# ASCI lecture Causal Modelling

## Joris Mooij j.m.mooij@uva.nl

Informatics Institute



University of Amsterdam

April 14th, 2016

## Introduction

- Output: Basic Terminology
- Oausal Bayesian Networks
- Gausal Reasoning: Back-door Criterion

# Causality: ubiquitous in the sciences

#### Genetics:

how to infer gene regulatory networks from micro-array data?



## Social sciences:

does playing violent computer games cause aggressive behavior?





# Causality: ubiquitous in the sciences

## Neuroscience:

how to infer functional connectivity networks from fMRI data?



# Causality: ubiquitous in the sciences

## Economy:

Does austerity reduce national debt?



## **Politics:**

Do extra bombings on IS targets reduce or increase the likelihood of terrorist attacks?





Causality is central notion in science, decision-taking and daily life.

How to reason formally about cause and effect? (We don't learn this at school, and only very rarely at university!)

Question: give a definition of cause and effect.

The subject of *causality* has a long history in philosophy. For example, this is what Hume had to say about it:



"Thus we remember to have seen that species of object we call *flame*, and to have felt that species of sensation we call *heat*. We likewise call to mind their constant conjunction in all past instances. Without any farther ceremony, we call the one *cause* and the other *effect*, and infer the existence of the one from that of the other."

David Hume, Treatise of Human Nature

# But: does the rooster's crow really cause the sun to rise?



Some philosophers even proposed to abandon the concept of causality completely.



"All philosophers, of every school, imagine that causation is one of the fundamental axioms or postulates of science, yet, oddly enough, in advanced sciences such as gravitational astronomy, the word 'cause' never occurs. The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm."

Bertrand Russell, On The Notion Of Cause

# Causality in Statistics

Karl Pearson (one of the founders of modern statistics, well-known from his work on the *correlation coefficient*) writes:



"Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of even modern science, namely, the category of cause and effect."

Karl Pearson, The Grammar of Science

Since then, many statisticians tried to avoid causal reasoning:

- "Considerations of causality should be treated as they have always been in statistics: preferably not at all." (Terry Speed, former president of the Biometric Society).
- "It would be very healthy if more researchers abandon thinking of and using terms such as cause and effect." (Prominent social scientist).



Randall Munroe, www.xkcd.org

# Causality in engineering



Causality is a very useful concept in engineering.

Using causal reasoning, engineers can not only predict what happens when a system operators normally, but also when an external *intervention* changes part of the system.

Being able to predict what happens under interventions allows to exert *control*.

#### Question

Can we formalize causal reasoning?

Please make Exercise 1...

# Problems in formalizing causal reasoning: probabilities

## Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a new drug against a certain disease. It can happen that:

• The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

**②** For **both** *male and female* patients, however, the relation is opposite:

*p*(recovery | drug, male) < *p*(recovery | no drug, male)

*p*(recovery | drug, female) < *p*(recovery | no drug, female)

Should we use this drug for treatment?

# Problems in formalizing causal reasoning: probabilities

## Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a new drug against a certain disease. It can happen that:

• The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

**②** For **both** *male and female* patients, however, the relation is opposite:

*p*(recovery | drug, male) < *p*(recovery | no drug, male)

*p*(recovery | drug, female) < *p*(recovery | no drug, female)

Should we use this drug for treatment?

#### Note

Fancy classifiers, deep learning and big data do not help us here!

## An important step forwards



Judea Pearl



ACM Turing Award 2011: "For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning."

# Pearl's contribution: the do-operator

- Probability theory has a semantics for updating probabilities given *observations*: conditioning.
- Pearl extends probability calculus by introducing a new operator for describing *interventions*, the **do-operator**.

## Example (Do-operator)

- *p*(lung cancer | smoke): the probability that somebody gets lung cancer, given (the observation) that the person smokes.
- *p*(lung cancer | do(smoke)): the probability that somebody gets lung cancer, if we *force* the person to smoke.

## Resolution of Simpson's paradox:

- Simpson's paradox is only paradoxical if we misinterpret p(recovery | drug) as p(recovery | do(drug)).
- We should prescribe the drug if p(recovery | do(drug)) > p(recovery | do(no drug)).

