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1 Introduction

In the past few years several attempts have been made to find the basic underlying prin-
ciples and structures governing Rational Conformal Field Theories (RCFT). In one ap-
proach, quantum groups are proposed as the underlying algebraic structure of RCFT [21].
In [21] the philosophy is that the quantum group can be seen as the centralizer of a repre-
sentation of the braid group. This approach is in particular successful for WZW models,
where one can compute braid matrices using the analogue of 6j−symbols. The result of
this construction for arbitrary RCFT is, however, unclear.

In another approach, Rational Conformal Field Theories are seen to be intimately
related with three-dimensional generally covariant field theories [16, 3]. Here, the Hilbert
space associated to a constant time slice with charges in the three dimensional theory is
equal to the space of conformal blocks of a RCFT. The observables of the three-dimensional
theory are knotted links whose expectation values can also be computed (as we will show)
from RCFT.

In this paper we will take a look at these two approaches from a somewhat different
angle. Instead of quantum groups we will end up with inclusions of certain II1 factors.
These are infinite dimensional algebras that can be obtained by taking a certain limit of
finite dimensional ones. They arise as algebras of paths on a graph constructed from the
fusion rules, and a primary field φ. The graph is closely related to the fusion graph, but
not necessarily identical to it. For instance for a field φ with the fusion rule φ2 = 1 + φ
the graph is the Dynkin graph A4.

An outline of the contents and the results of this paper is as follows:

In section 2 we will give a review of the duality relations that govern RCFT. Using these
it will be shown in section 3 how one can obtain link invariants from arbitrary Rational
Conformal Field Theories, by construction of a proper Markov trace. Some examples will
be given where the invariant is equivalent to some well-known knot invariant. In particular
this shows that there exists a well-defined three-dimensional topological field theory, where
the expectation values of links agree with the link invariant obtained from RCFT. One
could in principle use this to properly define expectation values of graphs as well, as has
been done for Chern-Simons theories in [14], and more recently for arbitrary RCFT in [5].

In sections 4, 5 and 6 we will explain the relation between II1 factors and RCFT,
using Ocneanu’s path algebras [9]. The algebras presented in those sections have the
properties that their representation theory coincides with part of the fusion rules, and
that the intertwiners between these representations are (up to a normalization) braiding
matrices. In the case that the special chosen field φ is self-dual, our construction should
give the same resulting algebras as in [21], suggesting a close relation between quantum
groups and path algebras. The precise relation is, however, unclear, and must presumably
be sought along the lines of Witten’s work [15].

As a by-product of our graphic representation of the string algebras we find in sec-
tion 7 a relation between the positive half of the Virasoro algebra and the Temperley-Lieb
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algebra. These results are also valid for certain statistical mechanical models, because we
can define an IRF model based on the same string algebras, where the Boltzmann weights
are braiding matrices. In this context the elements of the string algebras can be seen as
transfer matrices.

The final part of this paper consists of a study of the reverse process, namely con-
structing Rational Conformal Field Theories out of inclusions of factors. We establish
some necessary (but, unfortunately, not sufficient) conditions for inclusions to produce
Rational Conformal Field Theories, and present some examples.

2 Duality in CFT

Rational Conformal Field Theories are conformal field theories in which the Hilbert space
decomposes into a finite sum of irreducible representations of the (maximally extended)
chiral algebra AL ⊗AR

H =
⊕

i,̄ı
Hi ⊗Hı̄

The physical correlation functions in such a theory can be expressed in terms of finite
sums of holomorphic times antiholomorphic functions, which are called the conformal
blocks. Whereas these conformal blocks are multivalued functions, the physical correlation
functions are constructed out of the conformal blocks in a monodromy invariant way.
Graphically, we can represent a n-point conformal block Fφ1,...,φn as a skeleton diagram.
For example, a 4-point conformal block on a genus two surface can be represented as
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φ3

The number of blocks can be easily computed from the fusion rules Nk
ij , which for the

above case gives

number of blocks =
∑
p

Tr(Nφ1 Nφ2 Np) Tr(NpNφ3 Nφ4)

where (Np)ij = Np
ij .

The idea here is that a punctured Riemann surface can be formed by sewing a number
of trinions (i.e. three holed spheres). This sewing procedure gives the different conformal
blocks when one sums over the intermediate states in the channel that is formed by the
sewn holes. Of course, the same punctured Riemann surface can be obtained by different
sewing procedures. For example, the four punctured sphere can be obtained from two dif-
ferent sewing procedures, as shown in figure 1. These different sewing procedures give rise
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to different conformal blocks. Now, the basic axiom of duality in Conformal Field Theory
[1] assures that the vector space spanned by the conformal blocks is independent of the
sewing procedure. This means that the conformal blocks obtained from one sewing pro-
cedure are linear combinations of conformal blocks obtained from another. The matrices
representing these linear transformations are called ‘duality matrices’.

Moore and Seiberg [2] have shown that the duality data of a Conformal Field The-
ory are contained in the braiding and fusion matrices and the modular matrix S(j) (see
below). Furthermore, they have proven that the conditions on these duality matrices,
stemming from the requirement of duality and modular covariance on arbitrary genus,
can be represented by a finite number of equations, the polynomial equations. We will
review these polynomial equations below.

The basic duality data for genus zero are contained in the braid matrix Bpq

[
i j
k l

]
(ε)

or the fusion matrix Fpq

[
i j
k l

]
, which are defined in the following picture
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q

Bpq
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i j
k l

]
(+)

���

JĴ
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=
∑
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(ε = ± depending how the braid is performed). A particular simple example of the braid
matrix, which we will denote by Ωk

ij , is given in figure 2. We always can make a ‘choice of
gauge’ such that Ωk

ij becomes (∆i denotes the conformal weight of the primary i)

Ωk
ij(ε) = Bji

[
i j
k 0

]
(ε) = εkij e

iπε(∆i+∆j−∆k) (2.1)

where εkij (not to be confused with the ε which denotes the orientation of the braid) can be
±1. For WZW models we can use the fact that for representations εkij is −/+ depending on
whether k appears (anti)symmetrically in the tensor product of i and j. In more general
situations εkij has to be determined consistently from the polynomial equations. Note that
if i = j we also have B(ε) = F−1 Ω(ε)F , which implies that in this case B(ε) has the same
eigenvalues as Ω(ε).

The braid and fusion matrices are not independent, in fact

B(ε) = (Ω(−ε)⊗ 1)F (1⊗ Ω(ε)) (2.2)

3



which can be easily deduced when one applies the simple moves shown in figure 3. From
(2.2) we have B(ε) ◦ B(−ε) = 1, which is obvious. Furthermore, since Ω∗(ε) = Ω(−ε) and
F∗ = F∨, we have B∗(ε) = B∨(−ε) where B∨ denotes the braid matrix with the fields φi
replaced by their duals φ∨i (recall that the dual φ∨ of a field φ is the unique field with
which φ has the fusion rule φ×φ∨ = 1+ · · ·). One can easily prove that this implies that
the braid matrix B(ε) is in fact unitary.

Applying a series of B and F moves on special conformal blocks one can easily derive

lots of identities for the Bpq

[
i j
k l

]
and Fpq

[
i j
k l

]
. The results of Moore and Seiberg

guarantee that all these identities are in fact equivalent to just two identities, which we
will now derive. The first is called the hexagon identity and is expressed graphically in
figure 4. In terms of the fusion matrix it reads

F (Ω(ε)⊗ 1)F = (1⊗ Ω(ε))F (1⊗ Ω(ε)) (2.3)

The second fundamental identity is called the pentagon identity. Its graphic derivation
is given in figure 5, which gives the following expression in terms of fusion matrices

F23 F12 F23 = P23 F13 F12 (2.4)

where P is the permutation operator. Using (2.3) and the connection between the B and
F matrix as in (2.2), we can rewrite (2.4) as

B12(ε)B23(ε)B12(ε) = B23(ε)B12(ε)B23(ε) (2.5)

whose graphic interpretation is given in figure 6. Equation (2.5) is the Yang-Baxter equa-
tion and is due to the fact that the B matrices form a representation of the braid group.

In addition to the genus zero equations which we have derived above, there are of course
duality constraints from higher genus. One of the surprising results of Moore and Seiberg
is that the only new fundamental duality equations come from genus one. We will now
derive these equations. First, the new duality data in genus one are given by the modular
matrices S(j) and T , where S(j) represents the behavior of the one point functions on the
torus under the transformation τ → −1/τ , and T equals Tij = δije

2iπ(∆i− c
24

). Since the
modular matrices S(j) and T should form a (projective) representation of the modular
group, we have the following two identities

S(j)T S(j) = T−1 S(j)T−1 (2.6)
S2(j) = ±e−iπ∆j C (2.7)

where C is the charge conjugation matrix Cij = N0
ij , which maps the field φi to its dual

φ∨i .
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Besides these two identities we have one more genus one relation, which can be rep-
resented pictorially as in figure 7, and which gives the following constraint on the duality
matrices

(S ⊗ 1)F (1⊗Θ(−)Θ(+))F−1 (S−1 ⊗ 1) = F P F−1(1⊗ Ω(−)) (2.8)

The idea [6] of figure 7 is that one inserts a primary p on the torus, where p is some field
contained in the operator product expansion of j1 and j2. Then one ‘defuses’ to get an
insertion of j1 and j2 instead of p. Subsequently, one transports j2 along the a or b cycle
of the torus, and fuses it again with j1 to get an insertion of some other field s. The two
processes of transporting along the a or b cycle are related via the modular transformation
S : τ → −1/τ . Schematically, S aS−1 = b. Performing the moves explained here one
arrives at (2.8), where Θ(±) acts as

Θ(±)


i � � k

?

j  = e±iπ(∆k−∆i−∆j) ×
k∨� � i∨

?

j

so for the case of figure 7 we have 1⊗Θ(−)Θ(+) = e2iπ(∆i−∆p).

Note that if we take j1 = j2 = j and p = s = 0 in figure 7 this implies [6], [2]

Nk
ij =

∑
m

Sim
S†km
S0m

Sjm (2.9)

where

Sij
S00

=
S0i

S00

S0j

S00

∑
m

B0m

[
i j
i j∨

]
(−) Bm0

[
j i
i j∨

]
(−) (2.10)

and where we used the ‘tetrahedron’ symmetry

Fpq

[
i j
k l

]
= Fkj

[
i∨ q
p l

]√
FpFq
FkFj

(2.11)

(Fi = S0i/S00) which can be proven from the pentagon identity (2.4).

From (2.6) and (2.9) we also have

Sij
S00

=
∑
m

S0m

S00
Nm
ij e

2iπ(∆i+∆j−∆m) (2.12)

So we see that we can make the following consistent ‘gauge choice’

B0m

[
i j
i j∨

]
(ε) =

√
Fm
Fi Fj

εmij e
iπε(∆m−∆i−∆j) (2.13)
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Taking the tetrahedron symmetry into account this is in fact the only gauge choice con-
sistent with (2.1).

