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Causality: ubiquitous in the sciences

Genetics:
how to infer gene regulatory networks from micro-array data?
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Causality: ubiquitous in the sciences

Social sciences:
does playing violent computer games cause aggressive behavior?
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Causality: ubiquitous in the sciences

Neuroscience:
how to infer functional connectivity networks from fMRI data?
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Causality: ubiquitous in the sciences

Economy:
Does austerity reduce national debt?
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Causality: ubiquitous in daily life

Politics:
Do extra bombings on IS targets reduce or increase the likelihood of
terrorist attacks?
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Causality: what is it?

Causality is central notion in science, decision-taking and daily life.

How to reason formally about cause and effect?
(We don’t learn this at school, and only very rarely at university!)

Question: give a definition of cause and effect.
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Hume on Causality

The subject of causality has a long history in philosophy. For example, this
is what Hume had to say about it:

“Thus we remember to have seen that species
of object we call flame, and to have felt that
species of sensation we call heat. We like-
wise call to mind their constant conjunction
in all past instances. Without any farther cer-
emony, we call the one cause and the other
effect, and infer the existence of the one from
that of the other.”

David Hume, Treatise of Human Nature
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But: does the rooster’s crow really cause the sun to rise?
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Russell on Causality

Some philosophers even proposed to abandon the concept of causality
completely.

“All philosophers, of every school, imagine
that causation is one of the fundamental
axioms or postulates of science, yet, oddly
enough, in advanced sciences such as grav-
itational astronomy, the word ‘cause’ never
occurs. The law of causality, I believe, like
much that passes muster among philosophers,
is a relic of a bygone age, surviving, like the
monarchy, only because it is erroneously sup-
posed to do no harm.”

Bertrand Russell, On The Notion Of Cause
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Causality in Statistics

Karl Pearson (one of the founders of modern statistics, well-known from
his work on the correlation coefficient) writes:

“Beyond such discarded fundamentals as
‘matter’ and ‘force’ lies still another fetish
amidst the inscrutable arcana of even modern
science, namely, the category of cause and ef-
fect.”

Karl Pearson, The Grammar of Science

Since then, many statisticians tried to avoid causal reasoning:

“Considerations of causality should be treated as they have always
been in statistics: preferably not at all.” (Terry Speed, former
president of the Biometric Society).

“It would be very healthy if more researchers abandon thinking of and
using terms such as cause and effect.” (Prominent social scientist).
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A modern philosopher on Causality

Randall Munroe, www.xkcd.org
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Causality in engineering

Causality is a very useful concept in engineering.

Using causal reasoning, engineers can not only predict what happens when
a system operators normally, but also when an external intervention
changes part of the system.

Being able to predict what happens under interventions allows to exert
control.
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A formal theory of causality?

Question

Can we formalize causal reasoning?
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Exercise 1

Please make Exercise 1. . .
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Problems in formalizing causal reasoning: probabilities

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. It can happen that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, however, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Should we use this drug for treatment?

Note

Fancy classifiers, deep learning and big data do not help us here!
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An important step forwards

Judea Pearl

ACM Turing Award 2011: “For fundamental contributions to artificial
intelligence through the development of a calculus for probabilistic and
causal reasoning.”

Joris Mooij (UvA) Causal Modelling 2016-04-14 18 / 51



Pearl’s contribution: the do-operator

Probability theory has a semantics for updating probabilities given
observations: conditioning.
Pearl extends probability calculus by introducing a new operator for
describing interventions, the do-operator.

Example (Do-operator)

p(lung cancer | smoke): the probability that somebody gets lung
cancer, given (the observation) that the person smokes.

p(lung cancer | do(smoke)): the probability that somebody gets lung
cancer, if we force the person to smoke.

Resolution of Simpson’s paradox:

Simpson’s paradox is only paradoxical if we misinterpret
p(recovery | drug) as p(recovery | do(drug)).
We should prescribe the drug if
p(recovery | do(drug)) > p(recovery | do(no drug)).
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Do-calculus

Pearl recognized that the rules of probability theory do not suffice for
causal reasoning. He formulated three additional rules (the
“do-calculus”):

1 Ignoring observations:

p(y | do(x),w , z) = p(y | do(x),w) if (Y ⊥⊥Z |X ,W )G
X

2 Action/observation exchange:

p(y | do(x), do(z),w) = p(y | do(x), z ,w) if (Y ⊥⊥Z |X ,W )G
X ,Z

3 Ignoring actions:

p(y | do(x), do(z),w) = p(y | do(x),w) if (Y ⊥⊥Z |X ,W )G
X ,Z(W )

where Z (W ) = Z \ AnG
X

(W ).

