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Abstract

The subject of this Master’s thesis is the information loss paradox. In the first
chapters we treat the theoretical background needed to understand the original
calculation carried out by Hawking that shows that black holes radiate. A de-
tailed discussion of this calculation, its implications for information loss and its
validity is provided in the chapters 3 to 5. Then we focus on the suggested so-
lutions to the paradox. In particular, we investigate one of these proposals that
was found by Mathur using string theory. We subject this so-called 'fuzzball’
picture to a test that should give some insight regarding the question whether
or not Mathur’s proposal is likely to solve the paradox in the long run. We
were unable to draw a definite conclusion. We do, however, obtain a couple of
intermediate results that can be useful in successive research. Some suggestions
for a follow up are given explicitly.
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Introduction

In the mid seventies Stephen Hawking discovered a remarkable feature of black
holes. Classically, black holes are defined as objects so dense that even light
gets trapped in their gravitational field. However, Hawking showed that when
quantum effects are taken into account black holes have a finite temperature.
They radiate and eventually evaporate when placed in a cooler environment.
This radiation is called Hawking radiation and it is easiest to picture it as follows.
In a quantum field theory there are vacuum fluctuations, that is virtual pairs of
particles can be produced by the vacuum, one with a negative and the other with
a positive energy. In a flat spacetime setting these virtual particle pairs may
exist for an instance to annihilate again immediately. But now imagine such a
pair production to occur just outside a black hole, then if the virtual particle
with a negative energy E falls through the event horizon, whereas the particle
with positive energy does not, the two can no longer rejoin to annihilate. In
this scenario the negative energy particle causes the black hole mass to reduce
with an amount E that is carried away by the particle with positive energy
E. This is roughly how quantum effects allow black holes to evaporate. We
must emphasize, however, that this picture serves merely to sketch the idea and
should not be taken too literally.

In his calculation Hawking shows that the radiation coming from the black
hole is exactly thermal, which means that it does not carry any information.
As long as the black hole exists the information about everything that fell into
it is inaccessible to an observer that stays outside the black hole, but could in
principle be retrieved by going after it. However, when the black hole evapo-
rates all that remains is the information-less radiation. So Hawking concluded
that information is lost in the process of black hole formation and evaporation,
but this is in contradiction with one of the fundaments of quantum mechanics
(unitary time evolution). This constitutes the information loss paradox.

Over the past three decades many a physicist has attempted to solve the
paradox and numerous articles appeared on the subject (Hawking’s 1975 article
is cited over 2200 times!). Although a satisfactory solution to the paradox has
not yet been provided, everyone seems to agree on two things. Firstly, that
information is not really lost and secondly, that Hawking was led to draw this
false conclusion because, in the lack of a full theory of quantum gravity, he had
to do a semi-classical approximation.

To find this full theory of quantum gravity is probably the most pressing
problem in theoretical physics. Due to non-renormalizabitlity gravity cannot
be incorporated in a quantum field theory along with the other three forces of
nature; the electromagnetic force, the weak force and the strong force. Apart
from being non-renormalizable, another striking feature of gravity is that it is
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extremely weak compared to all other forces. In fact, there are only two cases in
which gravitational effect may be strong enough to affect quantum phenomena.
These are the origin of the universe and the very instances afterwards, as well
as the close vicinity of a black hole. Consequently, both black holes and the first
instances of the universe are widely studied in the quest for a theory that unifies
all four forces of nature. And not surprisingly, the information loss paradox
plays a main role in the black hole studies, since a better understanding of
the paradox may provide a better understanding of the full theory and vice
versa. A nice example of how studies of the paradox and searches for a theory
of quantum gravity are intertwined is the following. In 1993 Gerard 't Hooft
deduced from detailed studies of the paradox that the world is in principle
holographic. Five years later Juan Maldacena found that string theory indeed
exhibits this holographic feature, called the AdS/CFT correspondence. This
correspondence tells us that if string theory is the correct theory of quantum
gravity, information is not lost.

The goal of this thesis is first of all to give a clear explanation of the in-
formation loss paradox that should be accessible to students who have basic
knowledge of general relativity and quantum field theory. Secondly, we focus
on the validity of Hawking’s calculation to try and answer the question ”Where
is the loophole in Hawking’s calculation?”. Thirdly, we study some of the most
important attempts at resolving the paradox to understand how the common
belief in the physics community has developed towards the conclusion that in-
formation is not lost. At this point we are fully equipped to motivate why
we selected the so-called ’'fuzzball’ proposal for further studies. The fuzzball
proposal is an idea based on string theory arguments that was put forward by
Mathur as a possible solution to the paradox. We shall see that the motiva-
tion for our choice is twofold. On the one hand, our studies led us to believe
that solving the paradox requires a full theory of quantum gravity and string
theory is such a theory. On the other hand, Mathur’s work is attractive for
the fact that his approach enables one to do actual calculations, whereas many
attempts fail to go beyond speculation. The final question we shall try to an-
swer is ”Do the geometries, that Mathur claims to describe black holes more
accurately than the classical black hole geometry, exhibit the property crucial
for restoring information, namely non-locality?”.

We shall start by reviewing the theory of black holes. Special attention will
be paid to the analogy between black hole mechanics and thermodynamics. In
the chapters 3 to 5 we consecutively give a thorough review of Hawking’s original
calculation, discuss how Hawking’s results lead to information loss and finally
elaborate on the validity of Hawking’s calculation. Chapter 6 is dedicated to the
attempts that have been made to solve the paradox. Here we shall encounter
concepts such as the holographic principle and the AdS/CFT correspondence
mentioned before. In the final chapter we focus on a possible resolution put
forward by Mathur. We investigate his fuzzball proposal and also present some
original work that was carried out to test if this fuzzball can in fact leak out
information over its horizon. Although, the answer was inconclusive the results
we obtain may be useful for further studies of Mathur’s work. We conclude by
providing some ideas for successive research that may give a conclusive answer
to the question whether or not the fuzzball proposal can restore information.



Chapter 1

General Relativity

At the start of the 20th century Albert Einstein forced us to radically change
our view on space and time. The theory of special relativity, which he wrote
down in 1905, was the first step. And in 1915 he made it complete with the
theory of general relativity, which really took our understanding of space, time
and gravity to another level.

In special relativity spacetime has the structure of an R* manifold with
Lorentzian signature. In this spacetime our idea of simultaneity is drastically
changed since a natural notion (i.e. observer independent) of the event p occur-
ring "at the same time as” the event ¢ no longer exists. This is of course very
contradictory to what we seem to experience in everyday life. Our ability to
ignore our intuition is even more challenged by general relativity in which space-
time is no longer flat. Instead, Einstein’s equation of general relativity tells us
that spacetime is curved due to the presence of mass. Gravitational attraction is
not a consequence of a force anymore, but of the curvature of spacetime. When
the energy-momentum tensor, sometimes called stresstensor, T},,, describes the
distribution of energy and momentum in the universe, the Einstein equation
determines the metric that is generated by this energy-momentum tensor in the
following way'!

1
R, - iRg’W =8nGTy.,

where R, and R are the Ricci tensor and scalar respectively, G is the gravita-
tional constant and g, is the metric. In this thesis we shall use the (— + ++)
sign convention for spacetime metrics.

We assume that the reader is familiar with the basics of general relativity?,
nevertheless, the following sections can help you refresh your memory as we will
quickly introduce the geodesic equation and Killing vectors to be able to discuss
in detail a particular solution to the Einstein equation, namely the Kerr metric.
The Kerr metric describes the spacetime around a spinning black hole. We chose
to discuss this case because in the next chapter we will treat the mechanics of
a spinning black hole to show the remarkable resemblance between black hole
mechanics and thermodynamics.

1Tn the remainder of this thesis I will work in units where the gravitational constant G,
the velocity of light ¢ and Planck’s constant & are set to unity.

21f not we can recommend [1] for a quick introduction or [2], [3] for a thorough discussion
of the entire theory.
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1.1 Geodesic Equation

Geodesics in curved spacetime are the analogs of straight lines in flat spacetime.
They are given by

D%zt dPz# dz” dx”
5 = e Ty oy = 1.1
DN =2 v (L.1)
where I'} ) is the Christoffel connection
1
qu = 59/\(1 (augau + augap, - aag/u/)~ (12)

The meaning of the parameter A in (1.1) depends on the type of geodesic, which
is determined by the number

e = —guiti’ (1.3)

which is constant along the geodesic. When e > 0 the geodesic is called timelike
and it describes the path a massive particle follows when no external force acts
on it, note that the same is true for straight timelike lines in flat spacetime. For
timelike geodesics the parameter A is proportional to the proper time, which is
extremized along the path. This can be seen from the action principle. The
propertime 7 is given by

dr = \/—=dzrdz’ g, = \/—FHEY g d), (1.4)

where the dot denotes derivation with respect to A. The action of a particle of
mass m is then

S = —m/dT = —m/d)n/—a'c“:b”gw. (1.5)

And the variation principle (6.5 = 0) yields the geodesic equation (1.1).