# **Do-calculus**

Pearl recognized that the rules of probability theory do not suffice for causal reasoning. He formulated three additional rules (the "**do-calculus**"):

**O** Ignoring observations:

$$p(m{y} \mid ext{do}(m{x}),m{w},m{z}) = p(m{y} \mid ext{do}(m{x}),m{w}) \qquad ext{if} \ (m{Y} \perp m{Z} \mid m{X},m{W})_{\mathcal{G}_{\overline{m{X}}}}$$

Action/observation exchange:

$$p(\mathbf{y} \mid do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = p(\mathbf{y} \mid do(\mathbf{x}), \mathbf{z}, \mathbf{w}) \quad \text{if } (\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\overline{\mathbf{X}}, \mathbf{Z}}}$$

Ignoring actions:

$$p(\mathbf{y} \mid do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = p(\mathbf{y} \mid do(\mathbf{x}), \mathbf{w}) \quad \text{if } (\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\overline{\mathbf{X}}, \overline{\mathbf{z}(\mathbf{w})}}}$$

where 
$$\boldsymbol{Z}(\boldsymbol{W}) = \boldsymbol{Z} \setminus An_{\mathcal{G}_{\overline{\boldsymbol{X}}}}(\boldsymbol{W}).$$

The do-calculus allows us to reason with (probabilistic) causal statements, given (partial) knowledge of the causal structure.

## Introduction

- **2** Causality: Basic terminology
- Oausal Bayesian Networks
- Gausal Reasoning: Back-door Criterion

# Causal relations

## Definition

A causes B if changing A may lead to a change of B.

## Definition

A causes B if changing A may lead to a change of B.

Causal graph represents the causal relationships between variables (nodes are variables, edges encode causal relations between variables).



## Direct causation

Let 
$$\boldsymbol{V} = \{X_1, \dots, X_N\}$$
 be a set of variables.

## Definition

If  $X_i$  causes  $X_j$  even if all other variables  $V \setminus \{X_i, X_j\}$  are hold fixed at arbitrary values, then

- we say that  $X_i$  causes  $X_j$  directly with respect to V
- we indicate this in the causal graph on V by a directed edge  $X_i \rightarrow X_j$



# Terminology of directed graphs

Let  $\mathcal{G}$  be a directed graph with nodes  $\boldsymbol{V} = \{X_1, \ldots, X_N\}$ .

#### Definition

- If  $X_i \to X_j$  we call  $X_i$  parent of  $X_j$  and  $X_j$  a child of  $X_i$ .
- If  $X_i \to X_j$  or  $X_j \to X_i$  then we call  $X_i$  and  $X_j$  adjacent.
- If  $X_{i_1} \to X_{i_2} \to X_{i_3} \to \cdots \to X_{i_k}$  we say that there is a directed path from  $X_{i_1}$  to  $X_{i_k}$ .
- If there is a directed path from X<sub>i</sub> to X<sub>j</sub> (or if X<sub>i</sub> = X<sub>j</sub>), X<sub>i</sub> is called a ancestor of X<sub>j</sub>, and X<sub>j</sub> is called a descendant of X<sub>i</sub>.
- An<sub>G</sub>(X) denotes the set of all ancestors of nodes in subset X ⊆ V.

#### Example



#### Causal interpretation

| parent     | = direct cause   |
|------------|------------------|
| child      | = direct  effect |
| ancestor   | = cause          |
| descendant | = effect         |

# Feedback loops: Example

#### Example



# Cycles, Feedback loops: Definitions

Let  $\mathcal{G}$  be a directed graph with nodes  $\boldsymbol{V} = \{X_1, \dots, X_N\}$ .

#### Definition

 ${\mathcal G}$  is cyclic if it contains a directed cycle

$$X_{i_1} o X_{i_2} o \cdots o X_{i_k}, \qquad X_{i_1} = X_{i_k}$$

If it does not contain such a directed cycle, the graph is called acyclic. This is also known as a DAG (Directed Acyclic Graph).

#### Definition

If A causes B and B causes A, then we say that A and B are involved in a causal feedback loop.

# Mutilated graphs

## Definition

Given a directed graph  $\mathcal{G} = (\mathbf{V}, \mathbf{E})$  and a subset  $\mathbf{X} \subseteq \mathbf{V}$ , we define

- $\mathcal{G}_{\overline{X}}$  to be  $\mathcal{G}$  without the incoming edges on nodes in X;
- $\mathcal{G}_{\boldsymbol{X}}$  to be  $\mathcal{G}$  without the outgoing edges from nodes in  $\boldsymbol{X}$ .



#### Definition

A perfect intervention  $do(X = \xi)$  on a set of variables  $X \subseteq V$  is an externally enforced change of the system that ensures that  $X = \xi$  but leaves the rest of the system untouched.