The above equations (2.3–2.4) and (2.6–2.8) are the polynomial equations which encap-
ture the fundamental duality relations of a Conformal Field Theory. In the next section we
will explore these polynomial equations to show that we can define for every primary field
in a Conformal Field Theory a topological invariant of knots (or more generally links). As
we will see, these invariants are intimately connected with so-called Markov traces, which
already appeared in a slightly different context in [40]. In the next section we will give
a proof of the existence of such traces in Conformal Field Theory using the polynomial
equations of Moore and Seiberg.

3 Topological Aspects of CFT

To define a topological invariant of links for Rational Conformal Field Theories we first
have to discuss the relation between knots or links and braids. The braid group defined on
n strands will be denoted by Bn and is generated by the simple braids < σ1, . . . , σn−1 >
which satisfy

σiσi+1σi = σi+1σiσi+1 (3.1)
σiσj = σjσi |i− j| ≥ 2 (3.2)

The Bpq

[
i j
k l

]
encountered in the previous section form a representation of the braid

group, and the Yang-Baxter equation (2.5) is a direct consequence of (3.1).

To discuss links in terms of braids, we will take a two dimensional point of view
towards links. When one projects a link down to two dimensions to get a knot diagram,
as in figure 8, the question which diagrams give equivalent links arises. A theorem in knot
theory [4] states that knot diagrams give equivalent links when they can be transformed
into each other via so-called Reidemeister moves, shown in figure 9. A link invariant defined
on the level of these diagrams should of course be invariant under these Reidemeister moves
to be a true topological invariant.

It is more or less obvious that every link can be obtained by the closure of a braid.
Such a closure of a braid α (see figure 10) will be denoted by α̂. According to a theorem
of Markov, this means that an invariant L(α̂) defined in terms of braids α, should satisfy
the following properties

L(α̂β) = L(β̂α) α, β ∈ Bn (3.3)

L(α̂σ±1
n ) = L(α̂) α ∈ Bn (3.4)

where the trace property (3.3) is clear when one closes the braid, and (3.4) is the conse-
quence of the first Reidemeister move.
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The representation π of the braid group Bn that we will study here is a representation
on special conformal blocks. These are genus zero blocks with n external φ lines and one
‘spectator’ field j [21]

φ- � � � � j

?

φ
?

φ

. . . ?

φ
?

φ

pn−2p1

Such conformal blocks will be denoted as F (n)
φ,j . The dimension d

(n)
φ,j of the vector space

spanned by these conformal blocks is easily computed as

d
(n)
φ,j =

(
Nn−1
φ

)
φj

So for a fixed spectator field j the braid matrices π(σi) are elements of Mat(d(n)
φ,j ,C),

the space of complex square matrices of dimension d
(n)
φ,j . We can use this to build finite

dimensional C∗-algebras C(n)
φ as follows

C
(n)
φ =

⊕
j

Mat(d(n)
φ,j ,C)

This gives us a sequence of inclusions of C∗-algebras

C
(2)
φ ⊂ C(3)

φ ⊂ · · · ⊂ C(n)
φ ⊂ · · · (3.5)

with the inclusion matrix given by Nφ.

To define a link invariant for Rational Conformal Field Theories we will first look for
a so-called Markov trace Mφ, which is defined on Cφ =

⋃
nC

(n)
φ , and satisfies the following

properties

M(π(1)) = 1 (3.6)
M(π(αβ)) = M(π(βα)) α, β ∈ Bn (3.7)

M(π(ασn)) = zM(π(α)) α ∈ Bn (3.8)
M(π(ασ−1

n )) = z̄M(π(α)) α ∈ Bn (3.9)

where z is called the Markov parameter. Once we have such a Markov trace we can easily
define a topological invariant out of it, as follows

L(α̂) = (z z̄)−
n
2

(
z̄

z

)w(α)
2

M(π(α)) α ∈ Bn (3.10)
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where w(α) is the wraith of the braid α, i.e. the number of overcrossings minus the number
of undercrossings in a knot diagram (with the choice that the σi generate overcrossings
and the σ−1

i undercrossings). Note that we have the following normalization

L

(�
�
�
�6
)

=
1
|z|

(3.11)

The idea now is, that in order to study knots or links we first write them as the closure
of braids, and then assign numbers to these braids as follows. We perform the same braids
on the conformal block of (3.5), which then equals

∑
q1,...,qn−2

Bφ,j
p1,...,pn−2;q1,...,qn−2

(α) ×
φ- � � � � j

?

φ
?

φ

. . . ?

φ
?

φ

qn−2q1

where Bφ,j
p1,...,pn−2;q1,...,qn−2

(α) is a product of the braiding matrices Bpq

[
φ φ
i j

]
, so it is a

map from the braid group Bn to Cφ. Taking the trace inside each C
(n)
φ we get another

map tφj from Cφ to C

tφj : Cφ → C

tφj (π(α)) =
∑

p1,...,pn−2

Bφ,j
p1,...,pn−2;p1,...,pn−2

(α)

and tφj (π(α)) is the number we want to associate with the braid α.

The reason we restricted ourselves to the conformal blocks of (3.5), is that since we
want to study links in terms of braids all the external lines have to be the same, otherwise
the braid cannot always be closed.

The final step is to construct out of the numbers tφj (π(α)) a Markov trace Mφ(π(α)).
A proposal for such a Markov trace is given in [21] (and implicitly in [16]). We will not
repeat the arguments leading to this proposal here, but simply state the result

Mφ(π(α)) =

(
S00

S0φ

)n∑
j

S0j

S00
tφj (π(α)) (3.12)

Note that due to (2.9) Mφ(π(1)) = 1. We will now prove that this proposal for the Markov
trace indeed satisfies the Markov properties (3.7) and (3.8). As one can easily verify the
trace property (3.7) is fulfilled due to the fact that we taken the trace inside each C

(n)
φ .

To prove the second Markov property (3.8) we first have to determine what it means
in terms of the braid matrices. Setting α = 1 in (3.8) and evaluating it on F (2)

φ,j gives for
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the Markov parameter z

z =

(
S00

S0φ

)2∑
j

S0j

S00
N j
φφ ε

j
φφ e

iπ(2∆φ−∆j) (3.13)

which we will show to be equal to

z =
e−2iπ∆φ

S0φ/S00
(3.14)

The implication of (3.8) for general conformal blocks and general braids α is worked
out in figure 11. From (3.12) and figure 11 we deduce that (3.8) becomes

∑
j

S0j

S00
Bpp

[
φ φ
k j

]
(+) = z

S0φ

S00

S0p

S00
Nφ
pk (3.15)

Note that for k = 0 this equation reduces to (3.13), so to show that (3.12) defines a good
Markov trace we only have to prove (3.15). Using (2.13) we can rewrite the l.h.s. of (3.15)
as

l.h.s. =
S0p

S00

S0φ

S00

∑
j

B0j

[
p φ
p φ∨

]
(−)Bj0

[
φ p
p φ∨

]
(−) e2iπ(∆j−∆p−∆φ) Bpp

[
φ φ
k j

]
(+)

=
S0p

S00

S0φ

S00
e2iπ(∆p−∆φ−∆k)

∑
j

B0j

[
p φ
p φ∨

]
(−)Bpp

[
φ φ
k j

]
(−)Bj0

[
φ p
p φ∨

]
(−)

=
S0p

S00

S0φ

S00
e2iπ(∆p−∆φ−∆k)Ωk

pφ(−) Ωk
pφ(−) B00

[
φ φ
φ φ∨

]
(−)

=
S0p

S00
e−2iπ∆φ Nφ

pk (3.16)

where going from the first to the second line we used (2.2) and from the second to the
third we used the Yang-Baxter equation. So we have proven that (3.12) indeed satisfies
the Markov properties with the Markov parameter z given by (3.14).

We thus have produced for every primary field φ a link invariant given by

Lφ(α̂) = e2iπ∆φw(α)
∑
j

S0j

S00
tφj (π(α)) (3.17)

with (3.11) replaced by

Lφ

(�
�
�
�6
)

= Fφ (3.18)
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If we specialize the above invariant to the case of a SU(N)k WZW model, with φ
corresponding to the fundamental representation, φ = 2, our invariant is in fact the Jones
polynomial [7]. This can be proven as follows. The fundamental representation for SU(N)
has the ‘fusion’ rule

2×2 = ⊕

The weights of the fields appearing in this product are given by

∆2 =
(N − 1)(N + 1)

2N(k +N)
; ∆ =

(N − 2)(N + 1)
N(k +N)

; ∆ =
(N − 1)(N + 2)
N(k +N)

which implies that the eigenvalue equation for the braid matrices π(σi) becomes(
q−

1
2N π(σi) +

√
q
) (
q−

1
2N π(σi)− 1/

√
q
)

= 0 (3.19)

(here q = e
2iπ
k+N ) which (after some renormalization) is the Hecke relation.

From (3.19) we can derive the following property of the link invariant (3.17)

q
N
2 L−2 − q−

N
2 L+

2 =

(
√
q − 1
√
q

)
L0

2 (3.20)

where L+
2 stands for the value of a link with at some point an overcrossing, L−2 is the value

of the same link with the overcrossing replaced by an undercrossing and L0
2 is the value

of the link with the crossing removed.

Graphically, we can represent (3.20) as the ‘skein’ relation

q
N
2

�
�
��@@I

@@
- q−

N
2

��

���

@
@
@I = (

√
q − 1/

√
q) 6 6

(3.21)

This skein relation can be used to disentangle the knot. Together with the normalization
(3.18) it completely determines the polynomial L2. This polynomial equals the Jones
polynomial as given in [16], since the skein relation we derived here is identical to that
of [16]. In a similar way we can prove that for φ = 2 in SO(N)k or Sp(2N)k WZW
models, our invariant is equivalent to the Kauffman invariant [8]. In fact, we can use
(3.17) to construct many new knot polynomials, namely one for every primary field of an
arbitrary RCFT (and not just for WZW models, which would give the same polynomials
as Witten derived from (2+1)-dimensional Chern Simons theory). Although we should
note that in practice the evaluation of the braid matrices appearing in (3.12) can become
quite cumbersome.

Before we close this section we return to the issue of inclusions of C∗-algebras, as given
in (3.5). We will argue that we can complete π(B∞) = Cφ =

⋃
nC

(n)
φ such that it becomes

a so-called II1 factor. First we will review the definition of a II1 factor.
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An algebra A is a factor if:

- A is a von Neumann algebra, i.e. an algebra of bounded operators on a Hilbert
space H, such that it contains the identity, it is closed under taking adjoints, and it
is closed in the ultraweak topology∗.

- the center of A is trivial.