When e < 0 the geodesic is called spacelike and A is proportional to ¢ times
the propertime. Finally, for e = 0 we call it a null geodesic and A is called the
affine parameter which is not related to propertime. Massless particles move
along null geodesics.

1.2 Conserved Charges

In this section we will use the symmetry of the action (1.5) of a massive particle
to derive its conserved charges. Consider, therefore, the following coordinate
transformation

* — z* — ak*(x), (1.6)
this leaves the action invariant to first order in « if k* obeys
kkakguu + (ap,kk)gx\u + (aukk)gku = 07 (17)

we then call k#(x) a Killing vector field and (1.7) is known as Killing’s equation.
When we define Q = k#p,, with

oc

Pu = 9k’ (1.8)
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where £ is the Lagrangian: £ = —m+/—dz#dz"g,,. It is easy to show that @
is a conserved charge

0 = 6L
oL oL
_ " -
o Ozm 0" + OxH 0%
oL

d oL
—_ R e Y2 T SpM
= d)\[ﬂab“]éx + 5102

= % [%63:“]

d
= —azy puk*] (1.9)
where we used the Euler-Lagrange equation

oL d oL _
dzk  d\dir
in the third line.

If we define a Killing vector as k = k*0,, then one can always find local
coordinates such that k = 0, where £ is one of the coordinates. In these
coordinates the Killing equation gives: 0J¢g,, = 0. So that it can be seen
immediately from the components of the metric what its Killing vectors, and
consequently its conserved charges, are.

1.3 Kerr Metric

The metric of a spacetime with a certain energy and momentum distribution is
determined by Einstein’s equation

1
Rp,u - ERgp,z/ = 87TTMIJ7 (110)

where R, and R are the Ricci tensor and scalar respectively, g,, is the met-
ric and T}, is the energy-momentum tensor. The Ricci tensor and scalar are
obtained from the Riemann tensor by the following contractions

R, =RY,, and R=g"R,,, (1.11)
the Riemann tensor, also called curvature, is defined by

[D,,D,)V? =RV, (1.12)

ouv
where V* is a vector and D,, is the covariant derivative
D,A" =9,A" +T),A°. (1.13)
The explicit form of the Riemann tensor is

R, =08,I0, —8,T%, + T4 T}, —T9,T),. (1.14)

ouv

In general it is very difficult to solve the Einstein equation given a certain
energy-momentum tensor. Just a few solutions have been found that solve
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the Einstein equation analytically. And they do so for very special values of
the energy-momentum tensor. For example the Friedman-Robertson-Walker
metrics solve the Einstein equation for a spatially homogeneous and isotropic
fluid® and the Schwarzschild, Kerr and Kerr-Newmann metric are solutions of
the Einstein equation in vacuum, i.e. for T}, = 0. The Schwarzschild solution
is probably the most well known analytic solution. It is the unique spherically
symmetric vacuum solution of Einstein’s equation, which describes the empty
space outside a spherical star or black hole. The Schwarzschild metric is given
by

2M
ds? = —(1 - ==
.

)dt® + (1 — %)_ldﬁ + r?(df? + sin® 0d¢?), (1.15)

where M is the mass of the star or black hole that sits at r = 0.

As we learned in the previous section we can see immediately from the
Schwarzschild metric that we have two conserved charges, since the metric is
independent of ¢ and ¢. The conserved charges for the Killing vectors k = 0,
and n = Jy are respectively the energy and angular momentum

E = —-ktp,
L =n*p,, (1.16)

where the minus sign in the definition of the energy serves to make it positive
everywhere outside the horizon (there both the Killing vector field k* and the
momentum p* are timelike so their inner product is negative).

Furthermore, we see from (1.15) that the components of the metric become
singular at » = 0 and r = 2M. The second is not a real singularity, which can
be seen by performing the coordinate change r — r* = r 4+ 2M In|5%; — 1.
The coordinate r* is called the tortoise coordinate and the metric has its only
singularity at »* = 0. An interesting thing does happen at r = 2M, though;
when you cross r = 2M in the direction of decreasing r, r becomes timelike,
whereas ¢t becomes spacelike. In other words the light cones tilt over and you
are forced to continue moving towards r = 0. The surface at » = 2M is called
an event horizon, it causally disconnects two regions of spacetime in the sense
that anything that falls through the horizon can no longer influence anything
in the outer region. The singularity at » = 0 is real, but it is hidden from us by
the event horizon.

The metric that describes the spacetime outside a spinning black hole* was
much harder to find, because the condition of spherical symmetry had to be
given up. It was found only in 1963 by Kerr and is appropriately called the
Kerr metric

2
ds* = —d? + Podr® + p2d6? + (1 +a?) sin® 0 +

M
p2’"(a sin® 0dg — dt)?, (1.17)

3In cosmology one often looks at such large scales that it seems legitimate to describe the
universe as a homogeneous and isotropic fluid. See [2] for more on Friedman-Robertson-Walker
universes.

40f course it also describes the metric outside a spinning star but we will focus on the
black hole from now on.
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where
A(r) =r*—2Mr+a®> and p*(r,0) =r* + a® cos® 0,

and a is related to the angular momentum J of the black hole by J = Ma.
This metric can be extended to the metric of the spacetime outside a spinning
charged black hole, with angular momentum J and charge @ by replacing 2Mr
with 2Mr — Q2. It is then called the Kerr-Newman metric.

When a is set to zero in (1.17) we recover the Schwarzschild metric, on the
other hand we would expect to recover flat Minkowski spacetime when M is set
to zero. Although this is the case, it may not be obvious immediately, because
(t,r, ¢,0) are not ordinary polar coordinates but ellipsoidal coordinates (see Fig.
1.1), in which Minkowski spacetime looks like this

r? + a2 cos? 6

ds® = —dt?
s + T2+a2

dr? 4+ (r? + a® cos® )d#* + (r? + a*) sin® Bd¢>.

Note that the Kerr metric also has two Killing vectors k = 0; and n = 0.
Since the metric is independent of ¢ it is stationary, but it is not static; it does
not change with time, but it is spinning.

6 = const

\\) r = const

Figure 1.1: Flat space in ellipsoidal coordinates.

Now let us look at where the coefficients of the metric become singular. This
happens for p = 0 and A = 0. We shall see that the first corresponds to a real
singularity in spacetime whereas the second is an artifact of the coordinates.
We will first discuss A = 0, which happens at two radii

re =M+ M?—a2,

in the case that M2 > a2. This is the case we are interested in, since for
M? < a? the spacetime contains a naked singularity. A naked singularity is
a singularity that it is not hidden from our view by an event horizon, which
means that things can come out of the singularity and influence our universe.
Since the laws of physics do not apply at a singularity, we have no idea of what
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can come out of it. Consequently, we loose the possibility of saying anything
reasonable about the future in the presence of a naked singularity. This is of
course very disturbing, but fortunately numerous thorough studies of collapsing
bodies have made it reasonable to believe that naked singularities do not form
in such processes (see [2]). The fact that singularities seem to be shielded from
our view is often referred to as ”cosmic censorship” and is thought to apply to
all naked singularities except the Big Bang singularity at the beginning of our
universe. Although we shall also adopt this view here and therefor omit the
case for which M? < a2, we should emphasize that cosmic censorship has not
been proven.

Finally, the case for which the mass of the black hole exactly equals a (or
—a) is called the extremal case. It is highly unstable, since adding just the
slightest bit of mass will change it into the first case, where M2 > a2.

At r, we find that we have a usual event horizon® as we have in the
Schwarzschild metric at r = 2M. At r_ the opposite happens; since the light
cones tilt again r switches back to being spacelike and t to being timelike. So
you can choose whether to continue moving in the direction of decreasing r and
eventually hit the singularity (or pass through it as we will see in a bit) or re-
turn in the direction you came from and this time when you cross r = r_ you
will be forced to move towards r,, since the time direction has been inverted.
Eventually, you will be spit out past the outer horizon into a different universe
than the one you originally came from®. So in this new region of spacetime
there is a naked singularity, but for the region you started from the singularity
is shielded by the event horizon at r = r.

