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1. Introduction

2. W Algebras

2.1. Soldering

We start with the (1, 0) part of a connection on a (necessarily trivial) Lie algebra bundle with Lie
algebra g on the complex plane. This (1, 0) part can be written as D = ∂+ adAz. Locally, Az is a Lie
algebra valued one form. Thus, under co-ordinate transformations, Az transforms as δεAz = Az∂ε +
∂Azε. These transformations can also be seen as certain field dependent gauge transformations, namely
those with parameter εAz, δεAz = (∂ + adAz)(Azε). This fact could have been anticipated from the
Sugawara form of the stress-energy tensor, T = 1

2Tr(AzAz), and is in fact true in an arbitrary number
of dimensions. Now we want to ask ourselves the following question: if we impose certain constraints
on the connection Az, is it still possible to view co-ordinate transformations as field dependent gauge
transformations? If we simply put some components equal to zero, the answer is yes, because we can
use the same transformations as before. The situation is more interesting if we put some components
of Az equal to nonzero constants or functions of z. In that case the requirement that these nonzero
components transform properly under co-ordinate transformations forces us to add extra terms to Azε.
This procedure is sometimes called soldering [5], as the new co-ordinate transformations are obtained
by combining the old co-ordinate transformations with gauge transformations. The new co-ordinate
transformations are in general such that it is no longer possible to view Az as a Lie-algebra valued
one-form. The different components of Az transform with different spins, and the Lie algebra bundle
is twisted correspondingly. Although this does not affect the global topology of the bundle on the
complex plane, it does so when considering surfaces with non-trivial topology.

To study the different constraints that can be imposed, consider a constrained connection D = ∂+
C+W , where C are the constraints that are imposed on certain components of Az, and W contains the
unconstrained components of Az. Decompose W in components, W = WiT

i. To simplify the analysis,
we first perform a gauge transformation with g = exp C̃, where C̃ is such that ∂ exp C̃ = (exp C̃)C.
This maps ∂ + C + W into ∂ + W̃ = ∂ + WiS

i with Si = gT ig−1. If C is a constant, one can take
C̃ = zC, but if C is z-dependent, C̃ can be more complicated. Suppose that infinitesimal co-ordinate
transformations correspond to gauge transformations with parameter X(ε), where ε is the parameter
of the infinitesimal co-ordinate transformation. The requirement that the Wi transform as fields with
a well-defined spin hi gives

∂X(ε) +
∑
i

Wi[Si, X(ε)] =
∑
i

(
c

12
δi,0∂

3ε+ hiWi∂ε+ ∂Wiε)Si, (2.1)
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where we left open the possibility that there is one distinguished spin 2 field (the energy momentum
tensor) T = W0 whose transformation rule contains a central term c∂3ε/12. We can write X(ε) =
X(0)(ε)+X(1)(ε)+X(2)(ε)+ . . ., where X(t)(ε) is of order t in the Wi. The restriction of (2.1) to terms
independent of Wi gives

∂X(ε) =
c

12
∂3εS0. (2.2)

Taking the
∫
dx of this equation we immediately deduce ∂3S0 = 0, and

X(0)(ε) =
c

12
(∂2εS0 − ∂ε∂S0 + ε∂2S0). (2.3)

The part of (2.1) that is of first order in Wi reads

∂X(1)(ε) +
∑
i

Wi[Si, X(0)(ε)] =
∑
i

(hiWi∂ε+ ∂Wiε)Si, (2.4)

and taking the
∫
dx of this equation we find∫

dx
∑
i

Wi([Si, X(0)(ε)]− hi∂εSi + ∂(εSi)) = 0, (2.5)

and thus X(1) = ε
∑
iWiS

i = εW̃ , which was precisely the result for an unconstrained connection.
Furthermore, the restriction of (2.1) to terms of order > 1 yields X(t) = 0 for t > 1. Altogether
this shows that in addition to the standard co-ordinate transformations, there is an extra gauge
transformation with parameter X(0)(ε) given by (2.3). Furthermore, S0 must satisfy the following
equations, as follows from (2.2) and (2.4)

∂3S0 = 0,

[Si,
c

12
S0] = 0,

[Si,− c

12
∂S0] = (hi − 1)Si,

[Si,
c

12
∂2S0] = −∂Si. (2.6)

If c = 0, these equations tell us that hi = 1 and Si = const, and as in this case X(0) = 0, we just
reproduce the standard behavior of Az under co-ordinate transformations, and we have not soldered
anything. Thus, from now on we assume c 6= 0. Because ∂3S0 = 0, we can write S0 as