The do-calculus allows us to reason with (probabilistic) causal statements,
given (partial) knowledge of the causal structure.
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Causal relations

Definition

A causes B if changing A may lead to a change of B.

Causal graph represents the causal relationships between variables (nodes
are variables, edges encode causal relations between variables).

Example

X1 X2

X1 and X2 are
causally unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause X3

X1 X2

X3

X1 and X2 have a
common effect X3
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Direct causation

Let V = {X1, . . . ,XN} be a set of variables.

Definition

If Xi causes Xj even if all other variables V \ {Xi ,Xj} are hold fixed at
arbitrary values, then

we say that Xi causes Xj directly with respect to V
we indicate this in the causal graph on V by a directed edge Xi → Xj

Example

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 does not cause X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}
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Terminology of directed graphs

Let G be a directed graph with nodes V = {X1, . . . ,XN}.

Definition

If Xi → Xj we call Xi parent of Xj and
Xj a child of Xi .

If Xi → Xj or Xj → Xi then we call Xi

and Xj adjacent.

If Xi1 → Xi2 → Xi3 → · · · → Xik we say
that there is a directed path from Xi1 to
Xik .

If there is a directed path from Xi to Xj

(or if Xi = Xj), Xi is called a ancestor of
Xj , and Xj is called a descendant of Xi .

AnG(X ) denotes the set of all ancestors
of nodes in subset X ⊆ V .

Example

X1X2

X3 X4

X5

Causal interpretation

parent = direct cause
child = direct effect
ancestor = cause
descendant = effect
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Feedback loops: Example

Example
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Cycles, Feedback loops: Definitions

Let G be a directed graph with nodes V = {X1, . . . ,XN}.

Definition

G is cyclic if it contains a directed cycle

Xi1 → Xi2 → · · · → Xik , Xi1 = Xik

If it does not contain such a directed cycle, the graph is called acyclic.
This is also known as a DAG (Directed Acyclic Graph).

Definition

If A causes B and B causes A, then we say that A and B are involved in a
causal feedback loop.
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Mutilated graphs

Definition

Given a directed graph G = (V ,E ) and a subset X ⊆ V , we define

G
X

to be G without the incoming edges on nodes in X ;

GX to be G without the outgoing edges from nodes in X .

Example

X1X2

X3 X4

X5

G:

X1X2

X3 X4

X5

GX3
:

X1X2

X3 X4

X5

GX3 :
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Perfect interventions

Definition

A perfect intervention do(X = ξ) on a set of variables X ⊆ V is an
externally enforced change of the system that ensures that X = ξ but
leaves the rest of the system untouched.

The concept of perfect intervention assumes “modularity”: the causal
system can be divided into two parts, X and V \ X , and we can make
changes to one part while keeping the other part intact.

Note

The causal graph G changes into G
X

after a perfect intervention
do(X = ξ) (because none of the other variables can now cause X ).
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Confounders: Example
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Confounders: Definition

Definition

Let X ,Y be observed variables and H an latent (unobserved) variable.
H confounds X and Y if:

1 there exists a directed path from H to X that does not contain Y

2 there exists a directed path from H to Y that does not contain X

Example

X Y

H

X Y

H
H2 H3

X Y

H

X Y

H

X Y

H

X Y

H
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(Conditional) independences

Definition: independence

Given two random variables X ,Y , we write X ⊥⊥Y and say that X is
independent of Y if

p(X ,Y ) = p(X )p(Y ).

Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).

Definition: conditional independence

Given a third random variable Z , we write X ⊥⊥Y |Z and say that X is
(conditionally) independent from Y , given Z , if

p(X ,Y |Z ) = p(X |Z )p(Y |Z ).

Intuitively, X is independent of Y if, given the value of Z , we do not learn
anything new about X when told the value of Y .
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Reichenbach’s Principle

Reichenbach’s Principle of Common Cause

A dependence between X ,Y implies that X → Y , Y → X , or there exists
a confounder of X and Y (or any combination of these three).

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Selection Bias

Reichenbach’s Principle may fail in case of selection bias.

If a data set is obtained by only including samples conditional on some
event, selection bias may be introduced.

Example

X Y

S

X : the battery is empty
Y : the start engine is broken
S : the car does not start

In general, X and Y are independent events: X ⊥⊥Y .

A car mechanic (who only observes cars for which S = 1) will observe
a dependence between X and Y : X 6⊥⊥Y |S .