In the Kerr spacetime there is yet another surface at which interesting things
happen. In the Schwarzschild metric the Killing vector k = 9; is timelike outside
the event horizon and spacelike inside the event horizon, at the horizon it is null”.
Now let us see where this happens in the Kerr metric

kuku = gt
2M
= pQT_l
Lo a2
= —(a®sin®f - A).
2

This vanishes at
rrk+ = M £/ M? — a2 cos? 6

So rg4+ > ry (they coincide for § = 0,7) and at ry the Killing vector is
already spacelike. The surface at which the Killing vector is null is called the
Killing horizon and the region between the Killing horizon and the outer horizon

5T.e. you can choose coordinates that are not singular at 7.

6See next section.

7So at the event horizon g¢; = 0, physically this means that it is impossible for massive
particles to stand still at the event horizon. This can be seen from the equation for the
constant e (1.3), which is positive for the path of a massive particle:

0 < —gudatdx”
< gttdt2 — gijd.ridwj.

At the event horizon g;; vanishes so the dx® cannot be all zero there.



Chapter 1. General Relativity 9

is called the ergosphere (see Fig. 1.2). Since the Killing vector is spacelike
inside the ergosphere, but the momentum of a massive particle is still timelike,
particles can have negative energy there. In the next chapter we will discuss
the remarkable consequence hereof, namely that energy can be extracted from
a spinning black hole via a so-called Penrose process.

Outer event Q_D 1/ Killing horizon

horizon

Ergosphere

Inner event horizon

Figure 1.2: Spinning black hole with ergosphere.

At p = 0 the spacetime truly becomes singular, but as opposed to what you
see in the Schwarzschild case this is not a point in spacetime. Remember that
in ellipsoidal coordinates r = 0 is not a point but a disc (see Fig. 1.1) so that
the singularity which occurs at

™
= d =—
r=0 an 5"

is actually a ring. What happens when you enter this ring is more science
fiction than science, but it can be shown that you will find yourself in another
asymptotically flat spacetime, described by the Kerr metric but now with r < 0,
so A never vanishes and there are no event horizons.

1.4 Penrose Diagrams

The last thing we want to discuss in this chapter is a very useful way of depicting
curved spacetime. It was discovered by Roger Penrose and therefore we call them
Penrose diagrams. They are obtained by rewriting your metric such that it has
the form

ds®> = A(a, B)(=da? + dB?) + B(a, B)d0?

with Q a function of the angular coordinates. So that null geodesics make a 90°
angle and all the coordinates have finite ranges.

As an example we will draw the Penrose diagram for the Schwarzschild metric
(1.15). First we have to do some smart coordinate changes, starting with going
to Kruskal coordinates

_4Me—u/4M
4Mev/*M (1.18)

]
Il

<
Il
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with u = t—r* and v = t+r* and the tortoise coordinate r* = r+2MIn |55 —1|.
This enables us to write the metric as

= %e’rﬂMdﬁdﬁ —12(d6? + sin® dg?). (1.19)

ds?
We can define the angular part as dQ? = df? + sin? 8d¢? and we will set this to
zero, which essentially does not change things, since the Schwarzschild solution is
spherically symmetric. When we set df) to zero and change to Kruskal-Szekeres
coordinates

W = (i-7)/4
Vo= (a+9)/4, (1.20)

and use a conformal transformation (g,, — a(x)g,.,) we can write the metric
as

ds* = dv" — du'

Finally, this can be compactified by making the range of the coordinates
finite with a last coordinate change

" !

= 2tan 'u
v’ = 2tan"'v/, (1.21)

with — <", 0" <.

The Penrose diagram for the maximally extended® Schwarzschild metric can
now be drawn and is shown in Fig. 1.3. Note that the boundaries of the
Penrose diagram represent infinity and that ingoing and outgoing null geodesics
always make a 90° angle. 7+ and 7~ are defined as future and past null infinity
respectively, furthermore, we write future and past timelike infinity as+ and ¢+~
respectively and spacelike infinity as «°. Fig. 1.4 shows the Penrose diagram of a
spherically collapsing body. The shaded area represents the collapsing body and
its surface is a timelike geodesic. Outside the surface of this body the spacetime
is described by the Schwarzschild metric, whereas the metric inside the body is
completely different. The regions III and IV do not exist and neither do the past
event horizon and singularity. Finally, the vertical line represents the origin of
the collapsing body and is also a timelike geodesic.

#Maximally extended means for —oo < 7,t < 00.



Chapter 1. General Relativity 11

Figure 1.3: Penrose diagram of the extended Schwarzschild metric.

collapsing
body

Figure 1.4: Penrose diagram of a spherically collapsing body.
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Finally, the Penrose diagram of the Kerr metric is shown in Fig. 1.5, the
curve 7 describes the path we discussed in the previous section. As you see the
surface at r = r serves as an event horizon that shields off the singularity for
region I.

p=0
(ring singularity)

Figure 1.5: Penrose diagram of the extended Kerr metric.



Chapter 2

Black Holes and
Thermodynamics

2.1 Area Theorem

Classically, the definition of a black hole is that it is an object with a gravita-
tional attraction from which not even light can escape. Once a particle, massive
or massless, passes the event horizon there is no way back. Intuitively, one easily
draws the conclusion that therefore the mass of a black hole can only increase.
The area of a black hole is defined as the surface that forms the event horizon,
so for a schwarzschild black hole of mass M the area is simply

A = 4mr? = 167 M2, (2.1)

Since we just concluded that 6M > 0 it follows directly from (2.1) that 64 > 0.
So this intuitive, but naive reasoning led us to the conclusion that the area of a
black hole can never decrease in size, this is known as the area theorem.

A rigorous proof of the area theorem can be found for example in [2], here
I will try to give you a physical picture of this very mathematical proof, which
should help the interested reader understand the full proof.

First we introduce the expansion 8 of a null geodesic v as

6 = Do£°, (2.2)

where D, is the covariant derivative and £“ is the tangent vector of «. The
physical interpretation of the expansion of a bundle of null geodesics is that it
is a measure of the focusing of these null geodesics by the spacetime. When 6
is positive the light rays are spread out by gravity, whereas when it is negative
light rays are focussed towards each other. When the derivative of (2.2) is taken
one obtains the focusing equation
o _ do _ 1 2 af af a ¢

£4D,6 = i —59 — 00807 + wepw™ — Rop€¥EP, (2.3)
where R, is the Ricci tensor and oa5 = D(,€g) is the shear and wap = D&
is the twist of the null geodesics. The shear of a bundle of light rays can be
imagined as neighboring light rays experiencing a translation with respect to

13
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each other. To understand the meaning of twist imagine a cylinder composed of
fibers running in the axial direction indicating different light rays. Then, imagine
holding the cylinder in both hands and giving it a twist by rotating one hand
in the direction orthogonal to the cylinder axis while holding the other hand
still, now the fibers have a twist with respect to one another. When we demand
that the null geodesics are orthogonal to the three dimensional hypersurfaces
of equal time, it can be shown that their twist is zero. Without proving this
it can be understood qualitatively when we make a comparison with the three
dimensional picture we have of twist. Here the axis of the cylinder corresponds
to the time direction and cross-sections orthogonal to this axis correspond to
the hypersurfaces. So demanding that the fibers are orthogonal to these cross-
sections results directly in the fibers having no twist with respect to one another.
Thus, we have that for hypersurface orthogonal geodesics, the third term in (2.3)
vanishes.

The last term of the focusing equation is negative since, according to Ein-
stein’s equation

Rop*&P = 8nT,p6™P > 0,

where we used that for null geodesics g,s£®¢P = 0 and the last step follows
from the positive energy condition. Finally, the second term is manifestly non-
positive, since it is quadratic. This enables us to obtain the following important
inequality from (2.3)

o 1, 1.1 1
dT+20 <0 — 02€0+27, (2.4)
with 6y the value of 6 at 7 = 0. Once light rays start being converged with
some value 6y < 0, (2.4) tells us that § — —oo along those light rays within the
affine length 7 < 2/|6|. This result is one of the cornerstones of the singularity
theorem. We shall not discuss the details of the theorem here explicitly, but
it says that spacetimes, satisfying a number of conditions (all satisfied by the
Schwarzschild and Kerr metric) and containing a trapped surface, i.e. a surface
for which all future directed null geodesics orthogonal to it have a negative
expansion #, will have a singularity.