The concept of perfect intervention assumes "modularity": the causal system can be divided into two parts,  $\boldsymbol{X}$  and  $\boldsymbol{V} \setminus \boldsymbol{X}$ , and we can make changes to one part while keeping the other part intact.

#### Note

The causal graph  $\mathcal{G}$  changes into  $\mathcal{G}_{\overline{X}}$  after a perfect intervention  $do(X = \xi)$  (because none of the other variables can now cause X).

# Confounders: Example



Joris Mooij (UvA)

2016-04-14 29 / 51

# Confounders: Definition

## Definition

Let X, Y be observed variables and H an latent (unobserved) variable. H confounds X and Y if:

- $\mathbf{0}$  there exists a directed path from H to X that does not contain Y
- Q there exists a directed path from H to Y that does not contain X

# Confounders: Definition

## Definition

Let X, Y be observed variables and H an latent (unobserved) variable. H confounds X and Y if:

- $\mathbf{0}$  there exists a directed path from H to X that does not contain Y
- ${f Q}$  there exists a directed path from H to Y that does not contain X

# 

#### Definition: independence

Given two random variables X, Y, we write  $X \perp Y$  and say that X is independent of Y if

$$p(X, Y) = p(X)p(Y).$$

Intuitively, X is independent of Y if we do not learn anything about X when told the value of Y (or vice versa).

#### Definition: independence

Given two random variables X, Y, we write  $X \perp Y$  and say that X is independent of Y if

$$p(X, Y) = p(X)p(Y).$$

Intuitively, X is independent of Y if we do not learn anything about X when told the value of Y (or vice versa).

#### Definition: conditional independence

Given a third random variable Z, we write  $X \perp Y \mid Z$  and say that X is (conditionally) independent from Y, given Z, if

$$p(X, Y \mid Z) = p(X \mid Z)p(Y \mid Z).$$

Intuitively, X is independent of Y if, given the value of Z, we do not learn anything new about X when told the value of Y.

## Reichenbach's Principle of Common Cause

A dependence between X, Y implies that  $X \to Y$ ,  $Y \to X$ , or there exists a confounder of X and Y (or any combination of these three).

#### Example

- Significant correlation (p = 0.008) between human birth rate and number of stork populations in European countries [Matthews, 2000]
- Most people nowadays do not believe that storks deliver babies (nor that babies deliver storks)
- There must be some confounder explaining the correlation



Reichenbach's Principle may fail in case of selection bias.

If a data set is obtained by only including samples conditional on some event, *selection bias* may be introduced.

# Example X: the battery is empty Y: the start engine is broken S: the car does not start In general, X and Y are independent events: X ⊥ Y. A car mechanic (who only observes cars for which S = 1) will observe a dependence between X and Y: X ⊥ Y | S. When the car mechanic invokes Reichenbach's Principle without

• When the car mechanic invokes Reichenbach's Principle without realizing that he is selecting on the value of *S* (maybe *S* is a latent variable), a wrong conclusion will be drawn.

## Introduction

- Ocausality: Basic Terminology
- **O Causal Bayesian Networks**
- Gausal Reasoning: Back-door Criterion

For simplicity, in this lecture we restrict our attention to a subclass of causal models.

## Causal Bayesian Networks: Assumptions

Causal Bayesian Networks are a class of causal models that incorporate the following assumptions:

- O No confounding
- O No feedback
- O No selection bias

Extensions of the theory that drop one or more of these assumptions exist (see e.g. the literature on Acyclic Directed Mixed Graphs, Semi-Markov Causal Models, Maximal Ancestral Graphs, Structural Equation Models, d-connection graphs). This is an active area of research.

## Definition

- A Bayesian Network is a pair  $(\mathcal{G}, p)$  where:
  - $\bullet \ \mathcal{G}$  is a Directed Acyclic Graph
  - p is a joint probability density on the nodes  $X_1, \ldots, X_N$  of  $\mathcal{G}$  s.t.

$$p(x_1,\ldots,x_N) = \prod_{i=1}^N p(x_i \mid \mathbf{x}_{\mathrm{pa}(i)})$$

where pa(i) are the parents of  $X_i$  in G.

