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Abstract

In this talk we give a brief introduction to the AdS/CFT correspondence,
describe some tests, and mention some recent developments. Invited talk at
SUSY’02, Desy, Hamburg, June 17-23, 2002.

1 Introduction

The AdS/CFT correspondence is one of the most significant results that string theory

has produced. It refers to the existence of amazing dualities between theories with

gravity and theories without gravity, and is also sometimes referred to as the gauge

theory-gravity correspondence. The prototype example of such a correspondence, as

originally conjectured by Maldacena [1], is the exact equivalence between type IIB

string theory compactified on AdS5 × S5, and four-dimensional N = 4 supersym-

metric Yang-Mills theory. The abbreviation AdS5 refers to an anti-de Sitter space

in five dimensions, S5 refers to a five-dimensional sphere. Anti-de Sitter spaces are

maximally symmetric solutions of the Einstein equations with a negative cosmologi-

cal constant. The large symmetry group of 5d anti-de Sitter space matches precisely

with the group of conformal symmetries of the N = 4 super Yang-Mills theory, which

for a long time has been known to be conformally invariant. The term AdS/CFT

correspondence has its origin in this particular example, CFT being an abbreviation

for conformal field theory. Since then, many other examples of gauge theory/gravity

dualities have been found, including ones where string theory is not compactified on

an anti-de Sitter space and where the dual field theory is not conformal. Nevertheless,

all these dualities are often still referred to as examples of the AdS/CFT correspon-

dence. For more background information and more details, see the various reviews

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

At first sound, it is quite startling that a duality between a theory with gravity

and a theory without gravity could exist. But what is a consistent theory of gravity
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anyway? String theory provides a consistent framework to compute finite quantum

corrections to classical general relativity, but the full non-perturbative structure of

string theory is not very well understood. The AdS/CFT correspondence relates a

theory with gravity in d dimensions to a local field theory without gravity in d − 1

dimensions. If true, it implies that actual quantum degrees of freedom of gravity

cannot resemble the degrees of freedom of a local field theory defined on the same

space. That this has to be true follows among other things from the existence of black

holes, as we briefly review in the next section. If the degrees of freedom in gravity

would be local, one would imagine that one can have arbitrarily large volumes with

fixed energy-density. However, we know that already in classical gravity this is not

true: a fixed energy-density in a sufficiently large volume will collapse into a black

hole.

In fact, hints for the existence of gauge theory/gravity duality have been around

for quite some time, most notably in the case of three dimensions1. Gravity in three

dimensions can, modulo various subtleties, be described by a Chern-Simons theory

[12, 13]. Chern-Simons theory is a topological field theory and when put on manifold

with a boundary reduces to a 1 + 1 dimensional field theory on the boundary [14, 15].

For compact gauge groups, a precise relation between Hilbert spaces and correlation

functions can be established. For non-compact gauge groups such as the ones relevant

for 2 + 1 dimensional gravity, there still is an equivalence at the level of the actions,

but the precise map between Hilbert spaces and correlations functions is not quite as

well understood. Nevertheless, the duality between Chern-Simons theory and two-

dimensional conformal field theory has many features in common with the AdS/CFT

duality.

Is is very hard to directly prove the equivalence between type IIB string theory on

AdS5×S5, and four-dimensional N = 4 super Yang-Mills theory. For one, as alluded

to above, we do not have a good definition of non-perturbative type IIB string theory.

Even at string tree level, we do not (yet) know how to solve the theory completely.

From this perspective, perhaps a more appropriate perspective is to view N = 4 super

Yang-Mills theory as the definition of non-perturbative type IIB string theory on the

AdS5×S5 background. This implies in particular that the non-perturbative quantum

degrees of freedom of string theory do not resemble those it seems to contain at low

energies.

