y
Y 6⊥⊥ Z
X ⊥⊥ Z |Y

What is the causal relation?

LCD triplet (I , pS6, pErk), so pS6→ pErk.

Note: no prior knowledge on the effects of PMA-IONO needed!
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Causal Discovery from Multiple Contexts

MOOIJ, MAGLIACANE, CLAASSEN
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(Fisher, 1935) + + + + + + + + + + - - b
(Cooper and Yoo, 1999) - + - + - - - - - - + - b
(Tian and Pearl, 2001) - + - - + - - + - - + - b
(Sachs et al., 2005) - + - + - - - - - - + - b
(Eaton and Murphy, 2007) - + - + + + + + + + + - b
(Chen et al., 2007) + + + + + + + + + + + - b
(Claassen and Heskes, 2010) + + - - + + + + + - + + a
(Tillman and Spirtes, 2011) + + - - + + + + + - + + a
(Hauser and Bühlmann, 2012) - + - + - - - - - - + - b
(Hyttinen et al., 2012) + - + + - - - - - - + - a
(Mooij and Heskes, 2013) - ± ± + + + - + - - + - b
(Hyttinen et al., 2014) + + ± + - - - - - - + + a
(Triantafillou and Tsamardinos, 2015) + + - + - - - - - - + + a
(Rothenhäusler et al., 2015) + - ± - - - - + + + + - a
(Peters et al., 2016) ± ± ± + + + + + + - + - b
(Oates et al., 2016a) - - - - - - - + - - + - b
(Zhang et al., 2017) - + - + + + + + + + + - b
JCI + + + + + + + + + + + ± b
JCI-LCD (Cooper, 1997) + + + + + + + + + + + - b
JCI-HEJ + + ± + + + + + + + + - b
JCI-FCI + + - + + + + + + + + - b

Table 3: Overview of causal discovery methods that can combine data from multiple contexts.
Features offered by the original implementations of these methods are indicated. Combination
strategies are: (a) obtain statistics or constraints from each context separately and then construct a
single causal graph based on the combined statistics, (b) pool all data and construct a single causal
graph directly from the pooled data. When a feature is offered only under additional restrictive
assumptions, it is indicated with a ± sign.

28
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JCI: Combining the best of two worlds

Question

Can we combine the ideas of the “classical” approach to causal discovery
based on experimentation with the “modern” approach based on
conditional independences in observational data in observational dataa?

We hope to:

obtain reliability of “classical” approach

exploit conditional independences in the data to reduce the number of
experiments necessary

Answer

We propose Joint Causal Inference [Mooij et al., 2019], a framework for
causal discovery, that achieves this.
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Randomized Controlled Trials, or A/B-testing

C1 X1

0 1
0 0
0 1
0 0
0 0
0 0
0 0
0 0
1 0
1 0
1 1
1 1
1 0
1 1
1 0
1 1

Two variables: context variable C1, system variable X1

C1: 0=control, 1=intervention
X1: 0=looking for work, 1=found work
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Two equivalent points of view

(a) Separate data sets

Two-sample test:

Is p
(
x | do(C = 0)

)
= p

(
x | do(C = 1)

)
?

Placebo (C = 0):
X

-0.2
0.6
-1.7
. . .

Drug (C = 1):
X

-0.3
1.8
-0.1
. . .

(b) Pooled data

Independence test:

Is X ⊥⊥ C?

C X
0 -0.2
0 0.6
0 -1.7
0 . . .
1 -0.3
1 1.8
1 -0.1
1 . . .
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Causal Inference for Randomized Controlled Trial

Proposition

Suppose C (treatment) and X (outcome) can be modeled with a
Structural Causal Model. The Randomized Controlled Trial assumptions

X does not cause C (because X happens after C )

X and C are unconfounded (because of the randomization)

no selection bias (measure and analyze all samples)

imply that if C 6⊥⊥ X , then C causes X (correlation implies causation).

Proof

C ⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X

C 6⊥⊥ X

C X
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JCI: Two types of variables

Definition

JCI generalizes the idea of RCTs to multiple context and system variables.
Distinguish:

Context variables {Ci}i∈I that model the context of the system,

System variables {Xj}j∈J that model the system of interest.