It is of type II1 if it is infinite dimensional and admits a finite normalized trace tr : A→ C
such that

tr(1) = 1
tr(ab) = tr(ba), a, b ∈ A (3.22)
tr(a∗a) ≥ 0, a ∈ A

This trace is always unique.

Jones has shown [10] how to associate to a II1 factor M and a subfactor N , a number
[M : N ], called the index, which measures ”how many times N fits into M”, similar to
the index [G : H] for finite groups. The index need not be an integer however.

There is one more property we will need: a factor is hyperfinite if it contains a dense
increasing sequence of finite dimensional sub *-algebras A1 ⊂ A2 ⊂ · · · ⊂ A. Up to
isomorphism there is only one hyperfinite II1 factor [11] usually denoted by R. In a sense
R is the smallest possible II1 factor [12]: Any II1 subfactor of R is again isomorphic to
R, and any II1 factor contains R. Another property of R is that the range of the index
[R : R′], where R′ runs over all possible subfactors of R, equals [10]

[R : R′] ∈ {4 cos2 π

n
}n≥3 ∪ [4,+∞] (3.23)

Using the Markov trace Mφ we can define an inner product on π(B∞) = Cφ

〈x|y〉 = Mφ(x∗y) (3.24)

Using this inner product we can take the weak closure of π(B∞). It can be proven that
this closure π̄(B∞) satisfies all the requirements in the definition of a hyperfinite II1 factor,
so we see that it is in fact isomorphic to the hyperfinite II1 factor R.

With this factor, naturally comes a subfactor as follows. Take for B′∞ the braid group
generated by the elements < σ2, σ3, . . . > then π̄(B′∞) is a subfactor of π̄(B∞). The index
of this subfactor can be calculated as

[
π̄(B∞) : π̄(B′∞)

]
= lim

n→∞

∑
j

(
Nn+1
φ

)2

φj∑
j

(
Nn
φ

)2

φj

=
(
S0φ

S00

)2

(3.25)

∗this means if ψ1, ψ2 ∈ H, an ∈ A, a ∈ B(H) and 〈ψ1|anψ2〉 → 〈ψ1|aψ2〉 then a ∈ A as well.
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since S0φ/S00 is the largest eigenvalue of Nφ.

For the special value 3 of the index, Jones [34] noted that (for φ = 2 in SU(2)4)
π̄(B′∞) ⊂ π̄(B∞), is equivalent to the pair RD3 ⊂ RZ2 , where RG denotes the set of fixed
points of R under an outer action (i.e. not of the form g x g−1) of the finite group G.
Furthermore, at this value of the index the link invariant (3.17), in this case the Jones
polynomial, is equal to ±i times a power of

√
3, for any link L. A similar situation occurs

for index equal to 5. Here, (φ = 2 in Sp(4)2) π̄(B′∞) ⊂ π̄(B∞) can be described as
RD5 ⊂ RZ2 , and the link invariant (3.17), now called the Kauffman invariant, is equal to
±i times a power of

√
5.

To understand these peculiarities we will consider the more general situation of RD2p+1

⊂ RZ2 , and show that similar things happen here, thereby generalizing the results of [34].
The ‘principal graph’ (see section 9) one gets for RD2p+1 ⊂ RZ2 is

r r r r
r

r
r

















J

J
J
J

J
J
J
J�

��
Q

QQ

2

2

2

1 1
√

2n+1
√

2n+1
...

(3.26)

As will be explained in section 9, to get an inclusion of factors from RCFT which is
equivalent to RD2p+1 ⊂ RZ2 we have to find a primary field which has (3.26) as its fusion

graph. Such a primary Φ is given by the field which corresponds to the ... representation

(p blocks) in a SO(2p + 1)2 WZW theory, except for p = 1 for which Φ = 2 in SU(2)4

and p = 2 for which Φ = 2 in Sp(4)2.

The conformal weight of the field Φ is given by ∆Φ = p
8 , and the weights of the fields

which appear in the product of Φ with itself are given by

∆j =
(p− j)(p+ j + 1)

4p+ 2
j = 0, . . . , p

The group theoretical factor ε for these models is

εjΦΦ = i(j
2+j) j = 0, . . . , p

From this we deduce that the eigenvalue equation for the braid matrices π(σi) becomes

p∏
j=0

(
i−

p
2π(σi)− i(j

2+j)ω−
1
4

(p−j)(p+j+1)
)

= 0 (3.27)
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where ω = e
2iπ

2p+1 . We can rewrite this product such that it becomes

p∏
j=0

(
i
p
2π(σi) + i−p

2
ωj

2
)

= 0 (3.28)

This allows us to take for the σi the so-called ‘Gaussian’ representation [34]

π(σi) =
i−

p
2

√
2p+ 1

2p∑
j=0

ω−j
2
uji

where the ui satisfy

u2p+1
i = 1

ui ui+1 = ω2 ui+1 ui

ui uj = uj ui |i− j| ≥ 2

since the eigenvalue equation for π(σi) with σi defined in this way is equivalent to (3.28).

Now it is shown in [34] that the Markov trace evaluated on a braid in the Gaussian
representation gives (up to some constant C which is a power of 2p+ 1)∑

v∈H1(S;Z2p+1)

ω<v,v> (3.29)

where S is a Seifert surface for the closed braid, and 〈 , 〉 is the Seifert pairing (for an
explanation of these terms, see for example [4]). For the link invariant LΦ given by (3.17)
this implies that, whenever 2p + 1 is prime, |LΦ(α̂)| equals C (2p + 1)ν+µ

2 , where (µ)ν is
the number of (non)zero eigenvalues of the Seifert pairing.

With the Gaussian representation at our disposal, we can now easily show why π̄(B′∞) ⊂
π̄(B∞) is equivalent to RD2p+1 ⊂ RZ2 . Following [34] we deduce that the completion of
the algebra generated by ui, denoted by A = Alg(u1, u2, . . .), is isomorphic to R. On A we
have the following Z2-action: ui → u−1

i , whose fixed points are the π(σi), so π̄(B∞) ∼= RZ2 .
Furthermore, we have an Z2p+1-action on A given by: u1 → ω u1 and ui → ui for i ≥ 2,
whose fixed point algebra is generated by the < u2, u3, . . . >. Since D2p+1 = Z2#c Z2p+1,
this implies that the II1 factor generated by the < σ2, σ3, . . . >, i.e. π̄(B′∞), is isomorphic
toRD2p+1 . So we can finally conclude that π̄(B′∞) ⊂ π̄(B∞) is equivalent toRD2p+1 ⊂ RZ2 .

4 II1 Factors Coming from RCFT

In this section we will define what a coupling system is and how they can be obtained
from Rational Conformal Field Theories. Some background material on coupling systems
and their relation with inclusions of factors is gathered in Appendix A.
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Let G be an unoriented graph. A path of length n on G has the obvious meaning.
The vertex where a path ξ starts will be denoted by s(ξ) (source), the endpoint by r(ξ)
(range). In particular a path of length one is just an edge with an orientation. The reverse
ξ∼ of a path ξ is the same path walked along in the opposite direction. If we have two
paths ξ1 and ξ2, and ξ2 starts where ξ1 ends, ξ1 ◦ ξ2 will stand for the path ”first ξ1 and
then ξ2”. The set of all paths of length n starting at x and ending at a vertex y will be
denoted by Pathnx,y, the length of a path by |ξ|.

A standard finite measure graph is a finite connected graph G with a distinguished
vertex ∗ = ∗G adjacent to only one other vertex ∗∗G via one edge, and with a natural Z2

grading given by the distance of a vertex to ∗. The even vertices will be denoted by Geven,
so ∗ ∈ Geven, and the odd vertices by Godd. Let Λ be the incidence matrix of G , then by
Perron-Frobenius theory Λ has a unique eigenvector with only positive entries and such
that its entry at ∗ is 1. The eigenvalue will be denoted by ‖Λ‖, and the components will
be labeled by Fx where x is a vertex of G.

We have the following definition: a local coupling system is a quadruple (G,H, τ,W ),
where G and H are finite standard measure graphs with ‖ΛG‖ = ‖ΛH‖. Furthermore τ is
an involution on the set of vertices of G ∪ H, satisfying

τ(∗G) = ∗G τ(∗H) = ∗H τ(∗∗G) = ∗ ∗H
τ(Geven) = Geven τ(Godd) = Hodd τ(Heven) = Heven (4.1)

Fτ(x) = Fx

W is map which associates to any cell (a1, a2, a3, a4) consisting of four oriented edges
with τ(r(ai)) = s(ai+1), a number W (a1, a2, a3, a4) ∈ C satisfying five axioms which we
will give below.

Consider a RCFT and pick a field Φ. We make a graph by taking 2N vertices if N is
the number of primary fields in the theory, and label them by φi and φ′j , where i runs from
1 to N . Next we draw N j

Φi edges from φi to φ′j . Let G be the connected component of
the resulting graph containing the identity operator 1, and let ∗G = 1. Also let H be the
connected component containing 1′ and let ∗H = 1′. From now on we will usually identify
φi and φ′i. We see that G is the graph obtained by alternatingly fusing with Φ and its dual
field Φ∨, and H is obtained by the same process, starting however with Φ∨. Therefore,
as graphs G and H are identical. Note that not all fields need occur in G and H. The
eigenvalues for the Perron-Frobenius eigenvector are given by ‖ΛG‖ = ‖ΛH‖ = S0Φ/S00.
The contragradient map is defined by τ(φi) = φ∨i or τ(φi) = φ′∨i (compare with the
charge conjugation matrix C of section 2). This can be done in such a way that it is
compatible with the demands stated above in the definition of a coupling system. The
Perron-Frobenius eigenvector has components Fi=S0φi/S00.

The definition of W for RCFT’s is a bit more involved. Fix once and for all an
ε, which may be either + or –. Consider a cell (a1, a2, a3, a4) consisting of four edges
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((φ1, φ
∨
2 ), (φ2, φ

∨
3 ), (φ3, φ

∨
4 ), (φ4, φ

∨
1 )). We have to consider four different cases

φ1 ∈ Godd →W (1)(a1, a2, a3, a4) = Bφ∨2 φ
∨
4

[
Φ Φ
φ1 φ3

]
(ε) 4

√
F1F3

F2F4
(4.2)

φ1 ∈ Geven →W (2)(a1, a2, a3, a4) = Bφ∨4 φ
∨
2

[
Φ Φ∨

φ1 φ3

]
(ε) 4

√
F1F3

F2F4
(4.3)

φ1 ∈ Hodd →W (3)(a1, a2, a3, a4) = Bφ∨2 φ
∨
4

[
Φ∨ Φ∨

φ1 φ3

]
(ε) 4

√
F1F3

F2F4
(4.4)

φ1 ∈ Heven →W (4)(a1, a2, a3, a4) = Bφ∨4 φ
∨
2

[
Φ∨ Φ
φ1 φ3

]
(ε) 4

√
F1F3

F2F4
(4.5)

For Nk
Φi > 1 a pair of vertices does not specify an edge and we would have to include

into the definition of W also a dependence on couplings ε, which are elements of a Nk
Φi

dimensional vector space. We have suppressed these as they would just complicate the
expressions. Furthermore, Ocneanu has defined a notion of equivalence of two coupling
systems, stating that two coupling systems are equivalent precisely when they differ by a
unitary transformation in the space of couplings, and therefore everything is independent
of a choice of basis in the space of couplings.