A weaker form of the AdS/CFT correspondence is obtained by restricting to low-

energies on the string theory side. At low-energies, type IIB string theory on AdS5×S5

reduces to type IIB supergravity on AdS5×S5. The corresponding limit on the gauge

theory side is one where both N and g2
YMN become large, where N is the rank of the

U(N) gauge group of the N = 4 supersymmetric gauge theory (not to be confused

1In three of less dimensions, gravity has no local propagating degrees of freedom, so perhaps it
is not a good example; still, it will turn out that this case has many similarities with the story in
dimensions above three.



with the N appearing in N = 4), and g2
YM is the gauge coupling constant. The

equivalence between type IIB supergravity on AdS5 × S5 and N = 4 gauge theory in

the large N , large g2
YMN limit has been very well tested by now.

2 Large N and holography

The AdS/CFT correspondence is related to two deep ideas in physics.

The first of these is the idea that large N gauge theory is equivalent to a string

theory [16]. The perturbative expansion of a large N gauge theory in 1/N and g2
YMN

has the form

Z =
∑
g≥0

N2−2gfg(λ) (1)

where λ ≡ g2
YMN is the so-called ’t Hooft coupling. This is similar to the loop

expansion in string theory

Z =
∑
g≥0

g2g−2
s Zg, (2)

with the string coupling gs equal to 1/N . Through some peculiar and not completely

understood mechanism, Feynman diagrams of the gauge theory are turned into sur-

faces that represent interacting strings (but see [17]). Apparently, this is precisely

what happens in the AdS/CFT correspondence.

The second is the idea of holography [18, 19]. This idea has its origin in the study

of the thermodynamics of black holes. It was shown by Bekenstein and Hawking

[20] that black holes can be viewed as thermodynamical systems with a temperature

and an entropy. The temperature is directly related to the black body radiation

emitted by the black hole, whereas the entropy is given by S = A/4G, with G

the Newton constant and A the area of the horizon of the black hole. With these

definitions, Einstein’s equations of general relativity are consistent with the laws of

thermodynamics. Since in statistical physics entropy is a measure for the number of

degrees of freedom of a theory, it is rather surprising to see that the entropy of a

black hole is proportional to the area of the horizon. If gravity would behave like a

local field theory, one would have expected an entropy proportional to the volume.

A consistent picture is reached if gravity in d dimensions is somehow equivalent to

a local field theory in d − 1 dimensions. Both have an entropy proportional to the

area in d dimensions, which is the same as the volume in d − 1 dimensions. The

analogy of this situation to that of an hologram, which stores all information of a 3d

image in a 2d picture, led to the name holography. The AdS/CFT correspondence

is holographic, because it states that quantum gravity in five dimensions (forgetting

the compact five sphere) is equivalent to a local field theory in four dimensions.



3 Anti-de Sitter space

To describe the correspondence in some more detail, we first need to describe the

geometry of anti-de Sitter space in some more detail. Five-dimensional anti-de Sitter

space can be described as the five-dimensional manifold

−X2
0 −X2

1 +X2
2 +X2

3 +X2
4 +X2

5 = L2

embedded in a six-dimensional space with metric

ds2 = −dX2
0 − dX2

1 + dX2
2 + dX2

3 + dX2
4 + dX2

5 .

It can be roughly thought of as a product of four-dimensional Minkowski space times

an extra radial coordinate. The metric on Minkowski space is however multiplied by

an exponential function of the radial coordinate, and anti-de Sitter space is therefore

an example of a warped space: in a suitable local coordinate system,

ds2 = L2(dr2 + e2r(ηµνdx
µdxν)). (3)

The parameter L is just a scale factor. The limit where the radial coordinate goes to

infinity and the exponential factor blows up is called the boundary of anti-de Sitter

space. This boundary is the place where the dual field theory lives. One can indeed

verify that string theory excitations in anti-de Sitter space extend all the way to the

boundary [21]. In this way one obtains a map from string theory states to states in

the field theory living on the boundary. We see that er sets the scale of the Minkowski

part of the metric, and it turns out that er can quite literally also be viewed as a

scale of the dual field theory (see e.g. [22]).