#### Definition

A Bayesian Network is causal if:

- Directed edges correspond with direct causal relations
- After a perfect intervention do(X<sub>I</sub> = x<sub>I</sub>), the incoming arrows on X<sub>I</sub> are removed and the probability density becomes:

$$p(\mathbf{x}_{\mathbf{V}\setminus\mathbf{I}} \mid do(\mathbf{X}_{\mathbf{I}} = \mathbf{x}_{\mathbf{I}})) = \prod_{i \in \mathbf{V}\setminus\mathbf{I}} p(x_i \mid \mathbf{x}_{pa(i)})$$

In other words, a perfect intervention do( $X_I = x_I$ ) on a subset of variables  $X_I$  simply "divides out" the conditional densities  $p(x_i | x_{pa(i)})$  from the joint density for all  $i \in I$ , and substitutes the variables  $X_I$  by their values  $x_I$ .

#### Theorem

For any (Causal) Bayesian Network with variables  $\{X_1, \ldots, X_N\}$ , the following "Local Markov Condition" holds:

 $X_i \, \bot \hspace{-.5mm} \bot \, X_{\mathrm{nd}(i)} \, | \, X_{\mathrm{pa}(i)}$ 

for all i = 1, ..., N. Here, nd(i) are the non-descendants of  $X_i$ .

# Paths and colliders

#### Definition

Let  $\mathcal{G}$  be a DAG with nodes  $\boldsymbol{V} = \{X_1, \ldots, X_N\}.$ 

A path X<sub>i1</sub>...X<sub>i2</sub>...X<sub>ik</sub> is a sequence of distinct nodes such that X<sub>ij</sub> and X<sub>ii+1</sub> are adjacent (for j = 1,..., k − 1).

# Paths and colliders

## Definition

Let  $\mathcal{G}$  be a DAG with nodes  $\boldsymbol{V} = \{X_1, \dots, X_N\}$ .

- A path X<sub>i1</sub>... X<sub>i2</sub>... X<sub>ik</sub> is a sequence of distinct nodes such that X<sub>ij</sub> and X<sub>ij+1</sub> are adjacent (for j = 1,..., k − 1).
- A collider on a path is a (non-endpoint) node X<sub>ij</sub> (j = 2,..., k − 1) on the path with precisely two "incoming" arrow heads:
   X<sub>ii-1</sub> → X<sub>ii</sub> ← X<sub>ij+1</sub>.

# Paths and colliders

## Definition

Let  $\mathcal{G}$  be a DAG with nodes  $\boldsymbol{V} = \{X_1, \ldots, X_N\}$ .

- A path X<sub>i1</sub> ... X<sub>i2</sub> ... X<sub>ik</sub> is a sequence of distinct nodes such that X<sub>ij</sub> and X<sub>ij+1</sub> are adjacent (for j = 1,..., k − 1).
- A collider on a path is a (non-endpoint) node X<sub>ij</sub> (j = 2,..., k − 1) on the path with precisely two "incoming" arrow heads:
   X<sub>ij-1</sub> → X<sub>ij</sub> ← X<sub>ij+1</sub>.
- A non-collider on a path is any (non-endpoint) node  $X_{i_j}$ (j = 2, ..., k - 1) on the path which is not a collider.

#### Example



 $\begin{array}{l} X_1 
ightarrow X_3 \leftarrow X_1 ext{ is not a path.} \\ X_2 
ightarrow X_3 \leftarrow X_1 ext{ is a path.} \\ X_1 
ightarrow X_3 
ightarrow X_5 \leftarrow X_4 \leftarrow X_1 ext{ is not a path.} \\ ext{The path } X_3 
ightarrow X_5 \leftarrow X_4 ext{ contains a collider } X_5. \\ ext{The path } X_4 \leftarrow X_1 
ightarrow X_3 ext{ contains no collider.} \end{array}$ 

#### Definition

Let  $\mathcal{G}$  be a directed graph with nodes  $\boldsymbol{V}$ . Given a path p between nodes X and Y in  $\boldsymbol{V}$ , and a set of nodes  $\boldsymbol{Z} \subseteq \boldsymbol{V} \setminus \{X, Y\}$ , we say that  $\boldsymbol{Z}$  blocks p if p contains

- a non-collider which is in Z, or
- a collider which is *not* an ancestor of **Z**.

#### Definition

Let  $\mathcal{G}$  be a directed graph with nodes V. Given a path p between nodes X and Y in V, and a set of nodes  $Z \subseteq V \setminus \{X, Y\}$ , we say that Z blocks p if p contains

- a non-collider which is in Z, or
- a collider which is *not* an ancestor of **Z**.