S0 =
12
c

(
−Λ− − zΛ0 +

1
2
z2Λ+

)
, (2.7)

where Λ−,0,+ are certain elements of g. Taking i = 0 in (2.6) gives the following commutation relations
for Λ

[Λ0,Λ+] = Λ+,

[Λ0,Λ−] = −Λ−,

[Λ+,Λ−] = Λ0, (2.8)
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which is precisely an sl2 algebra. To simplify the remaining equations, we perform a gauge transfor-
mation with G = exp(+zΛ+), i.e. we introduce Ri = G−1SiG. The conditions (2.6) can with the help
of the relations R0 = G−1S0G = −12

c Λ−, G−1∂S0G = −12
c Λ0 and G−1∂2S0G = 12

c Λ+ be rewritten as

[Ri,Λ−] = 0,

[Ri,Λ0] = (hi − 1)Ri,

∂Ri = 0. (2.9)

What this implies for the connection Az = WiS
i is seen most clearly if we also perform a gauge

transformation Az → G−1AzG+G−1∂G = WiR
i − Λ+. Here, the Ri are certain elements of g. This

shows that we need to satisfy the following requirements for a non-trivial soldering: we need an sl2

embedding in g, and if we denote the three generators of sl2 by {Λ−,Λ0,Λ+}, the unconstrained
components of Az must be lowest weights of sl2 under the adjoint action, and their spins are given by
hi = 1−weight. The constrained components of Az must be equal to −Λ+. One of the unconstrained
components, namely −12TΛ−/c, behaves as a stress-energy tensor under co-ordinate transformations,
with central charge c.

In the case where the unconstrained components of Az contain all sl2 lowest weights, i.e. all of
ker ad(Λ−), there are many more gauge transformations that preserve the form of Az. These together
constitute the W algebra corresponding to the sl2 embedding. In the next section we explicitly
describe this W algebra. W algebras from general sl2 embeddings were first studied in [1], and later
more extensively; see e.g. [2] and references therein.

2.2. The structure of the W algebra

Associated to an embedding of sl2 in g is a decomposition g = g− ⊕ g0 ⊕ g+. If adΛ0 has only
integral eigenvalues, then the decomposition is with respect to the sign of the eigenvalue. If adΛ0 has
no nonintegral eigenvalues, then it is with respect to the sign of the eigenvalue of adδ. If adΛ0 has
halfintegral eigenvalues, then the situation is somewhat more complicated. Let g 1

2
be the subspace of

g of Λ0-eigenvalue +1
2 . On g 1

2
there is a non-degenerate skew-form ω(X,Y ) = Tr(Λ−[X,Y ]). Thus

we can decompose g 1
2

= I+⊕I− into two maximally isotropic subspaces. Now there is a gradation of

g such that I± has degree ±1
2 , and Λ−,0,+ has degree 0. The sum of this gradation and the gradation

given by Λ0 defines a new gradation of g which is integral, and the decomposition g = g− ⊕ g0 ⊕ g+

is with respect to this new gradation, which we denote by δ.

The W algebra is the result of imposing certain constraints on Az. If we decompose Az = Aizti

and Λ+ = liti in terms of a basis ti of g, the constraints are

Aiz = li, ti ∈ g+. (2.10)

Here we assume that the basis {ti} is such that every basis element has a well-defined degree with
respect to δ and Λ0. The constraints (2.10) are first-class. If we would have taken g+ to be the positive
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degree part of g with respect to the Λ0 gradation, (2.10) will not necessarily be first-class, and that
is the reason why we introduced a new gradation. First-class constraints generate gauge invariance,
and in this case these are the gauge transformations with parameter in g− that preserve (2.10). These
gauge transformations can be used to put Az in the form

Az = Λ+ +W,W ∈ ker ad(Λ−). (2.11)

At this stage there are two equivalent ways to compute the structure of the W algebra. One can
compute the Poisson brackets of the gauge invariant polynomials on the reduced phase space defined
by (2.10) (hamiltonian reduction), or one can impose (2.11) directly as a set of second class constraints
and use the Dirac bracket to compute the structure of the W -algebra. The Poisson brackets before
imposing the constraints reads

{Aaz(z), Abz(w)} = Tr(ta(∂w + ad(Az(w))tbδ(z − w)}, (2.12)

which is nothing but an affine Lie algebra with level k = 1. Indices are raised and lowered using the
metric gab = Tr(tatb) and its inverse. The Poisson brackets for the W algebra can be written in a
remarkably simple form. For this purpose introduce a linear operator L : g→ g, which is the inverse
of ad(Λ+) viewed as a linear operator imad(Λ−) → imad(Λ+), and L is extended by 0 to the rest of
g. The Poisson brackets of the W algebra read [3, 4]

{W a(z),W b(w)} = Tr(ta(∂w + ad(W (w))
1

1 + L(∂w + ad(W (w)))
tbδ(z − w)), (2.13)

where W = W ata is the part of Az in (2.11) that survives the reduction. This W algebra always has
a fixed central charge, but by some approriate rescalings W algebras with arbitrary central charges
can be constructed.