When the car mechanic invokes Reichenbach’s Principle without
realizing that he is selecting on the value of S (maybe S is a latent
variable), a wrong conclusion will be drawn.
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Assumptions

For simplicity, in this lecture we restrict our attention to a subclass of
causal models.

Causal Bayesian Networks: Assumptions

Causal Bayesian Networks are a class of causal models that incorporate the
following assumptions:

1 No confounding

2 No feedback

3 No selection bias

Extensions of the theory that drop one or more of these assumptions exist
(see e.g. the literature on Acyclic Directed Mixed Graphs, Semi-Markov
Causal Models, Maximal Ancestral Graphs, Structural Equation Models,
d-connection graphs). This is an active area of research.
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Bayesian Networks

Definition

A Bayesian Network is a pair (G, p) where:

G is a Directed Acyclic Graph

p is a joint probability density on the nodes X1, . . . ,XN of G s.t.

p(x1, . . . , xN) =
N∏
i=1

p(xi | xpa(i))

where pa(i) are the parents of Xi in G.
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Causal Bayesian Networks

Definition

A Bayesian Network is causal if:

Directed edges correspond with direct causal relations

After a perfect intervention do(XI = xI ), the incoming arrows on XI

are removed and the probability density becomes:

p
(
xV \I | do(XI = xI )

)
=
∏

i∈V \I

p(xi | xpa(i))

In other words, a perfect intervention do(XI = xI ) on a subset of variables
XI simply “divides out” the conditional densities p(xi | xpa(i)) from the
joint density for all i ∈ I , and substitutes the variables XI by their values
xI .
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Local Markov Condition

Theorem

For any (Causal) Bayesian Network with variables {X1, . . . ,XN}, the
following “Local Markov Condition” holds:

Xi ⊥⊥Xnd(i) |Xpa(i)

for all i = 1, . . . ,N. Here, nd(i) are the non-descendants of Xi .
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Paths and colliders

Definition

Let G be a DAG with nodes V = {X1, . . . ,XN}.
A path Xi1 . . .Xi2 . . .Xik is a sequence of distinct nodes such that Xij

and Xij+1
are adjacent (for j = 1, . . . , k − 1).

A collider on a path is a (non-endpoint) node Xij (j = 2, . . . , k − 1)
on the path with precisely two “incoming” arrow heads:
Xij−1

→ Xij ← Xij+1
.

A non-collider on a path is any (non-endpoint) node Xij

(j = 2, . . . , k − 1) on the path which is not a collider.
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Definition
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Example

X1X2

X3 X4

X5

X1 → X3 ← X1 is not a path.
X2 → X3 ← X1 is a path.
X1 → X3 → X5 ← X4 ← X1 is not a path.
The path X3 → X5 ← X4 contains a collider X5.
The path X4 ← X1 → X3 contains no collider.
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Blocked paths

Definition

Let G be a directed graph with nodes V . Given a path p between nodes X
and Y in V , and a set of nodes Z ⊆ V \ {X ,Y }, we say that Z blocks p
if p contains

a non-collider which is in Z , or

a collider which is not an ancestor of Z .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is blocked by ∅.
X3 → X5 ← X4 is blocked by {X1}.
X3 → X5 ← X4 is not blocked by {X5}.
X3 ← X1 → X4 is not blocked by ∅.
X2 → X3 ← X1 → X4 is blocked by {X1}.
X2 → X3 ← X1 → X4 is not blocked by {X5}.

Joris Mooij (UvA) Causal Modelling 2016-04-14 40 / 51



Blocked paths

Definition

Let G be a directed graph with nodes V . Given a path p between nodes X
and Y in V , and a set of nodes Z ⊆ V \ {X ,Y }, we say that Z blocks p
if p contains

a non-collider which is in Z , or

a collider which is not an ancestor of Z .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is blocked by ∅.
X3 → X5 ← X4 is blocked by {X1}.
X3 → X5 ← X4 is not blocked by {X5}.
X3 ← X1 → X4 is not blocked by ∅.
X2 → X3 ← X1 → X4 is blocked by {X1}.
X2 → X3 ← X1 → X4 is not blocked by {X5}.

Joris Mooij (UvA) Causal Modelling 2016-04-14 40 / 51



d-separation

Let G be a directed graph with nodes V .