Example

Data for 3 observed system variables in 4 experimental conditions:

System variables:
X1: salary
X2: drug abuse
X3: depression

Context variables:
C1: back-to-work program
C2: psychotherapy

no interventions:

X1 X2 X3

0.1 0.2 0.5
0.13 0.21 0.49
0.23 0.21 0.51

only psychotherapy:

X1 X2 X3

0.5 0.19 0.52
0.6 0.18 0.51

only back-to-work program:

X1 X2 X3

0.2 0.22 0.92
0.23 0.21 0.99

both interventions:

X1 X2 X3

0.53 1.2 0.95
0.61 1.21 0.90
0.55 1.19 0.97
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JCI: Pooling the data

After explicitly adding the context variables, we pool the data:

Example

no interventions:
X1 X2 X3
0.1 0.2 0.5
0.13 0.21 0.49
0.23 0.21 0.51

only psychotherapy:
X1 X2 X3
0.5 0.19 0.52
0.6 0.18 0.51

only back-to-work program:
X1 X2 X3
0.2 0.22 0.92
0.23 0.21 0.99

both interventions:
X1 X2 X3
0.53 1.2 0.95
0.61 1.21 0.90
0.55 1.19 0.97

C1 C2 X1 X2 X3

0 0 0.1 0.2 0.5
0 0 0.13 0.21 0.49
0 0 0.23 0.21 0.51
0 1 0.5 0.19 0.52
0 1 0.6 0.18 0.51
1 0 0.2 0.22 0.92
1 0 0.23 0.21 0.99
1 1 0.53 1.2 0.95
1 1 0.61 1.21 0.90
1 1 0.55 1.19 0.97

System variables:
X1: salary
X2: drug abuse
X3: depression

Context variables:
C1: back-to-work program
C2: psychotherapy
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JCI: Assumptions

JCI Assumptions (Intuitive formulation)

We are modelling a generic setting in which the experimenter decides on
the performed interventions before the measurements are performed, and
this decision does not depend on anything else that might affect the
system of interest.

Formal JCI Assumptions

The causal graph G that includes both system variables {X1, . . . ,Xp} and
context variables {C1, . . . ,Cd}, which jointly models the experimental
design and the system in all experimental conditions, satisfies:

no variable directly causes any context variable Ci , and

none of the pairs {Xk ,Ci} of system and context variables is
confounded, and

each pair of context variables {Ci ,Cj} is confounded.

Furthermore, we assume the absence of selection bias.
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Joint Causal Inference

Question: How can we now reconstruct the causal graph from the data?

interv. variables system variables
C1 C2 X1 X2 X3

0 2 0.1 0.2 0.5
0 2 0.13 0.21 0.49
0 2 0.23 0.21 0.51

0 5 0.5 0.19 0.52
0 5 0.6 0.18 0.51

1 2 0.2 0.22 0.92
1 2 0.23 0.21 0.99

1 5 0.53 1.2 0.95
1 5 0.61 1.21 0.90
1 5 0.55 1.19 0.97

pooled data
X1 6⊥⊥ C1

X1 ⊥⊥ C1 |C2

X3 ⊥⊥ X2 |X1

C1 6⊥⊥ C2

. . .

CIs

C1 C2

X1 X2 X3

JCI Assumptions

+
C1 C2

X1

X2 X3

causal graphs

Answer: Simply apply a standard constraint-based causal discovery
method (designed for purely observational data) on the pooled data, and
incorporate the JCI assumptions as background knowledge.
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Evaluation on simulated data I
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0 Context Variables (AUC=0.71)
1 Context Variables (AUC=0.80)
2 Context Variables (AUC=0.86)
3 Context Variables (AUC=0.91)
4 Context Variables (AUC=0.94)

(4 system variables, 500 samples in each data set)
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Evaluation on simulated data II
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Evaluation on simulated data III
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(4 system variables, 500 samples in each data set)
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Evaluation on real-world flow cytometry data

Raf

Mek

PLCgPIP2

PIP3

Erk

Akt

PKA

PKC

p38 JNK

Only observational data:

Raf

Mek

Akt

PLCg

PIP2

PIP3

JNK

Erk

PKAPKC

p38

ICAM.2AKT.inh G0076Psitectorigenin U0126LY294002

PMA

beta2CAMP

All (observational+interventional) data:
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The generalized directed global Markov property

Given the importance of the Markov property, the first thing we need is a
Markov property for cyclic SCMs. We introduced a notion σ-separation
that generalizes d-separation [Forré and Mooij, 2017]:

σ-separation implies d-separation.

For acyclic graph, σ-separation is equivalent to d-separation.