4 Correlation functions

The AdS/CFT correspondence in the form in which it was proposed in [1] did not

yet provide a detailed map between AdS and CFT quantities. Such a map was given

in [23, 24] and makes the correspondence much more explicit. To describe it, we

first consider the AdS side, and in particular, we consider a free field with mass m

propagating in anti-de Sitter space. The field equation

(2 +m2)φ = 0 (4)

has two linearly independent solutions that behave respectively as

e−∆r, e(∆−4)r (5)

as r →∞, where

∆(∆− 4) = m2. (6)



Consider now a solution of the supergravity equations of motion with the boundary

condition that the fields behave near r =∞ as

φi(r, x
µ) ∼ φ0

i (r, x
µ)e(∆−4)r. (7)

Then the map between AdS and CFT quantities is given by

exp(−Γsugra(φi)) =

〈
exp

(∫
d4xφ0

iOi
)〉

(8)

where the left-hand side is the supergravity action evaluated on the classical solution

given by φi, and the right-hand side is a generating function for correlation functions

in super Yang-Mills theory. Actually, we should really use the full string theory

partition function subject to the relevant boundary conditions on the left-hand side,

to which the supergravity approximation is only the saddle-point approximation. For

many applications the above formula suffices though. We also see that there should

be an operator Oi in Yang-Mills theory for every field φi in AdS. With some further

work, one can show that this operator needs to have conformal dimension ∆i. This

yields a non-trivial prediction which we come back to in section 7.1. Finally, note

that we restricted to scalar fields in (8). The full AdS/CFT correspondence should

of course involve all the AdS degrees of freedom, not just the scalar ones.

5 Mapping between parameters

In order to illustrate the fact that the AdS/CFT duality is an example of a strong-

weak coupling duality, we give the relations between the parameters of both theories.

String theory on AdS5×S5 has a dimensionless string coupling constant gs, which

measures the string interaction strength relevant for string splitting and joining, a

dimensionful string length ls, which sets the size of fluctuations of the string world-

sheet, and another dimensionful parameter L, the curvature radius of AdS5 and S5

that appears in (3).

Four-dimensional N = 4 super Yang-Mills theory with gauge group U(N) has,

besides the rank N of the gauge group, a dimensionless coupling constant g2
YM .

The identification of the parameters reads

gs = g2
YM , (L/ls)

4 = 4πg2
YMN = 4πλ. (9)

By comparing the expansions (1) and (2), we now see that the AdS/CFT correspon-

dence is indeed an example of a weak/strong coupling duality. Depending on the

choice of parameters, either AdS or the CFT provides a weakly coupled description

of the system, but never both at the same time. Gauge theory is a good description

for small g2
YMN and small g2

YM , whereas string theory is good for large g2
YMN and

small g2
YM . Therefore, the AdS/CFT correspondence can be applied in two directions.

We can use string theory to learn about gauge theory, and we can use gauge theory

to learn about string theory.



6 Derivation of the AdS/CFT correspondence

The derivation of the AdS/CFT correspondence given in [1] crucially involves the

notion of D-branes. D-branes are certain extended objects in string theory, that were

introduced by Polchinski in [25]. They are labeled by the number of dimensions of

the object, so that a D0 brane is like a particle, a D1 brane is like a string, a D2

brane is like a membrane, etc. There are two ways to think about D-branes. On the

one hand, they are solitonic solutions of the equations of motion of low-energy closed

string theory. On the other hand, they are objects in open string theory with the

property that open strings can end on them. Open strings have a finite tension, and

their center of mass cannot be taken arbitrarily far away from the D-brane. As a

consequence, the degrees of freedom of the open string can effectively only propagate

in a direction parallel to the brane: one says that they are confined to the brane, or

that they live on the brane. The open string spectrum can be reproduced directly from

the soliton in the closed string description via a collective coordinate quantization.

As a very crude analogy, one can think about two ways to describe a monopole.

On the one hand, one can think of it as the ’t Hooft-Polyakov monopole, in which case

it is an extended soliton solution of the Yang-Mills-Higgs equations of motion. On

the other hand, one can view a monopole as a point particle, on which magnetic field

lines can end. Both descriptions have their advantages, as do the open and closed

string descriptions of D-branes.