From the Penrose diagram of the Schwarzschild metric (Fig. 1.4), we see
that once light rays enter region II they will inevitably hit the singularity. It
can be proven that in spacetimes containing a black hole region B (such as
region IT in the Schwarzschild metric) every trapped surface T is a subset of the
black hole region B; T' C B.

The proof of the area theorem consists of two steps, the first is to prove that
the null geodesic generators of the event horizon have 6§ > 0, the second is to
prove that this leads to §4 > 0.

The event horizon H is the boundary of the black hole region B. Suppose
there is a point p € H for which 8 < 0. Let X be a surface through p that is
intersected only once by every causal (timelike and null) geodesic with no end
point (it reaches either «+* or Zt). Then H = H N X is a two surface (note
that this is the area of the black hole) and p € H. Since 6 < 0 at p, there is
a neighborhood of p for which the expansion is also negative. Now we call the
intersection of the surface ¥ with this neighborhood K (see Fig. 2.1),s0 K C X.
But this leads to a contradiction as follows. Since # < 0 on K, K is a trapped
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surface, and as we saw above it follows that X' C B. And thus all the causal
geodesics that intersect K have end points at the singularity, so KN = (. So
we must draw the conclusion that 8 > 0 everywhere on H.

#H

Figure 2.1: Intersection of the event horizon with a Cauchy surface.

This enables us to proof that the area of a black hole can never decrease as
follows. Let X; be a Cauchy surface and ‘H; = H N %; and let ¥y be another
Cauchy surface, such that every causal geodesic that passes through 3; will
pass through ¥, at a later time and Hs = H N X2 (see Fig 2.2). Now, through
each p € H; passes a null geodesic v that will intersect ¥, at ¢ € Hs, so there
is a map from #; into Ha. Finally, since 8 > 0, the portion of the area of Ha
given by the image of H; under this map must be at least as large as the area
of H;. Since new black holes may form between ¥; and X5, the area of Hs may
even be larger. So we obtain that the area of a black hole cannot decrease.

2.2 Penrose Process

In 1969 Penrose did the surprising discovery that energy can be extracted from
rotating black holes. In section 1.3 we have seen that rotating black holes have
an ergosphere. This is a region were it is impossible for massive particles to stand
still, but they are not trapped by the black hole yet, they can still escape to
infinity. In addition, we found that particles can have negative energy inside the
ergosphere, because the Killing vector field k, (such that k#0,, = 0;) becomes
spacelike. So for a massive particle with timelike four-momentum p*, the energy
inside the ergosphere is

E=—k,p" <0.

Can energy be extracted from the black hole by throwing in particles with
negative energy? The answer is yes!
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b
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NN

Figure 2.2: Every causal geodesic that intersects ¥; will also intersect .

Ergosphere

Figure 2.3: Top view of a spinning black hole. A particle with momentum pf
falls towards it and splits into two parts inside the ergosphere.
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Let us make this a bit more precise. Consider a particle with positive energy
Ey = —k,pl at a large distance from the black hole, we drop this particle
into the black hole along a geodesic (its energy-momentum pH is conserved).
Furthermore, we prepare the particle such that it splits into two parts when
it finds itself inside the ergosphere (see Fig. 2.3). The energy E; of the part
that continues towards the black hole and is finally absorbed, is arranged to be
negative from the point of view of an external observer. The other part travels
back across the Killing horizon to infinity along a geodesic and is arranged to
have a positive energy FE, outside the ergosphere. Local energy-momentum
conservation tells us that

Py =i + P}
and contraction with &, gives
Ey = Ei + Es.

Since E is negative, we find Ey > Ep . So we have extracted an energy |Ei|
from the rotating black hole.

There is a limit to the amount of energy that can be extracted from a rotating
black hole. This limit comes from the fact that particles carrying a negative
energy also carry a negative angular momentum, i.e. they move in the direction
opposite to the rotation of the black hole. This will eventually cause the black
hole to stop rotating. As a consequence the ergosphere will vanish and energy
can no longer be extracted from the black hole.

Let us see how we arrive at the relation between a particles energy and its
angular momentum. First, we introduce locally non-rotating observers, i.e. they
have zero angular momentum, as the closest analog to inertial observers. So,
for such observers we may write!

L = g,nts”
dt do
= gd)tﬁ +9¢¢a
= 0. (2.5)

Their coordinate angular velocity is thus

Q:@__gﬂ’_ a(r’ +a? — A)
Tdt gpe  (r2+a2)? — Aa?sin?6’

where we inserted

2Mr .
Jio = — asin® 0
¢ p2
2 2—A
- . mta ——asin®6 and
r2 + a2(1 —sin® )

2M
gos = (r*+a*)sin®f+ p—QT(f sin” 6,

!Remember that we defined n = n#9, = 9, in section 1.3.
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which can easily be obtained from the Kerr metric (1.17). For such an observer
with zero angular momentum sitting at the event horizon, i.e. r = ry and
A =0, the coordinate angular velocity is

a

QH:7
2 27
r++a

(2.6)

in other words Qg is the minimum angular velocity an observer can have at
the event horizon, so Qg can be naturally defined as the velocity of the event
horizon itself. The null vector tangent to the event horizon is then not just k*
but?

x* = k¥ + Qgn*.

This vector is timelike for > r; and spacelike for » < ry, so outside the
outer event horizon x*p, < 0 for every massive particle (note that this includes
also the particles that have negative energy inside the ergosphere!), from this it
follows that

X'pp = kFpu + Quntp, = —E+ QL <O0. (2.7)
Thus we find that for the particle with negative energy FE» inside the ergosphere
Ly < BE;/Qy <0, (2.8)

since 2y is positive. So the particle moves against the rotation direction of the
black hole. Once it is absorbed by the black hole its energy causes a reduction
in the mass M of the black hole with an amount F, and analogously the black
hole’s angular momentum J is reduced by an amount Lo. Inserting this into
(2.8) gives

0J <M /Qy.
It is interesting to rewrite this as
O My > 0, (2.9)
with the irreducible mass defined as

. 1
2
My = 2

(M2 +/ M- J?). (2.10)
A straightforward (but tedious) calculation shows that the variation of (2.10)
gives (2.9). For a black hole with zero angular moment we see that its irreducible
mass equals its mass, so as we expected its mass cannot be reduced. On the other
hand, from a black hole with initial mass My and initial angular momentum Jy
one can maximally extract an energy Mo— M;j,.(Mo, Jo) (in this case the Penrose
process should be maximally efficient and the particles that are thrown into the
black hole should move along null geodesics to obtain equality in (2.7)). By
the time this energy is extracted the black hole’s angular momentum will have
vanished.

2For a proof see [3]
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Finally, it is nice to note that (2.9) is nothing more than the area theorem!
The area® of the Kerr black hole is

/ JGaageadédt
r=r4

= 47T(7‘_2{_ +a2)7

A

inserting ry = M + v M?2 — a? gives

A = Am(2M? +2M+/M? — a?)
= 8r(M?*+/M*— M2a2)
= 167M;,, (2.11)
where we used J = Ma going from the second to the last line. So the area
theorem now leads directly to 6 M. > 0.

2.3 Analogy with Thermodynamics

The previous two paragraphs learned us that a general feature of black hole
transformations is that the area of a black hole cannot decrease and moreover
tends to increase. In the first section we discussed the general proof of this
fact, known as the area theorem. In the second section we discussed the specific
case of energy extraction from a black hole by means of the so-called Penrose
process, which led to the same conclusion. You might wonder why we discussed
the Penrose process if we were able to understand the general proof, the reason
is to support the view, first proposed by Beckenstein [4] in 1973, that there
exists an analogy between black hole mechanics and thermodynamics. It is
probably hard to convince you of the value of this analogy if we proposed it
merely because the area theorem resembles the second law of thermodynamics.
Namely, the area theorem states that in any physically allowed process the
total area of all black holes in the universe cannot decrease. And the second law
of thermodynamics states that the total entropy of all matter in the universe
cannot decrease.

We elaborated on the Penrose process because it provides three more argu-
ments to take this analogy seriously and investigate it more thoroughly. In the
first place, it tells us that an increase in the black hole area is accompanied by
an increase in the irreducible mass of the black hole. This means that when the
area increases the amount of energy that can be extracted from the black hole
and converted into work decreases and transforms into irreducible mass. This
suggests that we can regard the irreducible mass as an analog of the degraded
energy of a thermodynamic system. The degradation of energy is a character-
istic of irreversible processes in thermodynamics (see [5]), degraded energy is
energy that can no longer be converted into work. So now we can add to the ap-
parent analogy between area and entropy the analogy between irreducible mass
and degraded energy, or even so between black hole mass and system energy.