## Example



$$\begin{array}{l} X_3 \rightarrow X_5 \leftarrow X_4 \text{ is blocked by } \emptyset. \\ X_3 \rightarrow X_5 \leftarrow X_4 \text{ is blocked by } \{X_1\}. \\ X_3 \rightarrow X_5 \leftarrow X_4 \text{ is not blocked by } \{X_5\}. \\ X_3 \leftarrow X_1 \rightarrow X_4 \text{ is not blocked by } \emptyset. \\ X_2 \rightarrow X_3 \leftarrow X_1 \rightarrow X_4 \text{ is blocked by } \{X_1\}. \\ X_2 \rightarrow X_3 \leftarrow X_1 \rightarrow X_4 \text{ is not blocked by } \{X_5\}. \end{array}$$

# d-separation

Let  $\mathcal{G}$  be a directed graph with nodes  $\boldsymbol{V}$ .

#### Definition

Given two distinct nodes  $X, Y \in V$  and a set of nodes  $Z \subseteq V \setminus \{X, Y\}$ , we say that X and Y are *d*-separated by Z iff all paths between X and Y are blocked by Z. For three disjoint subsets  $X, Y, Z \subseteq V$  of nodes, we say that X and Y are *d*-separated by Z iff all paths between any node in X and any node in Y are blocked by Z.

## d-separation

Let  $\mathcal{G}$  be a directed graph with nodes  $\boldsymbol{V}$ .

#### Definition

Given two distinct nodes  $X, Y \in V$  and a set of nodes  $Z \subseteq V \setminus \{X, Y\}$ , we say that X and Y are *d*-separated by Z iff all paths between X and Y are blocked by Z. For three disjoint subsets  $X, Y, Z \subseteq V$  of nodes, we say that X and Y are *d*-separated by Z iff all paths between any node in X and any node in Y are blocked by Z.

#### Example



 $X_2$  and  $X_1$  are *d*-separated by  $\emptyset$ .  $X_2$  and  $X_1$  are *d*-separated by  $X_4$ .  $X_2$  and  $X_1$  are not *d*-separated by  $X_5$ .  $X_3$  and  $X_4$  are not *d*-separated by  $\emptyset$ .  $X_3$  and  $X_4$  are *d*-separated by  $X_1$ .  $X_3$  and  $X_4$  are not *d*-separated by  $\{X_1, X_5\}$ .

#### Theorem

In any (Causal) Bayesian Network, the following "Global Markov Condition" holds:

X, Y d-separated by  $Z \implies X \perp Y \mid Z$ 

for all disjoint subsets **X**, **Y**, **Z** of nodes.

In other words, we can read of conditional independences from the graph of a Bayesian Network by using the Global Markov Condition.

## Introduction

- Output: Basic Terminology
- Oausal Bayesian Networks

## **Q** Causal Reasoning: Back-door Criterion

# Identifiability

Given i.i.d. data of the observational distribution p(x, y, ...). From this we can estimate p(y | X = x).

### Question

Can we also estimate p(y | do(X = x)) from the observational data?

Given enough assumptions, the answer is yes. In that case, we do not have to actually perform the intervention experiment!

#### Definition

If a quantity like p(y | do(X = x)) can be expressed in terms of the observational distribution p(x, y, ...), we say that it is identifiable (from the observational distribution).

# Identifiability: Example

## Example

Is 
$$p(y \mid do(X = x))$$
 identifiable?  
identifiable:  
 $(X \rightarrow Y)$   
 $p(y \mid do(X = x)) = p(y \mid X = x)$ 
 $p(y \mid do(X = x)) \neq p(y \mid X = x)$ 

Indeed, for the graph with the latent variable H:

$$p(y \mid do(X = x)) = \int p(h)p(y \mid x, h) dh$$

which is generally different from

$$p(y \mid X = x) = \frac{\int p(h)p(x \mid h)p(y \mid x, h) \, dh}{\int p(h)p(x \mid h)p(y \mid x, h) \, dh \, dx}.$$

• For a Causal Bayesian Network in which all variables are observed:

$$p(y \mid \mathsf{do}(X = x), \mathbf{x}_{\mathrm{pa}(X)}) = p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)})$$

and therefore:

$$p(y \mid \mathsf{do}(X = x)) = \int p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)}) p(\mathbf{x}_{\mathrm{pa}(X)}) \, d\mathbf{x}_{\mathrm{pa}(X)}$$

• For a Causal Bayesian Network in which all variables are observed:

$$p(y \mid \mathsf{do}(X = x), \mathbf{x}_{\mathrm{pa}(X)}) = p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)})$$

and therefore:

$$p(y \mid \mathsf{do}(X = x)) = \int p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)}) p(\mathbf{x}_{\mathrm{pa}(X)}) \, d\mathbf{x}_{\mathrm{pa}(X)}$$

 So p(y | do(X = x)) is identifiable in Causal Bayesian Networks without latent variables.