To derive the AdS/CFT correspondence, one starts with a stack of D3-branes.

This has a description both in terms of open and closed strings. Next, one takes

a suitable low-energy limit of the system, which involves taking ls → 0. The open

string description reduces to N = 4 super Yang-Mills theory, whereas the closed string

description reduces to string theory on AdS5×S5. Thus, the AdS/CFT duality arises

as a consequence of the duality between open and closed strings. This duality is most

easily visualized by thinking of a cylinder. It can be viewed either as the world-sheet

of a closed string moving along an interval, and equivalently as an open string moving

along a circle.

7 Tests of the AdS/CFT correspondence

7.1 spectrum of operators

In order for (8) to hold, there should for every gauge-invariant operator in the gauge

theory exist a corresponding closed string field on AdS5 × S5, whose mass is related

to the scaling dimension of the operator according to (6).

It is difficult to test this statement in full generality, because we don’t know the

spectrum of super Yang-Mills theory at strong coupling, nor do we know the string

spectrum at strong coupling. However, we do know the spectrum of a subset of the



operators of super Yang-Mills theory at strong coupling, namely the so-called BPS

operators.

BPS operators O have the property that the corresponding state |ψ〉 = O|0〉 is

annihilated by some hermitian supersymmetry generator Q, which satisfies Q2 =

∆ + J , with J some U(1) generator2. If a state |ψ〉 is annihilated by Q, it obeys

0 = |Q|ψ〉|2 = (∆ + J)||ψ〉|2 (10)

and therefore ∆ = −J . The eigenvalues of J are quantized, and therefore as long as

there is no phase transition at finite coupling constant the weak and strong coupling

values of ∆ have to be identical.

In ten-dimensional string theory, there are massless and massive fields. The dimen-

sions of the operators corresponding to massive fields scale as (L/ls) ∼ (g2
YMN)1/4,

and vary continuously with the Yang-Mills coupling constant. Such operators can

therefore not be BPS, and it is difficult to compare them to operators in the gauge

theory.

Massless fields, on the other hand, have scaling dimensions that are independent of

g2
YMN , and these should therefore correspond to BPS operators. It has been verified

[23] that there is indeed a precise match between massless fields in string theory, and

BPS operators in the gauge theory. A first necessary condition for such a matching to

be possible is that the global symmetries match. The space AdS5 × S5 has isometry

group SO(2, 4) × SO(6), whereas N = 4 super Yang-Mills theory is invariant under

the conformal group SO(2, 4) and the R-symmetry group SO(6). The bosonic global

symmetries therefore indeed agree. In addition, there are fermionic symmetries that

also agree, and together with the bosonic symmetries these form the supergroup

PSU(2, 2|4). One can verify directly that the massless fields in string theory fall in

the same multiplets of PSU(2, 2|4) as the BPS operators of super Yang-Mills theory.

7.2 correlation functions

Correlation functions have been considered in great detail, see e.g. [11]. The results

are quite encouraging, although one has to face the same problem as when compar-

ing the spectrum of operators, namely one can only compare quantities that can be

computed in the field theory at strong coupling. This restricts the set of correlation

functions that can be compared to the ones that satisfy non-renormalization theorems

in the field theory, so that the strong coupling answer is a straightforward extrapo-

lation of the weak coupling answer. Such correlation functions have been compared

to the string theory answer, so far always with success. In addition, the AdS/CFT

2The reason that ∆ appears is that the Hamiltonian of a conformal field theory has a continuous
spectrum when quantized on R4, but on a cylinder S3×R it has a discrete spectrum, with eigenvalues
given by ∆.



correspondence has suggested new non-renormalization theorems, which remain to be

proven in field theory, for extremal correlation functions of the form

〈O∆(x)O∆1(x1) . . .O∆n(xn)〉 (11)

where ∆ =
∑

i ∆i.