In order to check the axioms that W has to satisfy, let us recall some of the symmetries
of the braid matrices

Bpq

[
j1 j2
i k

]
(ε) = Bik

[
j∨1 j2
p q

]
(−ε)

√
FpFq
FiFk

(4.6)

Bpq

[
j1 j2
i k

]
(ε) = Bp∨q∨

[
j2 j1
k∨ i∨

]
(ε) (4.7)

Bpq

[
j1 j2
i k

]
(ε) = Bqp

[
j∨1 j∨2
k i

]
(ε) (4.8)

where (4.6) is a consequence of (2.2) and (2.11), (4.7) is due to our convention for the
conformal blocks and (4.8) is a direct consequence of (4.6) and (4.7).

First we will check the three axioms that Ocneanu calls local [9].

- The first axiom is that of inversion symmetry: for any cell (a1, a2, a3, a4) we must
have

W (a∼4 , a
∼
3 , a

∼
2 , a

∼
1 ) = W (a1, a2, a3, a4) (4.9)

From now on we will assume that

(a1, a2, a3, a4) = ((φ1, φ
∨
2 ), (φ2, φ

∨
3 ), (φ3, φ

∨
4 ), (φ4, φ

∨
1 )) (4.10)
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In order to check the inversion symmetry we would in principle have to distinguish
between four cases, depending on whether φ1 is in G or in H, and whether it is
an even or odd vertex. We will just prove it for one case, the other three being
completely similar. So assuming φ1 ∈ Godd, we have

W (a∼4 , a
∼
3 , a

∼
2 , a

∼
1 ) = W (3)((φ∨1 , φ4), (φ∨4 , φ3), (φ∨3 , φ2), (φ∨2 , φ1))

= Bφ4φ2

[
Φ∨ Φ∨

φ∨1 φ∨3

]
(ε) 4

√
F1F3

F2F4

= Bφ2φ4

[
Φ Φ
φ∨3 φ∨1

]
(ε) 4

√
F1F3

F2F4

= Bφ∨2 φ
∨
4

[
Φ Φ
φ1 φ3

]
(ε) 4

√
F1F3

F2F4

= W (1)(a1, a2, a3, a4)

- The next axiom is the axiom of rotation symmetry

W (a2, a3, a4, a1) = W (a1, a2, a3, a4)∗ (4.11)

To check this, take for example φ1 ∈ Geven. We have

W (3)(a2, a3, a4, a1) = Bφ∨3 φ
∨
1

[
Φ∨ Φ∨

φ2 φ4

]
(ε) 4

√
F2F4

F1F3

= Bφ2φ4

[
Φ Φ∨

φ∨3 φ∨1

]
(−ε)

√
F1F3

F2F4

4

√
F2F4

F1F3

=

(
Bφ∨2 φ

∨
4

[
Φ∨ Φ
φ3 φ1

]
(ε)

)∗
4

√
F1F3

F2F4

=

(
Bφ∨4 φ

∨
2

[
Φ Φ∨

φ1 φ3

]
(ε) 4

√
F1F3

F2F4

)∗
= W (2)(a1, a2, a3, a4)∗

where in the second line we used B∗(ε) = B∨(−ε), see section 2.

- The third and last local axiom is the axiom of bi-unitarity. This axiom states that
the connection is a unitary matrix, after a certain renormalization. In our case that
means that we have to check whether the braid matrices in (4.2–4.5), without the
normalization factors, are unitary. This fact was already noted in section 2 below
equation (2.2), and therefore the third axiom is also satisfied.

This completes the proof that the connections obtained from Rational Conformal
Field Theories satisfy all the local axioms.
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Next we want to prove the two remaining axioms, which are called the global axioms, to
make the coupling system a global one. To state these, one needs to extend the definition
of W from cells to more general surfaces, using Ocneanu’s cell calculus, where the map W
is extended to a map defined on contours. A contour consists of four paths (ξ1, ξ2, ξ3, ξ4)
in either G or H, with |ξ1| = |ξ3|, |ξ2| = |ξ4| and s(ξi+1) = τ(r(ξi)). A surface s is a family
of cells c(i, j) = (c(i, j)1, c(i, j)2, c(i, j)3, c(i, j)4) (i = 1 . . .m, j = 1 . . . n) having matching
walls: c(i + 1, j)4 = c(i, j)∼2 and c(i, j + 1)1 = c(i, j)∼3 . The boundary of s is a contour
(ξ1, ξ2, ξ3, ξ4) with ξ1 = c(n, 1) ◦ · · · ◦ c(1, 1) etc. For a surface s, one defines

W (s) =
∏
i,j

W (c(i, j)) (4.12)

and for a contour c,

W (c) =
∑
s

W (s) (4.13)

where the sum is taken over all surfaces having boundary c.

To see what these expressions mean in RCFT, observe that W (c) consists of a sum
of products of braid matrices. As we have seen, similar expressions are encountered in
the computation of knot invariants for RCFT’s. So it is tempting to find a knot whose
expectation value in 3-d topological field theory equals W (c). However, as it turns out, we
need a graph instead of a knot. This is because braid matrices are related to expectation
values of graphs rather than knots. The precise relation [14] is given in figure 12. From
now on we will take ε = +; if one takes ε = − instead one just has to replace overcrossings
by undercrossings and vice versa.

If we have a graph projected onto a plane and a preferred ‘time’ direction, the compu-
tation of the expectation value involves a summation over all possible ways to fill in the
graph, as explained in [14]. This corresponds precisely to a sum over all surfaces with a
fixed boundary as in equation (4.13).

Consider now an arbitrary contour c = (ξ1, ξ2, ξ3, ξ4), and suppose that

ξ1 = (ψ(1)
n−1, ψ

(1)
n ) ◦ (ψ(1)

n−2, ψ
(1)
n−1) ◦ · · · ◦ (ψ(1)

0 , ψ
(1)
1 ) (4.14)

with similar expressions for ξ2, ξ3 and ξ4. The boundary of our graph will consist of the
rectangle with the labeling of the fields as indicated in figure 13. Next we have to fill this
graph with a set of horizontal and vertical lines in such a way that is compatible with the
grid depicted in figure 14. A typical example we might get in the case m = 4, n = 6 and
ψ

(1)
0 ∈ Geven is shown in figure 15. The unmarked lines in the graph will always represent

our special chosen field Φ. Again we might also have to include labels, at every vertex
of the graph where three lines meet, to represent the couplings. As remarked before, we
will not do this, but the reader should keep in mind that it is always possible to explicitly
include the couplings at any stage.
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Denote the graph obtained in this way by Γ(c). A careful computation of 〈Γ(c)〉
S3

based on the results of Witten [14], using as time direction south-east to north-west,
shows that this expectation value precisely equals W (c), up to a normalization factor.
This normalization factor can also be computed, where one has to pay special attention
to the boundary of the graph (see also [15]). The result is

W (c) = F
−(|ξ1|+|ξ2|+|ξ3|+|ξ4|)/4
Φ (Fs(ξ1)Fs(ξ2)Fs(ξ3)Fs(ξ4))

−1/4 〈Γ(c)〉
S3 (4.15)

Using this formula we can now prove that the two global axioms a global coupling system
has to fulfill are also valid.

The first one, the parallel transport axiom, states that for any contour c with r(ξi) =
s(ξi) = ∗G or ∗H

W (c) = δ(ξ1, ξ
∼
3 )δ(ξ2, ξ

∼
4 ) (4.16)

In this case, let us take for example r(ξi) = s(ξi) = ∗G , the graph Γ(c) consists of two
disconnected components, as shown sketchy in figure 16. Due to the topological invariance
in this theory we can move the two pieces apart and using equation (4.15) we find

W (c)F (|ξ1|+|ξ2|+|ξ3|+|ξ4|)/4
Φ = 〈Γ1#Γ2〉S3 = 〈Γ1〉S3 〈Γ2〉S3 (4.17)

Expectation values of graphs are topological invariant. One can also prove this directly
where invariance under the Reidemeister moves (figure 9) is due to the Yang-Baxter equa-
tion (2.5), and invariance under moving a line over a vertex where three lines meet is due
to the pentagon identity (2.4).

Now it remains to compute 〈Γ1〉S3 . Using Witten’s cutting prescriptions [14, 16]
based on the fact that for one-dimensional Hilbert spaces we have 〈a|b〉〈c|d〉 = 〈a|d〉〈c|b〉,
it follows that

〈Γ1〉S3 = δ(ξ1, ξ
∼
3 )

〈
Φ

�
�
�
�??6 ψ

(1)
2

〉
S3

〈
ψ

(1)
3

�
�
�
�??6 ψ

(1)
2

〉
S3
· · ·
〈

Φ

�
�
�
�??6 ψ

(1)
n−2

〉
S3〈�

�
�
�6ψ(1)

2

〉
S3

〈�
�
�
�6ψ(1)

3

〉
S3
· · ·
〈�
�
�
�6ψ(1)
n−2

〉
S3

(4.18)
From section 3 we have (cf. equation (3.18))〈�

�
�
�6ψ
〉
S3

= Fψ (4.19)

which implies 〈
ψ1

�
�
�
�??6 ψ2

〉
S3

= FΦ0

[
ψ∨1 ψ1

ψ∨2 ψ∨2

]
Fψ1 Fψ2 =

√
Fψ1Fψ2FΦ (4.20)
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Using this result we find

〈Γ1〉S3 = F
n/2
Φ δ(ξ1, ξ

∼
3 ) = F

(|ξ1|+|ξ3|)/4
Φ δ(ξ1, ξ

∼
3 ) (4.21)

Putting everything together the final result is

W (c) = δ(ξ1, ξ
∼
3 )δ(ξ2, ξ

∼
4 ) (4.22)

as requested.

Finally, the global contragradient axiom states that for any vertex x ∈ G ∪H, there is
a contour (ξ1, ξ2, ξ3, ξ4) with s(ξ1) = s(ξ3) = ∗G or ∗H, s(ξ2) = x and s(ξ4) = τ(x), and
such that W (c) 6= 0. For such a contour we find

〈Γ(c)〉
S3 =

1
Fx
〈Γ1〉S3 〈Γ2〉S3 (4.23)

where Γ1 is given in figure 17, for the case s(ξ1) = s(ξ3) = ∗G . Cutting along the dashed
line in figure 17 shows that

〈Γ1〉S3 = 〈ψ(1)
2 . . . ψ

(1)
n−1|ψ

(3)
n−1 . . . ψ

(3)
1 〉, (4.24)

i.e. the inner product of two states in the Hilbert space of the punctured two-sphere with
charges as those occurring along the dashed line. Now if we let the ψ’s vary, both states
in this inner product run through a basis of this Hilbert space, so it is certainly possible
to choose them such that this inner product is nonzero. Therefore, the connection also
satisfies the global contragradient axiom, and this completes the proof that the connection
obtained from RCFT gives rise to a coupling system.