To quantize the W algebra, it is most convenient to work with the formulation with first-class
constraints and to use standard BRST quantization. Because the constraints are first-class, there is
no need to introduce any auxiliary fields. In this way it can be proven that all W algebras associated
to sl2 embeddings can be quantized.

There is also a generalization of the Miura map for these generalized W algebras. For the standard
W algebras, related to principal sl2 embeddings, the Miura map expresses the W fields in terms of
free fields. In the general case, the Miura map expresses the W fields in terms of the affine Lie algebra
based on g0. If the latter is abelian, this is just an algebra of free scalar fields, but in general it is
the direct sum of affine Lie algebras. The Miura map can be constructed by finding for every W a

the associated gauge invariant polynomial on the reduced phase space subject to (2.10), and then by
restricting this gauge invariant polynomial to g0. It can be shown that this gives a homomorphism of
Poisson algebras. Free field realizations for arbitrary W algebras can be found by first applying the
Miura transformation, and subsequently by replacing the g0 currents by expressions in terms of free
fields. For quantum W algebras the same procedure works, one only has to associate to every W a an
element in the cohomology of the BRST operator rather than a gauge invariant polynomial.

5



To illustrate some of these things, we will now discuss the example of the Polyakov-Bershadsky
W

(2)
3 algebra [5, 7].

2.3. The W
(2)
3 Algebra

Consider the following basis of sl3

Aizti =


A4

6 + A5

2 A2 A1

A6 −A4

3 A3

A8 A7 A6

6 −
A5

2

 . (2.14)

The sl2 embedding that gives the W (2)
3 algebra is given by Λ+ = t1, Λ0 = t5 and Λ− = t8/2. This

is an example where the grading given by Λ0 is non-integral, and g 1
2

is spanned by t2 and t3. To get

an integral gradation, we add to Λ0 the gradation given by −t4, which assigns degree −1
2 to t2 and

degree +1
2 to t3. Thus, we get the following gradation

 0 1
2 1

−1
2 0 1

2
−1 −1

2 0

+

 0 −1
2 0

1
2 0 1

2
0 −1

2 0

 =

 0 0 1
0 0 1
−1 −1 0

 , (2.15)

which also shows what the decomposition g = g− ⊕ g0 ⊕ g+ looks like. The first class constraints are
A1 = 1 and A3 = 0, and using a gauge transformation Az can be put in the form Λ+ +W ,

Az =

 −J/2 0 1
G+ J 0
T G− −J/2

 . (2.16)

To find the gauge invariant polynomials associated to T,G+, G−, J , we parametrize an arbitrary g−
gauge transformation by

n =

 1 0 0
0 1 0
a b 1

 (2.17)

and solve a, b from

∂nn−1 + n


A4

6 + A5

2 A2 1
A6 −A4

3 0
A8 A7 A6

6 −
A5

2

n−1 =

 −J/2 0 1
G+ J 0
T G− −J/2

 . (2.18)

This gives a = A5/2, b = A2, and if we substitute these back into (2.18) we can directly read of the
gauge invariant polynomials

J = −1
3
A4,
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G+ = A6,

G− = A7 +
1
2
A2A5 − 1

2
A2A4 + ∂A2,

T = A8 +A2A6 +
1
4
A5A5 +

1
2
∂A5. (2.19)

The structure of the classical W (2)
3 algebra can now be found by computing the Poisson brackets

of (2.19) using the brackets (2.12). If we restore the dependence on the level k of the affine sl3 by
multiplying all derivatives in (2.12) and (2.19), and if we introduce

T =
1
k

(T +
3
4
JJ), (2.20)

then we find the following structure of the classical W (2)
3 algebra

J(z)J(w) ∼
2k
3

(z − w)2
,

J(z)G±(w) ∼ ±G±(w)
(z − w)

,

T (z)J(w) ∼ J(w)
(z − w)2

+
∂J(w)
(z − w)

,

T (z)G±(w) ∼
3
2G
±(w)

(z − w)2
+
∂G±(w)
(z − w)

,

T (z)T (w) ∼ −3k
(z − w)4

+
2T (w)

(z − w)2
+
∂T (w)
(z − w)

,

G±(z)G±(w) ∼ 0,

G±(z)G∓(w) ∼ ±2k2

(z − w)3
+

3kJ(w)
(z − w)2

+
±kT (w)∓ 3J(w)J(w) + 3

2k∂J(w)
(z − w)

, (2.21)

where we used the correspondence (n−1)!
(z−w)n ↔ ∂n−1

w δ(z − w) between classical OPE’s and Poisson
brackets. The same formulas can also be derived using the formula for the Dirac bracket, or the
expression (2.13).