7.3 Wilson loops

Another interesting quantity to compare is the vacuum expectation value of a Wilson

loop,

〈Tr(Pexp

∮
C

Aµdx
µ)〉. (12)

A Wilson loop in field theory can be expanded in terms of local operators, and using

(8) one could in principle use this to determine which computation in supergravity (or

string theory) one would have to do to compute this same expectation value. However,

it turns out that the string theory calculation has a direct geometric interpretation

[26, 27]. A Wilson loop is described by a string world-sheet in AdS, which extends

all the way to the boundary of AdS, and approaches there the curve C. A classically

stable string world-sheet is a minimal area surface, so that the computation of the

Wilson loop vacuum expectation value reduces to a minimal area problem. For a

rectangular Wilson loop, one can solve the minimal area problem and in particular

find the quark-quark energy as a function of their separation r,

E = −4π2(2g2
YMN)1/2

Γ(1
4
)4r

. (13)

Interestingly, the ’t Hooft coupling g2
YMN appears with a fractional power, and there-

fore this result cannot remain valid at weak coupling, where the answer will be qual-

itatively different. The result in (13) is an example of a non-trivial prediction of the

AdS/CFT correspondence.

It is amusing to notice that the fundamental string in AdS is the same as the

QCD string of Yang-Mills theory. In some sense we have come a full circle towards

the original motivation for string theory, namely as an effective theory for the strong

interactions.

7.4 finite temperature

So far the field theory, N = 4 super Yang-Mills theory, was a theory at zero tem-

perature, and it was obtained in the derivation of the AdS/CFT correspondence as

the low energy limit of the degrees of freedom associated to a stack of D3-branes. It

turns out that this setup can be generalized to non-zero temperature by employing

so-called near extremal D3-branes. In particular, we can compute the free energy



as a function of temperature, using either the field theory or the dual gravitational

description. The results one obtains are

Fsugra = −π
2

8
N2V T 4, FSYM = −π

2

6
N2V T 4. (14)

There is no disagreement, since the first result is valid at strong coupling in the

gauge theory, the second at weak coupling. As the coupling varies, one expects a

smooth transition between these two results (for a discussion, see e.g. [10]), but the

possibility of a phase transition at a finite value of the coupling has not been ruled

out completely.

More generally, we can directly consider a finite temperature version of the AdS/CFT

correspondence, by replacing the boundary geometry R4 in (3) by S3×S1, where the

S1 represents periodic imaginary time so that the system is indeed at finite temper-

ature [28]. The five-dimensional geometry that solves the string equations of motion

and has this boundary is no longer anti-de Sitter space, but a space with a differ-

ent metric. Actually, there are two different five manifolds with conformal boundary

S3 × S1. One is a finite temperature version of Euclidean AdS, the other describes a

Schwarzschild black hole in AdS.

The finite temperature version of AdS dominates the supergravity path integral

at low temperatures. In this geometry, the expectation value of the Wilson loop

vanishes, and the center of the gauge group is unbroken, as in a confining phase.

The second solution has a nonzero expectation value for the Wilson loop, and the

center is broken, as in a deconfining phase.

Altogether this provides a tantalizing geometric picture of the confinement/deconfinement

transition: it is mapped to topology changing process in gravity!

7.5 glue balls and the string tension

So far, successful tests of AdS/CFT relied heavily on supersymmetry in order to com-

pare answers at weak and strong coupling. Of course, for more realistic applications,

it is desirable to consider cases with less or no supersymmetry. One way to break

supersymmetry is to take supersymmetric Yang-Mills at finite temperature, and to

take the T →∞ limit. Naively, the field theory reduces to some non-supersymmetric

extension of three-dimensional QCD. To test this, one can try to compute quantities

in this version of AdS/CFT and compare those to lattice results in three-dimensional

QCD. In particular, one can compute glueball masses using field equations in AdS,

and string tensions using the Wilson loop.

There is a considerable disagreement with lattice results. The string theory in

question has many additional states with a mass of the order of T ∼ ΛQCD, which

is also the mass scale of the glueballs. At present, no controlled way to remove the

cutoff and reach a weak coupling limit has been found.