Due to the one-one relation between coupling systems and irreducible finite index finite
depth inclusions of II1 factors [9], this proves that for every RCFT together with a field Φ
there is a corresponding inclusion of such II1 factors (in fact there are two, as we can take
both ε = + and ε = −, but these two choices need not be inequivalent). An immediate
consequence is that we always have

S0Φ

S00
∈
{

cos
n

π

}
n≥3
∪ [2,∞] (4.25)

Although this method would enable one to construct many examples of irreducible
inclusions of II1 factors, and maybe even new ones, we will be mainly interested in the
reverse process: given an inclusion, when does this correspond to a RCFT? To answer this
question we will first take a closer look at the II1 factors coming from RCFT.
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5 The String Algebras

First we construct the string algebra on G. A string is a pair (ξ1, ξ2) of paths of length
n starting at ∗ and ending at the same vertex x. Write ξ1 = (∗, ψ(1)

1 , . . . , ψ
(1)
n−1, x) and

ξ2 = (∗, ψ(2)
1 , . . . , ψ

(2)
n−1, x), so that ψ(1)

1 = ψ
(2)
1 = Φ. Now define

Ω(ξ1, ξ2) =
√
FxF

−n/2
Φ

�

�

�

�

-

-

-

-

?

?

- 6

6
ψ

(1)
1

ψ
(1)
n−1 x

ψ
(2)
n−1

ψ
(2)
1

...
...

...
... (5.1)

in the case n is even. If n is odd, the definition is the same, only the direction of the
four arrows at the bottom of the picture has to be reversed. From now on we will always
display one special case, the others being obtainable via a minor modification.

The box in this definition should be seen as a part of a graph embedded in S3, or
alternatively as a state in the Hilbert space of a punctured two-sphere. Given two such
Ω’s, they can be multiplied with each other: one has to multiply the constants in front
and put the graphs next to each other, after which one has to glue them together in an
obvious way. The closure of Ω is the graph (including the constant in front) obtained by
identifying the in- and outgoing lines as shown in figure 18, and will be denoted by Ω.

The algebra An is the algebra having as basis the Ω(ξ1, ξ2) where (ξ1, ξ2) runs over
all strings of length n, and with the multiplication rule explained above. The adjoint
of Ω(ξ1, ξ2) is equal to Ω(ξ2, ξ1). The algebra An constructed this way is isomorphic
to the algebra Mn ∩ N ′ occurring in the derived tower (equation (A.6)). Actually, the
multiplication rule is very simple. Using the techniques similar as those used in the proof
of the global parallel transport axiom (cf equation (4.18)) one can easily derive

Ω(ξ1, ξ2)Ω(ξ3, ξ4) = δ(ξ2, ξ3)Ω(ξ1, ξ4) (5.2)

An is mapped into An+1 via

Ω(ξ1, ξ2)→
∑
ζ

Ω(ξ1 ◦ ζ, ξ2 ◦ ζ) (5.3)
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where the sum is over all edges starting at x. A trace on An compatible with this map
An → An+1 is given by

tr(Ω(ξ1, ξ2)) = F−nΦ

〈
Ω(ξ1, ξ2)

〉
S3 (5.4)

= FxF
−n
Φ δ(ξ1, ξ2)

This trace can be used to complete ∪An into a von Neumann algebra A. This algebra
A is in fact a subspace of the space of all conformal blocks. A similar construction works
for H where the paths start at ∗H. The graphs occurring in the definition of Ω have in this
case all the arrows of the in- and outgoing lines reversed. In this way one gets algebras
Bn which may be completed into a von Neumann algebra B. The notation used here for
the operators Ω(ξ1, ξ2) is more or less similar to the notation used for instance in [17, 40]
to label the bases of spaces of intertwiners.

In order to define other operations on the string algebras An and Bn, it is convenient
to extend the definition (5.1) to two paths starting at a vertex y and ending at a common
vertex z. In that case we define

Ω(ξ1, ξ2) =
√
FyFzF

−n/2
Φ

�

�

�

�

-

-

-

-

?

?

- 6

6
ψ

(1)
1

ψ
(1)
n−1 z

ψ
(2)
n−1

ψ
(2)
1

...
...

...
...

�
y

(5.5)

Again we only have displayed the case y, z ∈ Geven or y, z ∈ Hodd. The definition in the
other cases is similar.

Using this extended definition we define a homomorphism φ : An → Bn+1 as follows:
let Ω(ξ1, ξ2) ∈ An and (ζ1, ζ2) be two arbitrary paths on H of length n starting at Φ∨ and
having a common range. Let e denote the path of length one on H from ∗H to Φ∨. Then
φ is defined by

φ(Ω(ξ1, ξ2)) =
∑
ζ1,ζ2

F−1
r(ζ1)F

−1
s(ζ1)

〈
Ω(ξ1, ξ2)Ω(ζ1, ζ2)

〉
S3 Ω(e ◦ ζ1, e ◦ ζ2) (5.6)

Define in a similar way a map φ : Bn → An+1, and let ∆ : An → An+2 be φ ◦ φ. This
is what Ocneanu [9] calls the canonical shift. In fact, ∆ plays the role of a generalization
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of the comultiplication for these string algebras. The map φ can be used to define a
homomorphism φ : A → B, and the inclusion of II1 factors belonging to this coupling
system is precisely the inclusion φ(A) ⊂ B.

To see how the even vertices of G correspond to A−A modules, fix a vertex x ∈ Geven,
and consider a pair (α, β) of paths of length n, having common range, while α starts at
∗G and β starts at x. These pairs (α, β), so-called open strings, together form the basis
of a linear space An(x). Let Ω(ξ1, ξ2) ∈ An, then Ω(ξ1, ξ2) acts on (α, β) from the left as
follows:

Ω(ξ1, ξ2) · (α, β) = δ(ξ2, α)(ξ1, β) (5.7)

To define the right action we need a generalization of (5.5)†

(α, β) · Ω(ξ1, ξ2) =
∑

γ∈Pathn
x,r(α)

(
F−1
r(α)F

−1
x

〈
Ω(ξ1, ξ2)Ω(γ, β)

〉
S3

)
(α, γ) (5.8)

What goes into this definition is precisely Ocneanu’s notion of parallel transport. We see
that An(x) is a An − An bimodule and after taking an appropriate completion we get a
A−A bimodule A(x). These are irreducible [9]. Therefore we have the interesting result
that the irreducible modules of the string algebras correspond to certain primary fields of
the underlying RFCT.

If we consider vertices in Godd or in H we must also consider left and right actions of
Bn. Again, the expressions are the same as those occurring in (5.7) and (5.8).

6 Tensor Products and the Number of Paths

How do the fusion rules arise in this context? Take for simplicity two even vertices of
G, say (x, y), and let (α, β) be a pair of paths starting at respectively x and y having
common range. On the linear space An(x, y) which has as basis the pairs (α, β) one can
again define a left and a right action of An, similar as in (5.8)

Ω(ξ1, ξ2) · (α, β) =
∑

γ∈Pathn
x,r(α)

(
F−1
r(α)F

−1
x

〈
Ω(ξ1, ξ2)Ω(α, γ)

〉
S3

)
(γ, β) (6.1)

(α, β) · Ω(ξ1, ξ2) =
∑

γ∈Pathn
y,r(α)

(
F−1
r(α)F

−1
y

〈
Ω(ξ1, ξ2)Ω(γ, β)

〉
S3

)
(α, γ) (6.2)

An(x, y) will decompose into irreducible An − An modules: An(x, y) = ⊕An(z). We will
present some dimensional arguments why we expect that

An(x, y) =
⊕
z

Nφz
φ∨xφy

An(z) (6.3)

†It is an interesting exercise to check that this right action is indeed compatible with the algebra
structure on An
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where φx is the field corresponding to the vertex x etc. Actually, An(x, y) is precisely
what one finds when one studies the tensor product of the representations A(x) and A(y)
using the generalized comultiplication. Therefore, we see that the fusion rules are just the
rules for decomposing the tensor product of representations of the string algebras.

Let fij(t) be the generating function for the number of paths from i to j; that is,

fij(t) =
∞∑
k=0

∣∣∣Pathki,j∣∣∣ tk (6.4)

It is easy to check that fij(t) = (1 − tΛG)−1
ij , where 1 represents the unit matrix. We

would like to check whether

fij(t) =
∑
k

Nk
i∨jf0k(t) (6.5)

or equivalently whether

gij(t) =
∑
k

Nk
i∨jg0k(t) (6.6)

where

gij(t) = det(1− tΛG)(1− tΛG)−1
ij (6.7)

Using

Nk
ij =

∑
α

SαiSαjS
∗
αk

Sα0

and (S2)ij = C = δij∨ , SS∗ = 1 one can derive the following expressions for fij(t) in
terms of the modular matrix S

fij(t) =
∑
α

S∗αi
1

1− t2
∣∣∣SαΦ
Sα0

∣∣∣2Sαj , i, j ∈ Geven or Godd (6.8)

fij(t) =
∑
α

S∗αi
tS∗αΦ/Sα0

1− t2
∣∣∣SαΦ
Sα0

∣∣∣2Sαj , i ∈ Geven, j ∈ Godd (6.9)

fij(t) =
∑
α

S∗αi
tSαΦ/Sα0

1− t2
∣∣∣SαΦ
Sα0

∣∣∣2Sαj , i ∈ Godd, j ∈ Geven (6.10)

Similar expressions are valid for H, where SαΦ/Sα0 is replaced by its complex conjugate.
The last relation we need in order to put everything together is

S∗αiSαj =
∑
k

Nk
i∨jSα0Sαk (6.11)

It is now obvious that relation (6.5) is fulfilled, and that we therefore have a perfect
agreement with the decomposition rule (6.3), at least as far as dimensions are concerned.
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As a side remark, observe that

lim
t→S00/S0Φ

f0i(t)
f0j(t)

=
Fi
Fj

(6.12)

so in a sense Fi measures how many paths there are from ∗ to i. A remarkable fact is that
[33]

Fi
Fj

= lim
q→1

χi(q)
χj(q)

(6.13)

where the character χi is the trace of q(L0−c/24) in the representation corresponding to φi.
We thus see that the number of states in the ith representation grow asymptotically at the
same rate relative to each other as the number of paths.

Another way to obtain the fusion rules from path algebras has been studied in [31, 32],
by techniques similar to the ones in section 9.