3The area is obtained from the integral A = [ d®d©, with d® = \/(ds)? = \/G4pdd
7,6,t=0

and similarly d© = /gggd®.

,t
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The second argument is that when two black holes are combined and they
merge, this process can provide energy even when it was impossible to extract
energy from the two initial black holes separately. Just as two thermodynamic
systems in equilibrium can perform work when they are combined. This can be
seen as follows, when the two black holes with initial masses M; and M, merge
to form a black hole of mass M, the only restriction on this process is that the
area, of the newly formed black hole is greater than the sum of the areas of the
initial black holes. Since (2.11) tells us that A oc M?, this restriction implies
for the masses that

M?* > M} + M3,

so when M lies in the range M}? + M3 < M? < M? + M2 + 2M; M, this means
that M < M; + M, so that the energy that this process can generate is

E=M+My—M>0.

Finally, we can derive an analog of the first law of thermodynamics in black
hole mechanics using the results of the last section. Combining (2.11) with the
definition of the irreducible mass (2.10) gives

A= 87r(M2+ Mt — JQ).

Varying this and solving it for J M gives

M? — a? a
oM = 0A + 0. 2.12
8m(2M2 + 2M /M2 — a2) M2 + 2M /M2 — a2 (212)
This can be simplified by defining the so-called surface gravity k
M2 — a2
K= , 2.13
2M?2 + 2M~/M? — a2 ( )
and rewriting expression (2.6) for Qg as
a
Qp = .
2M?2 + 2M~/M? — a2
Now, (2.12) can be recast as
5M = SiaA +QuoJ. (2.14)
Y

This equation bears a remarkable resemblance to the first laws of thermody-
namics

0U =ToS + work terms, (2.15)

especially when you realize that we had already identified M and A as analogs
of U and S respectively.

You may object that we have derived (2.14) from the expression for the area
of a specific case, namely the Kerr black hole and thus it can hardly be called a
law, but in [6] you can find a proof based on general arguments that holds for
any black hole.
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The zeroth law of thermodynamics states that a system in thermal equilib-
rium has a constant temperature. Comparison of the first law of thermodynam-
ics and (2.14) suggests that this means that x should be constant for a black
hole in equilibrium, i.e. a stationary black hole. Since a stationary black hole
has constant M and a, the expression for x (2.13) tells us directly that this is
the case. Again we refer to [6] for a proof.

Finally, the third law of thermodynamics (it is impossible to achieve T' = 0)
implies that it should be impossible to achieve kK = 0. But in the case that
M = a the surface gravity does become zero. Remember that in section 1.3
we mentioned this case, but concluded that is was highly unstable. Moreover,
we also discussed the case for which M < a, but quickly got rid of it, since
it contains a naked singularity and would thus be unphysical. On the other
hand, k becomes imaginairy is this case, which also seems quite unphysical. So
although, there is as yet no proof of a third law of black hole mechanics it does
seem to have something to do with cosmic censorship; the statement that every
singularity in spacetime should be shielded from our view by an event horizon.

2.4 Information Theory

In the previous section we found an analogy between black hole mechanics and
thermodynamics merely based on a resemblance in the appearance of the equa-
tions. In this section we will discuss the possibility of a profound meaning of
this resemblance. For this purpose we shall first discuss entropy from the point
of view of information theory (we follow the line of reasoning of [4]).

Consider a system that can be in a number of different states and we know
that upon measurement it will be found in the n** state with a probability p;,.
Its entropy, the measure of one’s uncertainty or lack of information about the
actual state the system is in, is then given by

S = Xnpn Inpy.

We see that once we know exactly in which state the system is, i.e. all p,, are
zero except one which equals unity, the entropy is zero. Furthermore, it can be
shown that obtaining information about the system, which imposes constraints
on the p,, always leads to a decrease in entropy. As an example, suppose you
obtain the information that the system is actually not in state 4, then p; is zero,
so the entropy decreases. So there is a direct relation between information and
entropy which can formally be expressed as

Al = -AS,

so an increase in information Al corresponds to a decrease in entropy AS.
These equations for I and S hold for a wide range of systems whose state is
not exactly known. We can look at a black hole as such a system. An observer
in the exterior of a black hole can completely describe it by its mass, angular
moment and charge. However, black holes can form in a number of different
ways, so black holes characterized by the same values for M, J and @ may
have different histories. The fact that an external observer has no information
whatsoever about these histories, constitutes a lack of information about the
black hole state. Consequently, a black hole has an entropy S},;,- Note that we
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derived the fact that black holes may have non-zero entropy from information
theory, we ignored the fact that classically black holes have just one internal
state.

The second law of thermodynamics, stating that the entropy of a system
out of equilibrium increases, can be interpreted as the information of the initial
state of the system being washed out by the thermal evolution of the system.
Now, let us assume that the black hole entropy is a function of the black hole
area, since this seems natural in view of what we found in the previous section.
We know that a black hole after its formation is believed to settle down quickly
to a state completely determined by three parameters. The loss of information
about the initial state suggests that Sy}, should increase in this process. Because
of the area theorem this is what we find, since Sy, is a function of A. So in this
context the analogy between the second law of thermodynamics and the second
law of black hole mechanics seems to be more than just a formal resemblance?.

Another hint in this direction is that, as we mentioned, an increase in infor-
mation about a system is accompanied by a decrease in its entropy. Of a black
hole, however, it is by definition impossible to obtain information and this is
very well represented by the fact that, because of the area theorem, a decrease
in Sy}, is also by definition impossible.

Finally, we want to mention the generalized second law. Although we can
decrease the entropy of a system by inquiring information about it, it can be
shown that this always leads to an increase in the entropy of the rest of the
universe that exceeds the amount of newly obtained information. So the total
entropy of the universe never decreases. Now, what happens when some body
with an unknown internal state drops into a black hole? This makes the entropy
of the visible universe go down, and without a definition of black hole entropy
an external observer would be unable to verify that the entropy of the whole
universe in fact does not decrease. So the second law must be generalized,
such that it says that the entropy of the black hole exterior plus the black hole
entropy itself do not decrease. To check this note that when the body drops
into the black hole all the information about the body is lost to the external
observer. This means that if there was some information available about the
body beforehand, this information is now lost to the external observer and added
to the black hole entropy together with the original entropy of the body. So the
increase in black hole entropy will usually not only equal but actually exceed
the decrease in the entropy of the rest of the universe, so

A(Sext + Sbh) > 0.

2.5 Inconsistency in Analogy

At the time Beckenstein proposed to take the analogy more seriously based on
the arguments we discussed in the previous section, this proposal was swept
aside by a crucial inconsistency in the analogy. In thermodynamics systems
with a certain temperature are known to radiate with the characteristic Planck
spectrum. By definition this radiation is absent for black holes; nothing can

4Beckenstein shows in his article [4] that based on arguments from information theory one
may even conclude that the black hole entropy is not just a function of the black hole area
but is in fact proportional to it.
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come out of them, let alone black body radiation! But physicists in favor of the
analogy argued that when quantum mechanics was taken into consideration,
things might be different.

Steven Hawking was one of the people who was bothered by the superficiality
of the arguments in favor of the analogy and the lack of any physical significance
(see [7]). He set out to prove that even when quantum mechanics was taken into
account there was no such thing as black hole radiation [8]. In the next chapter
we will discuss how he approached this and the remarkable results he obtained.






Chapter 3

Hawking Radiation

3.1 Semi-Classical Approach

General relativity tells us that the presence of masses causes spacetime to curve
and the metric of a spacetime with a certain energy and mass distribution
can be obtained from the Einstein equation. The Schwarzschild metric, for
example, describes spacetimes outside spherically symmetric objects centered
around r = 0, such as the earth. At sufficiently large distances from the center,
however, the curvature caused by the massive object sitting at r = 0 becomes
so weak that is can be neglected. This can be seen by letting r — oo in the
Schwarzschild metric (1.15), in that case it reduces to the Minkowski metric
which describes flat spacetime

ds® = —dt* + dr® + r*(d6” + sin® 6d¢?). (3.1)

The radius of the earth is proportional to 10° times its mass, so at the surface
of the earth we find ourselves in a regime where the curvature on small scales is
totally negligible. This justifies the fact that in quantum field theory one uses
the Minkowski metric instead of the Schwarzschild metric. On earth quantum
phenomena are not influenced by gravity, in fact, there seem to be only two
cases in which the spacetime curvature is strong enough to seriously influence
physics on quantum level. These are the beginning of the universe, where the
metric of spacetime is believed to change drastically on very short time scales
and in the vicinity of black holes, where the curvature is so high that it cannot
be neglected, not even on the scale of particle interactions. This last case is of
course the one we are concerned with in this thesis.