The string that appears in the AdS/CFT correspondence yields results that differ

from the strong coupling lattice results, and this in turn differs from the continuum

lattice results. For a detailed overview, see [29]. The latter two are separated by

a phase transition, but whether there are any such phase transitions in AdS/CFT

remains an open problem.

8 Other solutions

Besides the prototype example of the AdS/CFT correspondence, namely the duality

between string theory on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory,

many other AdS/CFT dualities have been found. These involve p-dimensional AdSp
spaces for various values of p, and are dual to suitable conformal field theories. For

instance, type IIB string theory compactified on AdS3 × S3 × T 4 is dual to a certain

1 + 1 dimensional conformal field theory [1]. This CFT is relatively well-understood,

and it is this CFT that featured in the first counting of microstates of a black hole

by Strominger and Vafa [30].

AdS/CFT dualities with less supersymmetry can be found by dividing by a dis-

crete group. For example, if G is a discrete subgroup of SO(6), we can consider

AdS5 × S5/G, which is dual to a gauge theory with less supersymmetry. This gauge

theory is typically of ‘quiver type,’ ‘moose type,’ or ‘deconstruction type’ [31].

9 Interpretation of the extra dimension

Other examples of the AdS/CFT duality no longer involve an anti-de Sitter space.

For instance, one can deform the gauge theory by a relevant operator, and in some

cases one can solve explicitly for the corresponding supergravity solutions. These

gravity solutions are then dual to renormalization group flows that flow between a

UV and an IR fixed point. The UV fixed point is the original undeformed gauge

theory, the IR fixed point is the low energy limit of the deformed CFT. For such flows

one can prove a c-theorem: c, the central charge, is a quantity that appears in the

conformal anomaly of the gauge theory, and one can prove that it always decreases

along renormalization group flow trajectories. In the gravitational description, c is

directly related to the metric of the supergravity solution.

We have actually been somewhat careless in setting up the correspondence as in

eqn (8). To do things properly, one should choose a cutoff r = r0, evaluate the su-

pergravity quantities on the truncated space where r ≤ r0, and finally take the cutoff

r0 to infinity. In this process, the supergravity action diverges. It can be rendered

finite by subtracting local counterterms, exactly as in the standard renormalization

of field theories. For a review, see [32]. This illustrates once more the statement that

the fifth dimension can be viewed as an energy scale.



In fact, one of the questions that the AdS/CFT immediately raises and perhaps

we should have considered right at the beginning, is that of the interpretation of the

extra fifth dimension in the field theory. As suggested above, it is closely related to

the energy scale in the dual field theory. From the 5d gravitational point of view,

low-energy processes in field theory stay close to the boundary of AdS, whereas high-

energy processes penetrate deeper in the interior [22]. One can even show that the

invariance under 5d general coordinate transformations implies the Callan-Symanzik

renormalization group equations in the field theory [33, 34]. Thus, from the 5d point

of view, the renormalization group is on an equal footing with 4d Poincaré invariance.

10 AdS/CFT with a cutoff

What happens if we do not remove the cutoff r0, but instead keep it finite? On AdS,

many fields have nonnormalizable modes that correspond to parameters and coupling

constants in the dual field theory. Once we have a finite cutoff, all these fields become

normalizable, and they therefore correspond to dynamical degrees of freedom in the

dual description. In particular, the dual theory will no longer be a field theory, but

it will become a field theory coupled to dynamical gravity. Whether one uses this

description, or the higher dimensional one that involves truncated AdS, depends on

the choices of parameters. Normally the most weakly coupled one will be the most

useful.

This version of the AdS/CFT correspondence is very relevant for brane world

scenarios and generic string compactifications. The latter typically contain branes,

and whether one uses the actual brane description or the dual supergravity description

depends on the number of branes, their coupling constants, and the curvature of

the ambient geometry. Unfortunately we have no time to venture further in this

interesting direction.