7 Algebras Hidden in the Path Algebras

The projections ek ∈ Mk+1 (see (A.3)) descend to Ak+1. Instead of expressing them in
terms of the basis (5.1), we will express them directly in terms of (pieces of) a graph. Let
l > k then ek can be represented in Al as

ek = F−1
Φ ×

-

-

-

�

�

�

...

...

�
�	6 ?



l − k − 1

k − 1

(7.1)

These ek indeed satisfy a Temperley-Lieb algebra

e2
k = ek

ekek±1ek = F−2
Φ ek (7.2)

ekek′ = ek′ek, |k − k′| ≥ 2

The last two of these equations follow directly by gluing graphs together, the first one
follows from equation (4.19). Because [M : N ] = F−2

Φ this algebra is the same as the one
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appearing in (A.4). Similar pictures to represent the Temperley-Lieb algebra have already
been given in [18]. The generators ek can be expressed in terms of the basis (5.1) of Al
via the identity

ek =
∑
ξ3,ξ4

〈
ekΩ(ξ4, ξ3)

〉
S3 Ω(ξ3, ξ4) (7.3)

We want to define another set of elements of Ak. These also do not have a very simple
expression in terms of the basis (5.1), but can be defined using a graph as for the generators
of the Temperley-Lieb algebra. The definition of the element Θ(r)

a,b is (for the case b ≥ a)

Θ(r)
a,b = F

−a+b
2

Φ

�	
�	

�	
�	

�


�


?

?

?

?

6

6

Q
Q
Q
Q
QQs
Q
Q
Q
QQ

Q
Q

Q
Q
QQk Q

Q
Q

Q
QQk

Q
Q
Q

QQ
Q

Q
Q

QQ

...

...

...

...










b− a

r

a

r

b

(7.4)

Θ(r)
a,b is an element of Ar+2b. The sequence {Θ(r)

a,b}r≥0 converges to an element of A, the
closure of ∪An = A∞. Call this element Θa,b. These elements satisfy the following algebra,
which can be found using (4.19)

Θa,bΘc,d = Θmax(a,c−b+a),max(d,b+d−c) (7.5)

If we now define for n ≥ 0

Ln =
∞∑
k=0

Θk,k+n (7.6)

we find that for n,m ≥ 0

[Ln, Lm] = (n−m)Ln+m (7.7)

i.e. the positive half of the Virasoro algebra! Using graphs we can express these Ln
formally in terms of the generators ek of the Temperley-Lieb algebra (7.2). Let ẽk = FΦek
then

Ln = F
−n/2
Φ

∞∑
l=0

F−lΦ

 −1∏
k=−∞

(ẽ−k+2lẽ−k+2l+2 · · · ẽ−k+2l+2n−2)

 (ẽ2l−1 · · · ẽ3ẽ1) (7.8)
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This can be seen as an indication of the suspected relation between the Virasoro algebra
and the Temperley-Lieb algebra [19, 20]. It would be interesting to have the negative half
of the Virasoro algebra as well, although it seems difficult to express them in a similar
way as in (7.6).

8 Reconstruction of RCFT

We would now like to consider the the reverse problem: given an irreducible finite index
finite depth subfactor of the hyperfinite factor R, when does this inclusion correspond to
one obtained from a Rational Conformal Field Theory?

First recall how to get the graphs G and H from RCFT. We took 2N vertices labeled φi
and φ′j and drew N j

Φi edges from φi to φ′j . Call the resulting graph Γ, which in general will
consist of several connected components. If 1 and 1′ are in the same connected component,
G and H will be the same graph, having a Z2-automorphism with no fixed points (mapping
φi to φ′i). Otherwise G andH will be different but identical graphs. Let Γ1 . . .Γr denote the
other connected components of the graph, i.e. those not containing 1 or 1′. At first sight
they could be anything, but in fact the possibilities are quite restricted due to the following

Theorem
The graphs Γi have the following properties

spec(Γi) ⊂ spec(G) (8.1)
‖Γi‖ = ‖G‖ (8.2)

The spectrum of a graph means here the set of eigenvalues of the incidence matrix, not
counting multiplicities. Note that the graphs Γi also have no loops of odd length, just
like G and H. These conditions on the graphs Γi do not determine them completely, but
usually only a few possibilities are left. (For more on graph spectra, see e.g. [13, 22].)

To prove the theorem, define the 2N × 2N matrix Λ

Λ = ΛG(⊕ΛH)⊕ ΛΓ1 ⊕ · · · ⊕ ΛΓr (8.3)

and let‡

ωj = arg

(
SΦj

S0j

)
(8.4)

with the convention that arg(0) = 0. Now we define 2N eigenvectors of Λ called v(p); they
are defined by the values they take at the vertices corresponding to φj and φ′j indicated

‡arg means the argument of a complex number: arg(reiφ) = φ

26



by labels j and j′. The index p takes values in the same set. We put

v
(p)
j =

Sjp
S0p

(8.5)

v
(p)
j′ = eπiωj

Sjp
S0p

(8.6)

v
(p′)
j =

Sjp
S0p

(8.7)

v
(p′)
j′ = −eπiωj Sjp

S0p
(8.8)

These 2N orthogonal eigenvectors all have the value 1 at the vertex ∗G corresponding to
the identity 1. Therefore, all eigenvectors v(p) correspond to an eigenvalue of Λ occurring
in spec(ΛG). This shows that

spec(Λ) = spec(ΛG) (8.9)

Property (8.1) now follows from

spec(Λ) = spec(ΛG)(∪spec(ΛH)) ∪ spec(ΛΓ1) ∪ · · · ∪ spec(ΛΓr) (8.10)

and property (8.2) is a direct consequence of the fact that S0i/S00 > 0, so that v(0) is the
Perron-Frobenius eigenvector of Λ.

Part of the reconstruction of a RCFT now goes as follows

- Start with an inclusion R′ ⊂ R and determine G and H; the first constraint here is
that as unlabeled graphs, G and H must be identical.

- If G and H have a Z2-automorphism with no fixed points, we may have to omit H
altogether.

- Label the vertices of G (and H) with φi and φ′i in a way consistent with how G (and
H) were constructed (i.e. τ(φi) = φ∨i or φ∨i

′, 1 = ∗G (1′ = ∗H) and there are only
edges between primed and unprimed fields).

- Try to determine the S-matrix and check whether S = St; if this is not true, try to
repeat the procedure with extra graphs Γi satisfying (8.1) and (8.2).

- Try to determine T from (ST )3 = S2.

In general this procedure will grow more and more complex as we take more graphs Γi
so the best thing to do is to use the smallest number of graphs possible. The reason why
we expect this to give a well-defined conformal field theory, is that in the original graphs
G and H we automatically have good fusion rules and braiding matrices, and the hope
is that they can be extended to the other graphs Γi as well. The only severe restrictions
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here are St = S and the fact that G and H must be identical as graphs. In the latter case
we will call the inclusion of factors self-dual, because as paragroups H can be considered
as the dual of G. In the case of finite groups this would restrict us to abelian groups only.
Later on we will do some speculation on the meaning of St = S.

Another remark concerns the solution of (ST )3 = S2. This equation only determines
the value of the central charge modulo 8 and of the conformal weights modulo 1, but
certainly not all possibilities are realized. The two constraints we know of, are that the
following two numbers must be nonnegative integers:

6

(
N(N − 1)

12
+
N−1∑
i=0

(
c

24
−∆i)

)
(8.11)

1
2
M(M − 1) +M(∆i + ∆j + ∆k + ∆l)−

∑
s

(N s
ijNkls +N s

ikNjls +N s
ilNjks)∆s (8.12)

where N is the number of primary fields, M = N s
ijNkls, and i, j, k, l are arbitrary. These

conditions follow from considerations of the characters of RCFT’s [23, 24].

9 Examples

We will now give several examples of inclusions of factors of type II1. We start with
inclusions with index smaller than 4, so that the index equals 4 cos2(π/m) for some m ≥ 3.
Then ‖G‖ = 2 cos(π/m) and the only possible graphs are the Dynkin diagrams An, Dn

and E6, E7 and E8 belonging to m = n+ 1, 2n− 2, 12, 18 and 30 respectively. According
to Ocneanu, G cannot be equal to E7 or Dn with n odd, but the other possibilities do
indeed occur. Inclusions producing the Dynkin diagrams An can be constructed in terms
of the ek occurring in (7.2).

Given an inclusion we try to find RCFT’s, which correspond to this inclusion in the
way outlined in the previous sections. However, to prove this correspondence, one would in
general also have to compare the connection obtained from the inclusion with the braiding
matrices of the Rational Conformal Field Theories. We will not do this, but we believe that
this will not cause any problems, for the following reason. Usually, the number of possible
connections is very small (at most two if the index is smaller than four [9]), certainly if
one identifies the connections that are related to each other by an automorphism of the
graphs. Therefore, we think that in the examples that follow, and it is certainly true if
the index is smaller than four, the only possible connections are equivalent to those in
equations (4.2)-(4.5) with ε = + or −.

Index 1: In this case G = r r, the Dynkin diagram A2. As G has a Z2-automorphism
with no fixed points, we may omit H. Assuming there are no further graphs Γi, the field
identification is 1 r r1′ and this corresponds to a holomorphic theory [25]. An example is
the (E8)1 WZW theory. If we do not omit H, a labeling giving a symmetric S-matrix is

H : 1′ r rΦ, G : 1 r rΦ′ (9.1)
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corresponding to SU(2)1. Allowing extra graphs Γi, these must all be equal to G, since
this is the unique graph with norm one§. Examples producing an arbitrary number of Γi
are rational Gaussian models, and RCFT’s having Φ as a simple current [26]. In particular
this shows directly that the condition that Φ is a simple current is equivalent to ΦΦ∨ = 1,
and to S0Φ/S00 = 1 as well.

Index 2: G = r r r. We also need H here. The labeling (no extra Γ’s) is

r r rr r r1
1′

ψ

ψ′

Φ′

Φ

(9.2)

and some corresponding models are the Ising model, SU(2)2 and (E8)2.

Index (3+
√

5)/2 = 4 cos2(π/5): G = r r r r. OmittingH gives a theory with fusion
rules Φ2 = 1 + Φ, known from e.g. the Lee-Yang singularity, (G2)1 and (F4)1. Including
H gives SU(2)3. The only possible graph Γi is the Dynkin diagram A4. Including one of
these gives a situation existing in SU(3)2, reminiscent of the SU(N)k ↔ SU(k)N duality
[27].