In the vicinity of a black hole the description of quantum phenomena re-
quires a full theory of quantum mechanics in which gravity is also incorporated.
Unfortunately, as the reader may know, the normal procedure to quantize a field
theory does not work in the case of gravity. What makes gravity so different
from the other forces of nature is the dual role the metric g,, plays, on the one
hand it is the field that describes the gravitational interaction between particles
but on the other hand it is the metric that gives the structure of spacetime. Put
differently, one may say that the gravitational field self-interacts, i.e. gravitons
exert gravitational forces on each other. So, whereas, for example, photons do
not feel the electromagnetic force, gravitons do feel gravity. Roughly speaking it

25
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is this major difference that makes it impossible to renormalize gravity, whereas
this procedure does work for the other forces of nature. To read more on this
subject, see for example [9] or [2].

It may seem that in the absence of a full theory of quantum gravity we
are unable to investigate the effect of the presence of a black hole on quantum
physics. Fortunately, history provides us with a possibility to circumvent this
problem. At the time a full theory of quantum electrodynamics did not yet exist,
physicists were able to calculate spontaneous creation of electron-positron pairs
by treating their electromagnetic field as a classical background field. In retro-
spect, we can say that the results obtained in this way are very reliable. This
suggests that a similar approximation can be made to obtain a semi-classical
description of gravity. More specifically, we could treat gravitation as a classical
background field for quantized matter. In terms of formulae this means that
the matter fields still solve the usual wave equations, but with the Minkowski
metric replaced by the metric that correctly describes the spacetime curvature,
i.e. the solution g,, of the Einstein equation. But now we also have to adjust
the Einstein equation, because the energy-momentum tensor of the matter fields
is now an operator, while the metric and the Ricci scalar are not. The most
natural adjustment is to replace this operator by its expectation value. The
Einstein equation then becomes

1 .
R, — §ng =8m < Ty, >. (3.2)

Upon more detailed inspection of this formulation of a semi-classical approx-
imation of gravity, we encounter a number of problems. First of all, there seems
to be no way around quantizing gravity, which can be seen as follows. Imagine
the matter distribution is such that all the matter is found either in region A
or in region B. The expectation value of the energy-momentum tensor is then
as if half of the matter is in region A and the other half in region B. And the
spacetime is curved accordingly. If we now do a measurement and find all the
matter to be in region A, this causes the metric to change discontinuously into
one that satisfies (3.2) with all the matter in region A. Of course this does not
make sense.

A second problem is the so-called backreaction problem. Whenever the
energy distribution of the matter fields changes this induces a change in the
metric according to (3.2). A change in the metric, however, changes the wave
equation which the matter fields must obey, so this change is likely to cause
another change in the energy-momentum tensor, and so on. So once something
changes you seem to enter a vicious cycle, caused by the coupling between the
wave equation and the Einstein equation.

Last but not least, there is a practical obstacle. As mentioned in chapter
1 about general relativity it is very difficult to solve the Einstein equation,
and analytic solutions can only be found for very special values of the energy-
momentum tensor. In fact, black hole solutions are known only for T, = 0. So
it is practically impossible to use (3.2)! Surprisingly enough, this last problem
also suggests what we should do now: instead of replacing the Minkowski metric
by the metric that solves (3.2), we should replace it by the Schwarzschild metric
that describes the empty spacetime around the black hole. Of course this is yet
another approximation, so we would not blame you if you are a bit suspicious
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of its validity'. But this is the approximation Hawking used in 1975 when he
set out to prove that black holes do not radiate. The very remarkable result he
obtained, namely that black hole do radiate, makes it worthwhile to carry on
and discuss his calculation [8] in detail (see also [9] and [10]). We will try to
stay close to the notation and arguments used in the original article.

In the next section we will very quickly resume quantum field theory for
massless particles, to continue in section 3.3 with a discussion of quantum field
theory in a curved spacetime. Then we should be fully equipped to carry out
Hawking’s calculation, which shall be done in the last two sections. The con-
sequences of the result will be discussed in chapter 4 and in chapter 5 we will
return to the discussion of the validity of the semi-classical approximation and
also discuss other arguments Hawking uses that might be doubted.

3.2 Quantized Klein-Gordon Field

In this section we will give a very short summary of quantum field theory in flat
spacetime. We will restrict ourselves to scalar fields. A single scalar wavefunc-
tion ¢(x) obeys the Klein-Gordon equation

(0"0, —m*)¢(x) = 0, (3.3)

where m is the mass of the particle described by the field and 049, = n*¥0,0,
with n#*” the Minkowski metric?. The Klein-Gordon equation can be derived
from the following Lagrangian

L= —%(6a¢8“¢ +m26?) (3.4)

using the action principle. From this Lagrangian we see that the field conjugate
is

=9 ¢(z). (3:5)

m(x)

Imposing the usual canonical commutation relations to quantize the field, leads
to the following relations

(67,1, 6(F,1)] =187~ 7)
[¢(Z, 1), 6(2",1)] = [8(Z, 1), $(&",1)] = 0. (3.6)
The field can be decomposed in its Fourier components
() = Silaifi(@) + al f{ (2)], (3.7)

where { f;} is a complete orthonormal set of solutions to the Klein-Gordon equa-
tion with positive frequencies, i.e.

Finf)) = /t Palf70:f; — 10,07 = 63y, (3.8)

L An extensive discussion on this subject follows in chapter 5.
2Remember that we use the sign convention (— + ++) for spacetime metrics.
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where t denotes a spacelike hyperplane of simultaneity, and
O fi = —wf; with w > 0. (3.9)

Using (3.6), one easily finds the commutation relations for the operators a; and

a

lai,al] =4y

[ai,a;] =]al,al] = 0. (3.10)

(]

Since these are precisely the commutation relations for the annihilation and
creation operators of the harmonic oscillator, we will use the same interpretation
for the Klein-Gordon field. We define the vacuum state as

a0 >=0 Vi. (3.11)

From this state all the other states that span the Hilbert space can be con-
structed by acting on it with the creation operators. In this representation the
Hilbert space is called a Fock space. The physical significance of the vacuum
state becomes clear when we define the Hamiltonian?®

H = Eia;{aiw (3.12)
and calculate its expectation value for the vacuum state
< 0|H|0 >=< 0|Za!a;w|0 >=0.

This tells us that the vacuum state is the state of lowest energy. Since we
would like this to correspond to a state without any particles in it, we define
the number operator N; and the total number operator N as

N; = alai and (3.13)
N = Ydla;. (3.14)

3.3 Klein-Gordon Field in Curved Spacetime

In curved spacetime the covariant form of the Lagrangian for the Klein-Gordon
field is

£ =~ 5/ Gl0" 0,00, + m ], (3.15)

3This expression for the Hamiltonian can be obtained by integrating over the Hamiltonian
density Tpo and normal ordering the result. The energy-momentum tensor can be obtained
by variation of the action with respect to the metric

___ 2 5
- v/—g(x) Sghv (z)’

For the Klein-Gordon action this leads to

T

1 1
P N 577pu77"‘63a¢33¢ + 5m2¢2n,w.
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This yields the Klein-Gordon equation for curved spacetime

! wy z)) —m2p(x) =
\/—_—gau(\/—_gg 9 ¢(x)) ¢(z) =0, (3.16)

which can be shown to equal:
(D3, —m?)é(a) =0, (3.17)

where D, is the covariant derivative (1.13).