Inspired by ideas by [Spirtes, 1996], we showed:

Theorem ([Forré and Mooij, 2017])

For a simple SCM M, the generalized directed global Markov property
holds for its observational distribution PM(X ):

A
σ
⊥
G(M)

B |Z =⇒ XA ⊥⊥
PM

XB |XZ A,B,Z ⊆ I.
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Markov properties: σ-separation

Definition (σ-separation, [Forré and Mooij, 2017])

In a DMG G, a path
← ←

i1 → · · · → in↔ ↔
is called σ-blocked by a set of nodes Z iff

one or both end nodes i1, in are in Z , or

it contains a collider ik−1
→↔ ik

←↔ ik+1 with ik 6∈ anG(Z ), or

it contains a non-collider with ik ∈ Z :

ik−1
→←↔ ik → ik+1, ik−1 ← ik

→←↔ ik+1,

where the child ik+1 (resp. ik−1) is not in scG(ik).

We say that A is σ-separated from B by Z , denoted A⊥σG B |Z , if every
path with one end node in A and one end node in B is σ-blocked by Z .
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Markov properties: Example

Example

Graph G(M):

X1 X2

X3X4

SCM M:

X1 = f1(X4,E1) = X4 + E1

X2 = f2(X1,E2) = X1 · E2

X3 = f3(X2,E3) = X2 + E3

X4 = f4(X3,E4) = X3 · E4

X1⊥d X3 |X2,X4

but

X1 6⊥σ X3 |X2,X4

Indeed, as one can check explicitly, X1 6⊥⊥ pM X3 |X2,X4.

In general: No σ-separations between nodes within the same strongly
connected component.
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Directed global Markov property

Stronger statements can be derived for special cases:

Theorem ([Forré and Mooij, 2017])

If a simple SCMM satisfies at least one of the following three conditions:

1 M is linear and its exogenous variables have a density with respect to
Lebesgue measure, or

2 all endogenous variables are discrete-valued, or

3 M is acyclic;

then the directed global Markov property holds for any solution X of M
with respect to the graph G(M):

A
d
⊥
G(M)

B |Z =⇒ XA ⊥⊥
PM

XB |XZ A,B,Z ⊆ I.
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Extensions: Acyclic SCMs to Simple SCMs by s/d/σ/

By simply replacing d-separation with σ-separation, it turns out that one
can directly extend the applicability from acyclic SCMs to (possibly cyclic)
simple SCMs of:

The Back-door Criterion [Forré and Mooij, 2019];

The do-Calculus [Forré and Mooij, 2019];

Causal Discovery algorithms can be adapted, or turn out to need no
modification:

[Forré and Mooij, 2018]: the first causal discovery algorithm that can
handle cycles, nonlinear relationships, latent confounding variables
and data from different (interventional) contexts.

LCD, Y-structures, FCI and JCI all work out-of-the-box on simple
SCMs [Mooij et al., 2019]
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Gene Regulatory Network = Causal Graph

Source: [Kemmeren et al., 2014]
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Causal Discovery of Gene Regulatory Networks

observational:
(wild-type vs. wild-type):

genes

sa
m
p
le
s

interventional:
(mutant vs. wild-type):

genes

k
n
o
ck
o
u
ts

? ? ? ? ? ?

Large-scale Single Gene Knockout Micro-Array
Data [Kemmeren et al., 2014]:

∼6,500 variables (gene expression)

∼260 observational samples (wild-type
vs. wild-type)

∼1,500 interventional samples
(single-gene knockouts/knockdowns)

Challenge

Can we, in a purely data-driven way (without
using biological knowledge), predict which
genes strongly change their expression when
we knock-out a given gene (without using any
data corresponding to that particular
knock-out experiment)?
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k-fold Cross-validation

Using 5-fold cross-validation, we split the data into a training set used to
make predictions, and a test set used to define a ground truth for
validating the predictions.

Train:

Test:

Observational:

∼6,000 genes

∼
2
5
0
sa
m
p
le
s

Interventional:

∼6,000 genes

∼
1
,5
0
0
k
n
o
ck
o
u
ts
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First successful validation of causal discovery
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ICP: [Meinshausen et al., 2016]; LCD: high-dimensional version of LCD
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Correlation: Causation or Confounding?

True positive: False positive:

−4 −3 −2 −1 0

YPL273W

−4

−3

−2

−1

0

1

Y
M

R
3

2
1

C

−4 −3 −2 −1 0 1 2

YPL154C

−1.0

−0.5

0.0

0.5

1.0

1.5

Y
D

R
0

3
2

C

(Training data: Observational and Interventional. Test data: single intervention.)
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Conclusion

Causality is clearly an important notion in daily life and in science, and yet
underexplored in statistics and machine learning.

In this tutorial, you have learned how to:

formalize the notion of causality;

reason about causality;

discover causal relations from data;

make causal predictions;

that seeing is not the same as doing.

This was just a sample of topics in an exciting research field. There is still
much more to learn and to discover!
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Thank you for your attention!

Randall Munroe, www.xkcd.org
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