Index 3: For the first time we have two possibilities for G: either G = A5 or G =
D4. First, consider G = A5. How do we find the S-matrix? In general we can use
(6.7) to determine the polynomials gij and then use (6.6) to try to find the fusion rules.
Diagonalizing these gives the S-matrix. Another technique is trying to express all fields
as polynomials in Φ. Labeling A5 as

r r r r r1 Φ ψ2 ψ3 ψ4
(9.3)

gives for instance (assuming Φ = Φ∨) Φ2 = 1+ψ2, so ψ2 = Φ2−1, ψ3 = Φψ2−Φ = Φ3−2Φ,
and ψ4 = Φ4 − 3Φ2 + 1. The sequences of polynomials one finds in the case of An
are Chebyshev polynomials of the second kind. We also must have Φψ4 = ψ3, giving
Φ5 − 4Φ3 + 3Φ = 0, which is precisely the equation det(Φ1 − ΛG) = 0. We can now
consider {1,Φ, ψ2, ψ3, ψ4} as being a basis of the ring Z[Φ]/(Φ5 − 4Φ3 + 3Φ). Taking the
product of two fields and writing it as a sum of basis elements in this ring reproduces the
fusion rules. Furthermore,

Φ5 − 4Φ3 + 3Φ = Φ(Φ2 − 1)(Φ2 − 3) (9.4)

has roots {±
√

3,±1, 0} and computing ψi(Φ) for these values of Φ gives the numbers
Sψik/S0k which can be used to compute the S-matrix. However, this method has in
general problems if the graph has an automorphism leaving 1 invariant.
§The norm of a graph Γ is ‖ΛΓ‖.
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G = H = A5 are graphs obtained from SU(2)4. If G = H = D4, there is a problem,
because we cannot construct a symmetric S-matrix. Including extra graphs Γi which must
necessarily also be equal to D4 according to (8.1) and (8.2) might resolve this problem,
but we do not know of any example where this occurs. (This case has also been considered
in [37] where it was found to be inconsistent with the duality relations of RCFT).

Index 4 cos2(π/11): G = A10, omitting H gives (E8)3 or (F4)2, including H gives
SU(2)9.

Index 4 cos2(π/30): Apart from A29, G can also be the Dynkin diagram E8. Let us
label the fields as follows

r r r r r r r1 Φ φ2 φ3 φ4 φ6 φ7rφ5

(9.5)

where we have again assumed a self-dual situation, Φ∨ = Φ. We can use the technique
given above in the index 3 case to try to find the fusion rules belonging to G. Instead of
working with Φ as an independent variable, it is more convenient to use Φ = ω + ω−1.
Computing det(Φ1− ΛE8) = 0 gives

f(ω) = ω16 + ω14 − ω10 − ω8 − ω6 + ω2 + 1 = 0 (9.6)

and it is straightforward to express the fields in terms of ω

φ2(ω) = ω2 + 1 + ω−2 φ3(ω) = ω3 + ω + ω−1 + ω−3

φ4(ω) = ω4 + ω2 + 1 + ω−2 + ω−4 φ5(ω) = −ω7 + ω3 + ω + ω−1 + ω−3 − ω−7

φ6(ω) = ω7 + ω5 + ω−5 + ω−7 φ7(ω) = ω6 + ω−6

Taking products of these polynomials and using (9.6) to express the result in terms of the
fields, gives the following new fusion rules

φ2 × φ3 = Φ + φ3 + φ5 + φ6 φ3 × φ6 = φ2 + 2φ4

φ2 × φ4 = φ2 + 2φ4 + φ7 φ4 × φ4 = 1 + 2φ2 + 3φ4 + φ7

φ2 × φ6 = φ3 + φ5 + φ6 φ4 × φ5 = Φ + φ3 + φ5 + φ6

φ3 × φ3 = 1 + φ2 + 2φ4 + φ7 φ6 × φ6 = 1 + φ2 + φ4 + φ7

φ3 × φ5 = φ2 + φ4 + φ7 φ7 × φ7 = 1 + φ7

The characters λji of this fusion algebra can be found by computing φi(ωj) where ωj =
eiπkj/30 and kj = 1, 7, 11, 13, 17, 19, 23, 29. In the case of a RCFT the characters of the
fusion algebra are just the numbers Sij/S0j . If we try to compute the S-matrix in this
case, we find that there does not exist a symmetric S-matrix. Maybe using extra graphs
Γi, which must in this case be equal to E8 as well, it is possible to find an (exotic?) RCFT
giving this E8 diagram.

The E8 case does however exhibit a feature that is shared by all Rational Conformal
Field Theories, namely
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Theorem
For any RCFT, Sij/S0j is always the sum of roots of unity with integer coefficients. The
proof of this can be found in appendix B.

We proceed with the index four case: there are infinitely many graphs with norm 2,
namely the Â, D̂ and Ê series. The Â series are ruled out as candidates for G, because
they have no distinguished vertex ∗. Subfactors of R producing graphs of type Â, D̂ and
Ê can be constructed as follows [13]: realize the hyperfinite factor R as the completion of
∞
⊗ M2(C), where Mn(C) denotes the algebra of complex n × n matrices. SU(2) acts on
R by conjugation on every M2(C), so in particular any finite closed subgroup G of SU(2)
acts on R. In the same way we can define an action of G on R ⊗M2(C). Consider the
inclusion

RG ⊂ (R⊗M2(C))G (9.7)

whereRG stands for the elements ofR left invariant by the action of G. Then the principal
graph is precisely one of the Â, D̂ or Ê series, giving the McKay correspondence between
affine Dynkin diagrams and finite subgroups of SU(2). One can obtain the graphs directly
from G: take as fusion rules the representation ring of G, and let Φ correspond to the
2-dimensional representation of G obtained by restricting the fundamental representation
of SU(2) to G. Then the construction as in section 4 yields the corresponding Â, D̂ and
Ê graphs.

Take for example the graph D̂3: r r
r rr r
�

�@
@ . Then the graphs Γi must be Â4, Â6, or D̂3.

Omitting H and including Γ1 = Â4 gives a situation as in SU(2)4, where Φ is the field
corresponding to the spin-1 representation. Including also Γ2 = Â6 is what happens in a
holomorphic D3 orbifold [25].

For another example take G = H = Ê6r r r r r
rr (9.8)

We can take Γ1 = Â6, giving a set of graphs occurring is SU(3)3.

Actually, all possibilities occur in the c = 1 models that are SU(2) orbifolds [25]. In
particular, SU(2)/DN gives (with an appropriate choice of Φ) G = D̂N . The total field
content of the SU(2)/DN -models is organized as follows: G = H = D̂N , and there are
N + 1 extra graphs Γi: Â2N occurs N − 1 times, and the other two graphs are of type
Â4. The total number of fields is 2 × (N + 3) + (N − 1) × 2N + 2 × 4 = 2(N2 + 7), in
agreement with the results in [25]. Of course we get twice the number of primary fields,
because we are counting primed fields as well as unprimed fields. Using this result one
can for instance compute the S-matrix of SU(2)/D3 and show that it is just the tensor
product of SU(2)1 and the holomorphic D3-orbifold.
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As a final class of examples, consider the following situation: suppose the finite group
G acts outerly on R. Suppose furthermore that G is the semidirect or crossed product of
two subgroups H and A, G = H#c A, such that A is a normal and abelian subgroup of
G. In that case we can start with the inclusion

R#c H ⊂ R#c G (9.9)

or equivalently with RG ⊂ RH , to try to find Rational Conformal Field Theories, because
in this case the graphs G and H are equal (cf. [29] and [30, par 8.2]). The even vertices of
G correspond to the irreducible representations of G, the odd vertices correspond to the
irreducible representations of H, and the number of edges between a representation π1 of
G and a representation π2 of H is given by the number of times π2 occurs in the restriction
of π1 to H. The Perron-Frobenius vector (”the S0φ/S00”) has the value dim(π1) at the
vertex corresponding to π1, and the value

√
[G : H] dim(π2) at π2. In particular the index

[R#c G : R#c H] = [G : H] = |A|.

An example of this is R#c S2 ⊂ R#c S3 giving back the graph A5

r r rr r

 

JJ JJ
1 1

√
3
√

3

2

Another example is R#c Z3 ⊂ R#c A4. Here An is the alternating group on n elements.
This inclusion gives back the graph Ê6

r r r rr r rA
A
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A
A
A!!
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�
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�
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Another set of examples is R#c Z2 ⊂ R#c D2n+1, where D2n+1 is the dihedral group.
We have already seen this case in section 3, where it was related to special knot invariants.
It has the following graph
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Including apart from G and H two graphs Γi equal to G gives a situation occurring in the
Z2 orbifold A4n+2/Z2 of the rational Gaussian model A4n+2 [25]. Indeed the total number
of fields is 4(n+ 4) which is equal to 2(1

2(4n+ 2) + 7) as requested. We can also consider
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R#c Z2 ⊂ R#c D2n, which has G and H equal to
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gives the situation of A4n/Z2. Again the total number of fields equals 2(n+5)+2(n+2) =
2(1

2(4n)+7). The inclusionsR#c Z2 ⊂ R#c Dn are also found in the statistical mechanical
context in the Fateev-Zamolodchikov model [39].

10 Concluding Remarks

Let us make a few comments on the condition S = St. We believe that this condition is
related to a self-duality of the underlying algebraic structure of Rational Conformal Field
Theories, for which S has the interpretation of a sort of generalized Fourier-transform.
If for example the fusion rules are those of an abelian group, the S-matrix is symmetric,
because the abelian group is self-dual. More generally, suppose the fusion algebra contains
the representation ring of a finite group, which happens for instance in holomorphic orb-
ifold theories [25]. In that case, there are also twist fields, needed to make the S-matrix
symmetric. The underlying algebraic structure is the quantum double of the algebra of
functions on the group, which is self dual [35]. The quantum double of a Hopf algebra A
is defined as A⊗Ao [36], where Ao is the algebra dual to A with the opposite comultipli-
cation. The quantum double is obviously self dual. Also quantum groups and Kac-Moody
algebras are in a sense self-dual, because the Borel subalgebras b− and b+ are dual to
each other. What happens for instance in the SU(2)/G models we have just discussed?
Here the underlying algebraic structure must be something like A⊗ Ao#c Z2, an algebra
of dimension 2(dimG)2. Using the analysis of SU(2)/Dn we find that in that case the
following isomorphism of algebras

A⊗Ao#c Z2 ' C4 ⊕ (M2(C))n
2−1 ⊕ (Mn(C))4 (10.1)
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There are a lot of possible constructions which produce new inclusions from given ones.
Some of these seem remarkably similar to certain constructions in Rational Conformal
Field Theories

M1 ⊂M2, M2 ⊂M3 ⇒ M1 ⊂M3 tensor products
M1 ⊂M2, S ⊂M1 ⇒ S′ ∩M1 ⊂ S′ ∩M2 coset construction
M1 ⊂M2 ⇒ MG

1 ⊂MG
2 orbifold construction

M1 ⊂M2 ⇒ M1#c G ⊂M2#c G extended algebras

For instance, we have seen that A2n/Z2 can be realized as RDn ⊂ RZ2 , which looks
like a Z2 orbifold of RZn ⊂ R which would then correspond to A2n. However in general
there is a problem with models like An, as they always give the trivial inclusion R ⊂ R
for any choice of field Φ. Our construction seems to forget about any abelian structure
present in the theory.