In the previous section we saw that when we wrote the field on a basis of
eigenfunctions of d;, the interpretation of the operators a; and a;-r as annihilation
and creation operators followed in a very natural way. And, thus, we were able
to construct a Fock space and a state of lowest energy. Note that it is essential
that 0; is a Killing vector in Minkowski spacetime, i.e. 0:n*¥ = 0, because
this enabled us to define the positive frequency condition (3.9) globally. From
this followed globally defined creation and annihilation operators and a global
vacuum state, which are all coordinate independent. This is very important
since it guarantees us that physics is independent of the coordinates we choose,
which is the cornerstone of general relativity. In a general curved spacetime g
there is no indication at all that there exists a Killing vector, which means that
we have no way to choose a natural basis for the field. In other words, it is
impossible to define a global positive frequency condition in a general curved
spacetime. This ambiguity in the choice of a basis gives rise to difficulties with
defining a vacuum state and the interpretation of the concept of a particle. We
can, however, generalize the Hermitian inner product (3.8) to curved spacetime

(iry) = / A /G5 Dyt — 13 Dy, (3.18)

where X is a Cauchy surface and dX, = n,dX with n, a vector normal to this
surface pointing in the positive time direction. We can also introduce a complex
basis {1;} of solutions to the Klein-Gordon equation such that

(Wi, ¥5) ==, ¢)) = by
Wi ¢5) = @i ¢5) = 0. (3.19)
Since (3.19) does not uniquely define the basis, we can also choose an other
basis {¢}} that satisfies (3.19). Since {¢;} and {¢}} are both orthogonal bases
that span the entire Hilbert space, we can write
Vi = 54[Ai; + Bijabj). (3.20)

When we insert this into (3.19) we find the following relations for the transfor-
mation matrices A and B

AAY — BBt 1,
ABT —BAT = 0. (3.21)

To obtain the inverse of (3.20) we write

Vi = X[Ayv; + Bijyj]
¥;[Ai;Zr (A% + By )+ Bijzk(Az‘k* o+ B;k*zb;c)]
Ej’k[(AijA;k + B”B;k*)w;g + (AijB;k + Bz’jA;‘k*) L*] (322)
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From this it follows that

AA"+BB™* = 1,

AB'+ BA™ = 0.
Comparing with (3.21) shows us that these are uniquely satisfied when A’ = A"
and B’ = —B”. So now we find two additional equations for the matrices A
and B, when we demand that A’ and B’ also satisfy (3.21), namely

AtA-BTB* = 1,

A'B-BTA* = 0. (3.23)

As was pointed out in the beginning of this section, there is no preferred
basis of solutions in a general spacetime because of the lack of a Killing vector.
But a stationary spacetime, i.e. 0;¢g"*" = 0, does have a Killing vector. So in
a stationary spacetime a natural choice for the basis of the field is the set of
eigenfunctions {f;} of this Killing vector with positive frequencies

8tfi = —’sz'fi with Wy Z 0. (324)

In correspondence with (3.7) we write the general real quantum field satisfying
(3.17) as

$(x) = Silaifi(w) + al £} ()], (3.25)

and from (3.19) it follows again that the operators a, satisfy the usual commu-
tation relations for creation and annihilation operators, i.e. (3.10). So as in
section 3.2 we can define a vacuum state and a number operator.

The spacetime around a black hole is stationary when the black hole is
stationary, so in that case we can define a vacuum state and a unique basis
for the solution of the Klein-Gordon equation (3.17). However, when a star
collapses to form a black hole the spacetime around it is not stationary, so we
cannot define a vacuum state valid in the entire spacetime. Nevertheless, we can
say something about the vacuum state at early and late times when we notice
that the spacetime of a collapsing body can be split into three regions. The
first region is the spacetime at early times, before the collapse, in which there
is some configuration of the matter that will eventually form the black hole.
This first region is stationary, so there is a natural choice for a vacuum state
and a number operator. The second region is the spacetime during the collapse,
this is clearly non-stationary. When the event horizon forms the spacetime is
known to settle down fast to a stationary state again, which is the third region.
Although the first and third region are both stationary, they are clearly not
equal so the functions that solve the Klein-Gordon equation in the first region
will not be solutions of this equation in the third region. This means that the
Fock spaces constructed from the positive frequency eigenfunctions of the first
and the third region respectively will be different. In the next section we will
discuss this more explicitly and see how this can lead to particle creation.

3.4 Particle Creation in Gravitational Collapse

We know frqm quantum mechanics in flat spacetime that when a wave of positive
frequency e?*? hits a potential barrier, it will be partially reflected and partially
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transmitted to become of the form Re~*** 4+ Te®**. As we will see in this section,
this reasoning can be extended to curved spacetime in the following way: If a
spacetime consists of an initial stationary region I, a non stationary region IT and
a final stationary region III, then region II can be compared with the potential
barrier in the example above and so we should expect a state containing only
positive frequencies in the first region to develop into a state containing both
positive as well as negative frequencies in the third region. In particular, this
means that the vacuum state defined as containing no particles in the first region
actually does contain particles in the third region.

Let us for simplicity consider a massless* scalar field ® satisfying the Klein-
Gordon equation, i.e. D#9,® = 0, and investigate its properties in the space-
time of a collapsing body. As was mentioned in the former section, the regions
of spacetime before and after the collapse of a star into a black hole are sta-
tionary. So before the collapse ® can be expressed on a complete orthonormal
basis {f;} containing only positive frequencies with respect to the Killing vector
at past null infinity T—

®(x) = Sjla; f;(z) + a} f (@)]. (3.26)

From section 1.3 we know that in gravitational collapse an event horizon is
formed, so all the modes of the field must either pass the event horizon or
escape to infinity. Thus at late times the field ® is completely determined by
its data on the event horizon H and future null infinity Z+

®(x) = Z;[bipi(x) + pri-‘(w) + ciqi(®) + ciq; ()], (3.27)

where the set {p;} is chosen such that it contains only outgoing modes (that
escape to ZT) with positive frequencies with respect to I+, whereas the set {g;}
contains only ingoing modes (that disappear into the black hole). It is not clear
with respect to what the positive frequency condition on the {g;} should be
taken. The timelike Killing vector changes from timelike to spacelike at the
horizon, which means that the positive frequency modes outside the black hole
are negative frequency modes inside the black hole. This makes it impossible to
define positive frequency uniquely for the {¢;}. Fortunately, the results do not
depend on this ambiguity in the {g;}. This will be shown below.

Let us first explore how the bases of the initial and final wavefunction are
related. The fact that {f;}, {p;} and {g;} all satisfy the orthonormality condi-
tion (3.19), enables us to write {p;} and {g;} as linear combinations of { f;} and

{77}

pi = Zj[Aif; + By fi],
o = Y[Cifi + Dijfil- (3-28)

The matrices obey the conditions (3.21) and (3.23). To obtain the relations
between the different annihilation and creation operators we substitute (3.28)
into (3.27) which gives us the following expression for the annihilation operator
at Z_
aj = Si(Ayb; + Bj;bl + Cijei + Djjel). (3.29)
4See [8] for this calculation including massive and charged scalar fields.
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To obtain b; and ¢; in terms of a; and aj we write b; = X;[A] ay + BékaZ] and
¢i = £3[Clyax + Dlyal] and plug this into (3.29). This can be worked out just
as we did in (3.22) and if we then use the relations (3.21) and (3.23) for the
transformation matrices, we find the following relations

b, = Ei[A;z'ai - B;Z-a;r],

¢j = %[Clai— Djall. (3.30)
These are called Bogoliubov transformations. Note that imposing the usual

commutation relations for annihilation and creation operators on b;, b} and ¢;,
c}, yields again the conditions (3.21) and (3.23) for the transformation matrices.
In other words, these are automatically obeyed.

Measurements at future null infinity are not affected by the fact that we did
not impose the positive frequency condition on the {g;}. We see this when we
write a final state as

|ﬁnal >= Ei’j [/\ij|Xi >7, |77j >u ] (331)
From which it follows that observables O at Z,, which act only on the states
Ixi >z, give
< ﬁnal|(91+|ﬁnal > = Zi,j [’\:j < Xi|I+ < 77j|7-[] OI_'_E;W P‘kl|Xk >7, |?71 > ]
= ik MM < xalz, Oz, Ixe >z, |
with p the density matrix
pir = 5 [N Ak [xn >1, < xilz, - (3-33)

So all we need to do now is prove that p does not depend on our choice for the
{¢i;}- When we change the definition of positive frequencies at the horizon, this
means that we do a Bogoliubov transformation on the creation and annihilation
operators associated with the states |n; >7,. But in the last section we made sure
that these transformations leave the orthonormality conditions (3.19) invariant,
from which it follows that the states transform as |n; >= ExUjs|fr > with U
unitary, i.e. UUT = 1. So the final state (3.31) becomes

lfinal >= %, x [Nix|xs >z, |7k >u ],
with A = AU. And the density matrix becomes
pit = Xj [:\:jj\kﬂXk >7,< Xilzy ]

but writing this out in terms of the original coefficients A shows us that the
transformation leaves the density matrix unchanged

DA AR =AM
= AU = \UUTAT
= b

So observables at future null infinity are indeed independent of ambiguities in
the definition of the {g;}.
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Now, we can finally show that particles are created in the process of grav-
itational collapse. Let us start with a vacuum state on past null infinity, i.e.
a;|0_ >=0 for all i and then measure the number of particles in the j-th mode
in this state at future null infinity

<O_|N(Zy);l0- > = <O0_|blbso- >
= <0_| - Six[Bjiai — Ajial][ASax — Bjaf]lo- >
= %;4B;iB} < 0_|a;a}|0_ >
= TixBjiBj < 0|0k — aja;0_ >
= X;B;B];
= 3Bl (3.34)

Since B, in general, will not be zero, we find that the state containing no particles
before the collapse does contain particles afterwards. The energy to create these
particles can only come from the gravitational field. So we conclude that in the
process of gravitational collapse particles are being created by the interaction
of the field & with the curvature of spacetime. Note that this can happen in
any spacetime with a non-stationary region, not only in gravitational collapse.