• For a Causal Bayesian Network in which all variables are observed:

$$p(y \mid \mathsf{do}(X = x), \mathbf{x}_{\mathrm{pa}(X)}) = p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)})$$

and therefore:

$$p(y \mid \mathsf{do}(X = x)) = \int p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)}) p(\mathbf{x}_{\mathrm{pa}(X)}) \, d\mathbf{x}_{\mathrm{pa}(X)}$$

- So p(y | do(X = x)) is identifiable in Causal Bayesian Networks without latent variables.
- Which other sets (instead of the parents of X) could we use to express the causal effect on Y of intervening on X in terms of the observed distribution?

• For a Causal Bayesian Network in which all variables are observed:

$$p(y \mid \mathsf{do}(X = x), \mathbf{x}_{\mathrm{pa}(X)}) = p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)})$$

and therefore:

$$p(y \mid \mathsf{do}(X = x)) = \int p(y \mid x, \mathbf{x}_{\mathrm{pa}(X)}) p(\mathbf{x}_{\mathrm{pa}(X)}) \, d\mathbf{x}_{\mathrm{pa}(X)}$$

- So p(y | do(X = x)) is identifiable in Causal Bayesian Networks without latent variables.
- Which other sets (instead of the parents of X) could we use to express the causal effect on Y of intervening on X in terms of the observed distribution?
- A sufficient condition is given by Pearl's Back-door criterion.

# The Back-door Criterion

The following result is known as the "Back-door Criterion":

#### Theorem

A set **S** of nodes is "admissible" for adjustment to find the causal effect of X on Y, if :

**2** no element of **S** is a descendant of X;

**§** *S* blocks all back-door paths  $X \leftarrow \ldots Y$ .

In that case,

$$p(y \mid do(X = x)) = \int p(y \mid x, s) p(s) ds.$$

For the special case  $\mathbf{S} = \emptyset$ , this simply should be read as:

$$p(y \mid \operatorname{do}(X = x)) = p(y \mid x).$$

# The Back-door Criterion: Example

## Example



- {X<sub>1</sub>} is admissible for adjustment to find the causal effect of X<sub>4</sub> on X<sub>5</sub>.
- Ø is admissible for adjustment to find the causal effect of X<sub>2</sub> on X<sub>5</sub>.
- {X<sub>1</sub>} is admissible for adjustment to find the causal effect of X<sub>2</sub> on X<sub>5</sub>.
- {X<sub>1</sub>, X<sub>4</sub>} is admissible for adjustment to find the causal effect of X<sub>2</sub> on X<sub>5</sub>.
- {X<sub>3</sub>} is not admissible for adjustment to find the causal effect of X<sub>2</sub> on X<sub>5</sub>.
- {X<sub>1</sub>, X<sub>3</sub>} is admissible for adjustment to find the causal effect of X<sub>5</sub> on X<sub>2</sub>.

Please make Exercise 2...

# Causal vs. probabilistic reasoning

## Traditional statistics, machine learning

• About associations (stork population and human birth rate are correlated)

## Causality

• About causation (storks do not causally affect human birth rate)

# Causal vs. probabilistic reasoning

## Traditional statistics, machine learning

- About associations (stork population and human birth rate are correlated)
- Model the distribution of the data

## Causality

- About causation (storks do not causally affect human birth rate)
- Model the mechanism that generates the data

# Causal vs. probabilistic reasoning

## Traditional statistics, machine learning

- About associations (stork population and human birth rate are correlated)
- Model the distribution of the data
- Predict given **observations** (if we **observe** a certain number of storks, what is our best estimate of human birth rate?)

## Causality

- About causation (storks do not causally affect human birth rate)
- Model the mechanism that generates the data
- Predict results of **interventions** (if we **change** the number of storks, what will happen with the human birth rate?)

# Thank you for your attention!

## Pearl, J. (1999).

Simpson's paradox: An anatomy. Technical Report R-264, UCLA Cognitive Systems Laboratory.

Pearl, J. (2000).

*Causality: Models, Reasoning, and Inference.* Cambridge University Press.

Pearl, J. (2009).

Causal inference in statistics: An overview. *Statistics Surveys*, 3:96–146.

Spirtes, P., Glymour, C., and Scheines, R. (2000). *Causation, Prediction, and Search*. The MIT Press.