11 High energy scattering/deep inelastic scatter-

ing

At first sight, the AdS/CFT correspondence, or any duality between string theory

and gauge theory, seems at odds with the known fact that the scattering of glueballs

at high energies is hard, whereas string scattering at high energies is soft, due to their

extended nature. The resolution sits in the fact that AdS is a warped space. When an

object moves away from the boundary of AdS, its size is exponentially reduced. Very

high energy processes in the gauge theory are described by strings which propagate a

long distance from the boundary of AdS before they interact. By that time, the size

of the strings has been exponentially reduced, and this compensates for the softness



of string interactions to make it into a hard process in the gauge theory [35]. Besides

such effects, which are due to the geometric warping of AdS, other gauge theory

processes crucially involve strong gravity physics like black hole formation [36]. It is

also possible to study the physics of deep inelastic scattering and the parton model

from the AdS/CFT point of view [37].

12 Towards a QCD string?

A more involved version of the AdS/CFT correspondence is the one given in [38]. It

was discovered by studying branes stuck in singularities in string theory. The gauge

theory that appears is an N = 1 theory in four dimensions with gauge group SU(N)×
SU(N + M). There are two chiral superfields Ai in the (N,N +M) representation

of the gauge group, and two chiral superfields Bi in the (N,N + M) representation.

In addition, there is a nontrivial superpotential of the form W ∼ εijεkltr(AiBkAjBl).

This field theory has a remarkable property: it has running gauge couplings, but

does not become free at either low or high energies. The gauge coupling becomes

strong either way. Strongly coupled N = 1 theories in four dimensions often admit a

dual weakly coupled description, a duality known as Seiberg duality [39]. The same

is true here: both at low energies and at high energies there exist dual descriptions.

However, these dual descriptions have the same problem: they are not weakly coupled

at either low or high energies. Again, they admit suitable dual descriptions. The full

picture that emerges is that of an infinite “cascade” of gauge theories, that continues

indefinitely at high energies, with an ever increasing rank of the gauge group, but

terminates at low energies once e.g. the rank of one of the gauge groups becomes one.

At that point, the gauge theory becomes confining. Strictly speaking we need an

infinite amount of fine tuning of irrelevant operators to obtain this infinite cascade,

but quite remarkable, the dual description of this gauge theory quite naturally sees the

same cascade. The ranks N and M of the gauge group become non-trivial functions

of the radial coordinate of the dual AdS-like geometry. This also confirms once more

the interpretation of the extra fifth dimension in the AdS/CFT correspondence as an

energy scale in the field theory.

The AdS-like geometry that is dual to this infinite cascade has several nice features.

String theory on this background exhibits (i) confinement, (ii) glueballs and baryons

with a mass scale that emerges through dimensional transmutation, exactly as in the

gauge theory, (iii) gluino condensates that break the Z2M chiral symmetry to Z2, and

(iv) domain walls separating different vacua.

The gauge theory at low energies reduces to a pure N = 1 supersymmetric Yang-

Mills theory. Does the dual geometry therefore provide a dual string theory for

pure supersymmetric Yang-Mills theory, the long sought for QCD string? Not really,

because it has new degrees of freedom beyond those of the field theory that appear at



ΛQCD, as we already mentioned in the section 7.5. This is a generic problem in trying

to find weakly coupled string theory descriptions of gauge theories. To decouple the

additional degrees of freedom, we need to make the curvature of the AdS-like geometry

large, while keeping the string coupling gs small. String theory in a strongly curved

background is described by a strongly coupled 1 + 1 dimensional field theory. The

structure of the sigma models relevant for the AdS/CFT correspondence is not very

well understood, but there has been progress in this direction recently (see [40] and

references therein) , and the prospect of finding a string theory dual of QCD remains

an exciting possibility.

13 Other string effects in gauge theories: large

quantum numbers and pp-waves

Instead of trying to find a precise string theory dual description of pure N = 1

supersymmetric Yang-Mills theory, it is also interesting to look for more qualitative

stringy behavior in gauge theories.