Another remark concerns the central charge. It would be nice to have a simple inter-
pretation of the central charge in terms of subfactors. If we consider the examples of the
previous section, then we find a wide variety of central charges in the models giving the
same subfactors. The only constraint seems to be that eiπc must be in the same ring Z[ω]
as Sij/S0j and in particular the index (S0Φ/S00)2 (see appendix B).

A related issue we have not touched upon is to the problem of the classification of
modular invariants. This can in certain cases also be accomplished using techniques similar
to those occurring in our string algebras [38]. However, this technique does not seem to
have a direct natural interpretation in the II1 language.

To conclude, we have established a precise connection between Rational Conformal
Field Theories and II1 factors. It would be very interesting to translate the remarks above
into precise conditions on inclusions, thus providing us with a new handle on the wide
variety of solutions of the duality equations.

A Appendix : Inclusions of Factors and Coupling Sys-
tems

In [9] Ocneanu has introduced a machinery to study the position of a subalgebra in a
larger one. If A ⊂ B and A′ ⊂ B′ are two inclusions of algebras, A and A′ have the same
position if there is an isomorphism f : B → B′ such that f(A) = A′. Associated to such
an inclusion is an invariant object called a paragroup. It is invariant in the sense that if
A and A′ have the same position, the paragroups will be the same as well. In paragroups,
the underlying set of a group is replaced by a graph, the group elements are substituted
by strings on the graph, and a geometrical connection stands for the composition law.

Of special interest is the case where A and B are II1 factors, and in particular when
they are both isomorphic to the hyperfinite factor R (see section 3).
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Ocneanu [9] has given a complete classification of irreducible subfactors R0 of R of
finite index and finite depth, in terms of so-called coupling systems, which are particular
presentations of paragroups. Here irreducible means that R′0 ∩ R = C, that is, the only
elements of R that commute with all of R0 are the scalar multiples of the identity. What
finite depth means will be explained in a moment. In section 4 we have shown how given
a RCFT and a particular primary field Φ one can define a coupling system, and hence a
subfactor R0 of R, with index

[R : R0] = (S0Φ/S00)2 (A.1)

Let us first explain how to construct a coupling system from an inclusion N ⊂ M of
factors. First of all, one constructs the infinite tower

M0 =N ⊂M1 =M ⊂M2 ⊂M3 ⊂ · · · (A.2)

by iterating the fundamental construction of Jones [10]. Equivalently, one can take
Mk+1 = Mk ⊗Mk−1

Mk, Mk+1 = EndMk−1
(Mk), the endomorphisms of Mk viewed as

a right Mk−1-module, or Mk+1 = 〈Mk, ek〉, the II1 factor generated by Mk and ek on
L2(Mk, tr). This requires some explanation: let trk be the faithful normalized trace on
Mk, then by L2(Mk, trk) = H we mean the Hilbert space obtained by completing Mk with
respect to the inner product 〈x|y〉 = trk(x∗y). The left multiplication of Mk extends to
an action of Mk on L2(Mk, trk), so that Mk is realized as a subalgebra of B(H). Now let
ek be the orthogonal projection¶

ek : L2(Mk, trk)→ L2(Mk−1, trk−1) (A.3)

Note that trk−1 is equal to the restriction of trk to Mk−1. These projections ek satisfy a
Temperley-Lieb algebra

e2
k = ek

ekek±1ek =
1

[M : N ]
ek (A.4)

ekek′ = ek′ek, |k − k′| ≥ 2

Furthermore the trk’s are Markov traces in the sense that

trk+1(xek) =
1

[M : N ]
trk(x), x ∈Mk (A.5)

A nice account of these topics can also be found in the book [13].

¶The restriction Ek of ek to Mk is what is called the conditional expectation from Mk to Mk−1; for
x ∈Mk and y ∈Mk−1 we have trk(xy) = trk−1(Ek(x)y)
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Given the tower M0 ⊂ M1 ⊂ M2 ⊂ · · · one can construct two unoriented bipartite
graphs G and H , i.e. graphs that admit a Z2-grading of the vertices, so that no two
vertices with the same grade are connected via an edge. Equivalently, the graph has no
loops of odd length, or it is bicolorable. The even vertices of G represent the inequivalent
irreducible N−N subbimodules of M0, M1, M2, . . ., the odd vertices of G correspond
to the inequivalent irreducible M−N subbimodules, and the even and odd vertices of H
correspond in the same way to irreducible M−M and N−M subbimodules respectively.

The number of edges between an N−N bimodule X and a M−N bimodule Y is given
by the number of times X occurs in Y if the left action of M is restricted to N . The
number of edges between a M−M and a N−M bimodule is determined similarly.

Furthermore there is a map τ from the set of vertices of G ∪H to itself mapping P−Q
modules to Q−P modules by interchanging the left and right actions. If P acts on the
left on X via p · x→ px then it acts on the right via x · p→ p∗x. This map τ is called the
contragradient map.

The last ingredient of a coupling system is the connection. Given a N−N bimodule
X and a M−M bimodule Y , there are two ways to induce X to Y : via M−N and via
N−M bimodules. The way in which these two results differ is expressed in terms of a
complex number W associated to each set of four bimodules, one of each type. The map
W is called the connection.

The inclusion N ⊂M is said to be of finite depth if the number of vertices of G andH is
finite. Actually G is equal to the principal graph of the derived tower of finite dimensional
algebras

∂M/∂N = N ′∩M0 ⊂ N ′∩M1 ⊂ N ′∩M2 ⊂ · · · (A.6)

the finiteness of G means here that the Bratelli diagram for ∂M/∂N eventually becomes
periodic.

To see why a coupling system can be seen as a generalization of group theory consider
the example R ⊂ R#c G. Here R#c G means the crossed product of R by the finite
group G: suppose G acts on R by outer automorphisms ρg and ρgρh = ρgh. Then R#c G
has as elements

∑
agug where ug is unitary, ag ∈ R, and ugau

∗
g = ρg(a). In this case the

coupling system reproduces all the information contained in G. The graph G has one odd
vertex and the even vertices are in one-one correspondence with the elements of G, while
H has one odd vertex and one even vertex for every irreducible representation of G. So H
can be considered as being the dual of G.

B Appendix: A Proof

In this appendix we will supply the proof of

Theorem
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For any RCFT, Sij/S0j is always the sum of roots of unity with integer coefficients.

The idea of the proof is to use a famous theorem in algebraic number theory by
Kronecker and Weber stating that a field extension of Q is contained in a cyclotomic field
Q[ω] if the extension is normal and has an abelian Galois group [28].

Let L be the field extension of Q generated over Q by the set { SijS0j
}i,j . The numbers

Sij
S0j

for fixed i are the roots of the polynomial

det(λ1−Ni) = 0 (B.1)

where Ni is the matrix (Ni)pq = N q
ip. Therefore this is a normal field extension of Q. Now

let g be an element of the Galois group of L, g ∈ Gal(L/Q). Because the numbers Sij
S0j

are
precisely the inequivalent solutions of the fusion rules,

Saj
S0j

Sbj
S0j

=
∑
c

N c
ab

Scj
S0j

(B.2)

and the fusion rules are invariant under the action of the Galois group, we must have

g(
Sij
S0j

) =
Sik
S0k

(B.3)

with k independent of i, so we can put k = g(j). Because SS∗ = 1 we find

g

(
1
S0j

)2

= g

(∑
i

(
Sij
S0j

)(
Sij
S0j

)∗)

=
∑
i

(
Sig(j)
S0g(j)

)(
Sig(j)
S0g(j)

)∗

=

(
1

S0g(j)

)2

(B.4)

and combining equations (B.3) and (B.4) yields

g
(
(Sij)2

)
= g

(Sij
S0j

)2

/

(
1
S0j

)2


=

(
Sig(j)
S0g(j)

)2

/

(
1

S0g(j)

)2

=
(
Sig(j)

)2
(B.5)
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We now use the fact that S = St so that (B.5) must be symmetric as well; this implies
that (Sig(j))2 = (Sg(i)j)2 and taking i = 0 gives in particular

Sg(0)j

S0g(j)
= ±1 (B.6)

Take now arbitrary g, h ∈ Gal(L/Q). We have

gh

(
Sij
S0j

)
= g

{
h

((
Sij
Si0

)(
S0i

S00

)(
S00

S0j

))}

= g

(
Sh(i)j

Sh(i)0

Sh(0)i

Sh(0)0

Sh(0)0

Sh(0)j

)

= g

(
Sh(i)j

S0j

S0j

Sh(0)j

Sh(0)i

Sh(i)0

)

=
Sh(i)g(j)

Sh(0)g(j)
g

(
Sh(0)i

Sh(i)0

)
(B.7)

On the other hand

hg

(
Sij
S0j

)
= h

(
Sig(j)
S0g(j)

)

= h

(
Sg(j)i
S0i

Si0
S00

S00

S0g(j)

)

=
Sg(j)h(i)

Sh(0)g(j)

Sh(0)i

Sh(i)0
(B.8)

Since g(±1) = ±1 we see from (B.6) that (B.7) and (B.8) are in fact the same. Therefore,
the action of gh and hg on L is the same, and we conclude that Gal(L/Q) is abelian.
Applying the theorem of Kronecker and Weber now tells us that L ⊂ Q[ω] for some root
of unity ω. Since Sij/S0j is a solution of equation (B.1), which is a polynomial with
integer coefficients and leading coefficient one, these numbers are also algebraic integers.
The subring of algebraic integers of Q[ω] is precisely Z[ω] [28], and this completes the
proof that Sij/S0j is a sum of roots of unity with integer coefficients.
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Figure 1: Different sewing procedures for the 4 punctured sphere.

Figure 2: Braiding on a simple conformal block.

Figure 3: Proof of equation (2).
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Figure 4: Proof of the hexagon identity.

Figure 5: Proof of the pentagon identity.
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Figure 6: Proof of the Yang-Baxter equation.

Figure 7: Proof of the genus one identity.

Figure 8: A knot diagram.
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Figure 9: The Reidemeister moves.

Figure 10: Closure of a braid.

Figure 11: Working out (3.8) on a general conformal block.
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Figure 30: A figure of page 48

M1 ⊂M2, M2 ⊂M3 ⇒ M1 ⊂M3 tensor products
M1 ⊂M2, S ⊂M1 ⇒ S′ ∩M1 ⊂ S′ ∩M2 coset construction
M1 ⊂M2 ⇒ MG

1 ⊂MG
2 orbifold construction

M1 ⊂M2 ⇒ M1#c G ⊂M2#c G extended algebras

Figure 31: A table of page 50
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