Definition

Given two distinct nodes X ,Y ∈ V and a set of nodes Z ⊆ V \ {X ,Y },
we say that X and Y are d-separated by Z iff all paths between X and Y
are blocked by Z .
For three disjoint subsets X ,Y ,Z ⊆ V of nodes, we say that X and Y
are d-separated by Z iff all paths between any node in X and any node in
Y are blocked by Z .

Example

X1X2

X3 X4

X5

X2 and X1 are d-separated by ∅.
X2 and X1 are d-separated by X4.
X2 and X1 are not d-separated by X5.
X3 and X4 are not d-separated by ∅.
X3 and X4 are d-separated by X1.
X3 and X4 are not d-separated by {X1,X5}.
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Global Markov Condition

Theorem

In any (Causal) Bayesian Network, the following “Global Markov
Condition” holds:

X ,Y d-separated by Z =⇒ X ⊥⊥Y |Z

for all disjoint subsets X ,Y ,Z of nodes.

In other words, we can read of conditional independences from the graph
of a Bayesian Network by using the Global Markov Condition.
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Identifiability

Given i.i.d. data of the observational distribution p(x , y , . . . ).
From this we can estimate p(y |X = x).

Question

Can we also estimate p(y | do(X = x)) from the observational data?

Given enough assumptions, the answer is yes. In that case, we do not have
to actually perform the intervention experiment!

Definition

If a quantity like p(y | do(X = x)) can be expressed in terms of the
observational distribution p(x , y , . . . ), we say that it is identifiable (from
the observational distribution).
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Identifiability: Example

Example

Is p(y | do(X = x)) identifiable?

X Y

p(y | do(X = x)) = p(y |X = x)

identifiable:

X Y

H

p(y | do(X = x)) 6= p(y |X = x)

not identifiable:

Indeed, for the graph with the latent variable H:

p(y | do(X = x)) =

∫
p(h)p(y | x , h) dh

which is generally different from

p(y |X = x) =

∫
p(h)p(x | h)p(y | x , h) dh∫

p(h)p(x | h)p(y | x , h) dh dx
.
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Adjustment for covariates

For a Causal Bayesian Network in which all variables are observed:

p(y | do(X = x), xpa(X )) = p(y | x , xpa(X ))

and therefore:

p(y | do(X = x)) =

∫
p(y | x , xpa(X ))p(xpa(X )) dxpa(X )

So p(y | do(X = x)) is identifiable in Causal Bayesian Networks
without latent variables.

Which other sets (instead of the parents of X ) could we use to
express the causal effect on Y of intervening on X in terms of the
observed distribution?

A sufficient condition is given by Pearl’s Back-door criterion.
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The Back-door Criterion

The following result is known as the “Back-door Criterion”:

Theorem

A set S of nodes is “admissible” for adjustment to find the causal effect of
X on Y , if :

1 X ,Y /∈ S ;

2 no element of S is a descendant of X ;

3 S blocks all back-door paths X ← . . .Y .

In that case,

p(y | do(X = x)) =

∫
p(y | x , s)p(s) ds.

For the special case S = ∅, this simply should be read as:

p(y | do(X = x)) = p(y | x).
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The Back-door Criterion: Example

Example

X1X2

X3 X4

X5

{X1} is admissible for adjustment to find
the causal effect of X4 on X5.

∅ is admissible for adjustment to find the
causal effect of X2 on X5.

{X1} is admissible for adjustment to find
the causal effect of X2 on X5.

{X1,X4} is admissible for adjustment to
find the causal effect of X2 on X5.

{X3} is not admissible for adjustment to
find the causal effect of X2 on X5.

{X1,X3} is admissible for adjustment to
find the causal effect of X5 on X2.
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Exercise 2

Please make Exercise 2. . .
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Causal vs. probabilistic reasoning

Traditional statistics, machine learning

About associations (stork population and human birth rate are
correlated)

Model the distribution of the data

Predict given observations (if we observe a certain number of
storks, what is our best estimate of human birth rate?)

Causality

About causation (storks do not causally affect human birth rate)

Model the mechanism that generates the data

Predict results of interventions (if we change the number of storks,
what will happen with the human birth rate?)
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Further reading

Thank you for your attention!
Pearl, J. (1999).
Simpson’s paradox: An anatomy.
Technical Report R-264, UCLA Cognitive Systems Laboratory.

Pearl, J. (2000).
Causality: Models, Reasoning, and Inference.
Cambridge University Press.

Pearl, J. (2009).
Causal inference in statistics: An overview.
Statistics Surveys, 3:96–146.

Spirtes, P., Glymour, C., and Scheines, R. (2000).
Causation, Prediction, and Search.
The MIT Press.
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