One place to find such behavior is to look at states with a large scaling dimension

proportional to N , the rank of the gauge group. Many gauge theories have baryons

with such scaling dimensions, and it turns out that they are not described by strings

but by branes in the dual geometrical description [41]. Thus, it is also possible to

discover branes in gauge theory.

A related example is to consider operators with a large spin s, like for example

tr(ΦDµ1 . . . DµsΦ), where Φ is some field that transforms in the adjoint representation

of U(N). Such operators correspond to folded rotating closed strings in the dual

geometrical description. One can compute the scaling dimension of these operators

both in the field theory and in the dual geometrical description. This confirms the

equivalence between the two, as one finds in both cases that it behaves like s+ log s

[42].

A more complete way to recover string theory from a gauge theory has been

described in [43]. The idea is to take a particular scaling limit of the AdS/CFT

correspondence. This scaling limit, when applied to the AdS geometry, yields a

different geometry known as a “pp-wave”. In fact, many geometries admit scaling

limits in which they reduce to pp-waves, as originally shown by Penrose [44]. String

theory on the pp-wave, in the absence of string interactions, can be exactly solved,

and in particular the free string spectrum can be obtained.

On the field theory side, the same limit can be taken. In this limit only a subset

of the operators of the full N = 4 super Yang-Mills theory survive, namely those for

which the scaling dimension ∆ and a certain global U(1) quantum number J have the

property that ∆ + J scales as N1/2, while ∆− J is kept finite, as one takes N →∞.

Interestingly, this set of operators is in one-to-one correspondence with the set of



free string states. This is the first example where a complete string spectrum has

been obtained from a gauge theory, albeit in a special scaling limit.

The ground state of the string theory (in light-cone quantization) is described

in the gauge theory by the operator tr(ZJ), where Z is a complex scalar field in the

adjoint representation of the gauge group with charge J = +1 under the distinguished

global U(1) symmetry. The simplest excited states of the string are operators of the

form
∑

i aitr(Z
iΦZJ−i) where the ai are phases. The string appears from this point

of view as composed of “string bits.” The string bits are the operators Z, and the

string is composed of a string of J bits. Exciting the string amounts to introducing

impurities like Φ that are distributed with phases (i.e. a discrete momentum) along

the chain of Z’s.

A similar discretized picture of string theory can be obtained in several other

gauge theories as well, see e.g. [45]. It is also presently being investigated whether

one can correctly recover string interactions, or even the full string field theory, from

the gauge theory [46]. The emerging picture is that there is a complete agreement, for

infinitesimal ’t Hooft coupling. However, the only quantities for which the Penrose

limit exists are correlation functions in the field theory where one set of operators is

taken to t = −∞, the ‘in’ states, while the other set is taken to t = +∞, the ‘out’

states. Such correlation functions map to string theory S-matrix elements between

corresponding string theory in and out states.

14 Outlook

The AdS/CFT correspondence is still a very lively research area, with many open

problems. Clearly, it would be great if one could identify the dual string theories

directly for more realistic gauge theories, like N = 1 QCD, and other asymptotically

free gauge theories. Also, one would like to find holographic dual descriptions of flat

space, and of time-dependent backgrounds such as our universe. In addition, it would

be very helpful if one could solve string theory on AdS at tree level, in particular at

strong coupling, which should correspond to free super Yang-Mills theory at large N .

But one of the most important, difficult and unsolved problems in the AdS/CFT

correspondence is to reconstruct 5d local gravitational physics directly from the dual

4d field theory point of view. In particular, we would like to know in what way

the local gravitational description breaks down. Does such a breakdown occur in a

local way at the Planck length, are in a non-local way at much larger length scales?

The AdS/CFT correspondence seems to prefer the second answer, which is also the

answer that may provide a resolution to the black hole information paradox. This

paradox is based on the fact that semiclassically, everything that falls into a black

hole is converted into purely thermal radiation, with no memory of the object that

fell in except for its mass and perhaps a few other quantum numbers. Such a process



contradicts the usual rules of quantum mechanics, and we can either give up on

quantum mechanics or give up on the semiclassical approximation to quantum gravity;

AdS/CFT prefers the latter.
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