Let us now discuss free field realizations of the W (2)
3 algebra. First we give the Miura transfor-

mation, which expresses the generators of W (2)
3 in terms of affine g0 and is obtained from (2.19) by

simply restricting everything to g0, i.e. we put A7 = A8 = 0. The Miura transform reads explicitly

J = −1
3
A4,

G+ = A6,

G− =
1
2
A2A5 − 1

2
A2A4 + k∂A2,

T =
1
k

(A2A6 +
1
4
A5A5 +

1
12
A4A4) +

1
2
∂A5. (2.22)

The following basis transformation

A4 = 3J0 + U,
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A5 = J0 − U,

A2 = J+
√

2,

A6 = J−
√

2, (2.23)

makes explicit that g0 = sl2 ⊕ IR, as the J i and U have the following OPE’s

U(z)U(w) ∼
3k
2

(z − w)2
,

J0(z)J±(w) ∼ ±J±(w)
(z − w)

,

J0(z)J0(w) ∼
k
2

(z − w)2
,

J+(z)J−(w) ∼ k

(z − w)2
+

J0(w)
(z − w)

. (2.24)

Using the Wakimoto construction [6] it is straightforward to express U and the J i in terms of two free
scalar fields φ1, φ2 and a bosonic β, γ system with OPE’s

∂φi(z)∂φj(w) ∼ δij
(z − w)2

,

β(z)γ(w) ∼ 1
(z − w)

. (2.25)

One finds the following expressions for U and J i

J+ =
1√
2
β,

J0 =

√
k

2
∂φ1 − βγ,

J− =
−1√

2
βγ2 +

√
k

2
γ∂φ1 +

k√
2
∂γ,

U =

√
3k
2
∂φ2. (2.26)

The standard free field realization of W (2)
3 as given in [7] is recovered by substituting (2.26) back into

(2.22)

J = βγ −

√
k

2
∂φ1 −

√
k

6
∂φ2,

G+ = −βγ2 +
√

2kγ∂φ1 + k∂γ,

G− = β2γ −

√
k

2
β∂φ1 −

√
3k
2
β∂φ2 + k∂β,

T =
1
2
∂φ1∂φ1 +

1
2
∂φ2∂φ2 +

1
2
β∂γ − 1

2
∂βγ +

√
k

8
∂2φ1 −

√
3k
8
∂2φ2. (2.27)
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However, we can also construct a different free field realization, by applying the automorphism J+ ↔
J− and J0 ↔ −J0 to (2.26) before substituting these expressions into (2.22). This leads to a completely
different free field realization

J = −βγ +

√
k

2
∂φ1 −

√
k

6
∂φ2,

G+ = β,

G− = β2γ3 − 3kβγ∂γ − k∂βγ2 + k2∂2γ − 3

√
k

2
βγ2∂φ1 +

√
3k
2
βγ2∂φ2 + 3k

√
k

2
∂γ∂φ1

−k

√
3k
2
∂γ∂φ2 + k

√
2kγ∂2φ1 + kγ∂φ1∂φ1 − k

√
3γ∂φ1∂φ2,

T =
1
2
∂φ1∂φ1 +

1
2
∂φ2∂φ2 +

3
2
β∂γ +

1
2
∂βγ −

√
k

8
∂2φ1 −

√
3k
8
∂2φ2. (2.28)

From the expression for T we see that in (2.28) the β, γ system has a different spin than in (2.27).
The W (2)

3 algebra is a bosonic version of the N = 2 superconformal algebra, and the two different free
field realizations given here are closely related to those for the N = 2 superconformal algebra given in
[8]. We see both can easily be obtained from the general framework given here.

So far the discussion has been purely classical. To quantize the W (2)
3 algebra, one introduces a b, c

system for every generator of g+, and writes down the BRST operator that imposes the constraints
A1 = 1 and A3 = 0. It is simply Q =

∫
(c1(A1 − 1) + c3A

3). Then one computes the BRST
cohomology on the space of normal ordered expressions containing Ai, b1, c1, b

3, c3. This gives the
quantum versions of (2.19), where the expressions now also contain ghosts. The Miura transformation
gets simply replaced by a quantum Miura transformation in the same way, and the quantum free field
realizations can then be obtained by using the quantum version of the Wakimoto construction. The
expressions are identical to the ones given here, up to renormalizations. For more details on the BRST
cohomology, see [9].
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