3.5 Hawking Radiation

During the process of gravitational collapse particles are created which escape
to Z4. In this section we will show that the number of particles created in the
collapse is bounded only by the amount of energy containded in the gravitational
field and that the character of the particle flux is thermal. To see this we will
calculate an asymptotic form of the Bogoliubov coefficients to obtain a specific
expression for the particle flux at future null infinity. This calculation will be
easier when we decompose the solutions of the wave equation into their Fourier
components with respect to advanced time for ingoing solutions and with respect
to retarded time for outgoing solutions. General solutions of the massless scalar
wave equation are (see Appendix A)

7 Rt (1) Yim (6, ¢)e " (3.35)

with Y}, the spherical harmonics and R,,;(r) obeying the differential equation
d*R,,

dr+?

with 7* =7 +2M In|5%; — 1|. When r — o0, i.e. on Z_ and Z, (3.36) reduces
to

+{? =10+ 1)r 2 +2Mr3][1 —2Mr Y}R.; = 0, (3.36)

d’R,
s+ @ R =0 (3:37)
— Ry ~ e, (3.38)

This enables us to write solutions on 7_ and 7, as

Tflyvlm (0’ ¢)efzwt:|:1ujr* ,
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and when we use advanced and retarded time, i.e. v =t +r* and u =t — r*,
we obtain purely ingoing and outgoing solutions

fo ~ (rV4Tw) 1Y, (0, ¢)e Y, (3.39)
Do ~ (rVarw) 1Y, (8, ¢)e . (3.40)

Note that, unless we put the collapsing body into a box or an otherwise con-
fined region, w is a continuous parameter and {f,} and {p,} obey continuous
normalization conditions

(pvaw’) = (fwvfw') = (5(&) _wl)'

This condition gives us the normalization factor (47w)
by working out

—1/2 which can be seen

Ftms furtm?) = /E A5 G5B ot — Furtrm O]

To do so, note that the f, of (3.39) solve the Klein-Gordon equation at past
null infinity Z_, where v ~ t + r and the metric is given by (1.15) so that

VI= = (1-2M/r)~Y/2r%sin§ and d=# = drd¢df/—(1 — 2M/r). Furthermore,

we know that the spherical harmonics are normalized in the following way
27 ™
/ / d6d0sinBY, (6, 8)Yim (6, 6) = Sy -
o Jo
With these ingredients we find

2w pw
1 1
wtms forttm?) = 1 drdedf[r? sin— ———=Y;5. Vin,
(fl furt ) [A /O ¢ [ r2 4w’ ! !

[ezw(t+r)atefzw'(t+r) _ efzw'(t+7') atezw(t+r)]]

1
= 18 Ommy /dri —w' — w)e™
. r 47rx/ww’( )

2
d 276 (w' — w)
w

= 611’6mm’4
= (5”/(5mm/6(w' - w),

! !
w —w)te—z(w —w)r

where we used [ dze™“* = 2n§(w). The same obviously holds for (3.40).

To find the Bogoliubov coefficients we want to know what the wavefunction
at past null infinity looks like that gives rise to a positive frequency, outgoing
wavefunction at future null infinity, i.e. (3.40). To obtain the initial wavefunc-
tion we will trace (3.40) back in time. Since the retarded time u goes to infinity
near the event horizon, we can use the geometrical optics approximation (see
Appendix B) which says that a particle’s world line is a null ray of constant
phase wu in good approximation. Let us trace the final wavefuntion back along
one of the last null rays that came from past null infinity, traveled through the
collapsing body and escaped to infinity. Let us call this null ray «. It will have
a distance —e to the null ray that generated the event horizon®, which we will

5The null ray that generates the event horizon is the last to leave Z_ and not to be captured
by the black hole, so it will not hit the singularity, but neither will it be able to escape to Z.
It is bound to stay at the fixed distance r = 2M forever.
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call v (see Fig. 3.1). Here the distance is measured along a future directed null
vector n®, which is such that n®l, = —1, when [, is a null vector tangent to ~.
On the other hand, we see from the picture that n, is tangent to ingoing null
rays near the event horizon. It is useful to write the metric in terms of Kruskal
coordinates (1.18), since in this form it does not become singular at r = 2M.
When we set df) to zero, which can be done on grounds of spherical symmetry,
the metric reads

= %6_”2Mdadﬁ.

ds®
From this we see that the condition for a null ray: % = 0 with A the affine
parameter, yields % =0or % = 0. So for ingoing null rays the affine parameter
is proportional to a, i.e.

A= Ci=—-AMCe"/*M,

where C' has no physical significance and as we will see it drops out in the final
result. When we choose the affine parameter to be zero on the event horizon,
i.e. where the ingoing null rays intersect v, it follows that A = —e when the null
rays intersect o

A=—€ — u=4M(IndMC — Ine). (3.41)

So we have found the retarded time in terms of € for the null ray « along which
we are tracing back the wavefunction.

We can also express € in terms of the advanced time v, when we continue to
trace back the null ray past the endpoint of the event horizon and out to past
null infinity. It will have left Z_ just before vg, which we mark as the advanced
time at which the null ray that generated the event horizon left Z_. And since
we are using the geometrical optics approximation the distance between these
rays will still be —e, where n, is now tangent to Z_. In this section of spacetime
we should write the Schwarzschild metric in terms of the advanced and retarded
time

2M
ds® = —=(1 = =—)dudv. 3.42
r

From this it follows that the affine parameter of 7 _ is proportional to v, so
—e = D(v — vg) (again the constant D has no physical significance and will
eventually drop out). When we put this into (3.41), we find an expression for
u in terms of v. So the wavefunction that gives rise to a positive frequency,
outgoing wavefunction at future null infinity has the following form in terms of
the advanced time v

po(v) ~ (Virw) lexp(—wdM[IndMC —InD(vy — v)]) for v < o

py(v) = 0 forv>wvp. (3.43)

In order to find the Bogoliubov coefficients, we need to decompose this result
into positive and negative frequency modes with respect to Z_. In other words,

we need to write it on the basis {f,}. This can be done by taking the Fourier
transform of p,, (v)

po(w) = % / do[po (v)e™'™]. (3.44)
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collapsing |-~
body

Figure 3.1: We trace back the null ray « that is at a constant distance —e to
the horizon generating null geodesic y. The null vector [* is tangent to .
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Because then we find
po®) = / ' [V By (@) fur (0) + VA i (—') £ ()],

as is readily verified by plugging in (3.44) and (3.39)

°° 1 VR | ,
(V) = dw' m—/dv' W (V')e™? e v
) = [ aVais [abe)e o=
]. 1,1 1 i
[ dv’ n,—w'v w' v
+ Vrw 27r/ V' [pw(v)e ]—\/me ]
© dw’l ’ ' 1 I
— / ! O o —w(v=r') T —w (v =)
/dva(v)/o [271_ 5¢ +2€ ]

= [ apa@)[550 - ) + 3607 - v)]
P (v)

On the other hand we know that
o0
Pw = / dwl[Aww'fw’ + wa'fz']a
0

so the Bogoliubov coefficients are just the Fourier transforms of (3.43) multiplied

by vV@w!

Apr = VWP, (w/)7
By = Vmw'p,(—w'). (3.45)

Before we continue this calculation it is important to note two things. First
of all, we used the geometrical optics approximation which required that u >
1, so this result is valid only when we stay near the event horizon. But the
particles that left past null infinity at advanced times long before vy travel
through the collapsing body long before the event horizon forms and will be
far away from the black hole at the moment it collapses so we may assume
that their contribution to the Bogoliubov coefficients is trivial. Secondly, in
the geometrical optics approximation one assumes that the wavefunction can
be traced back along a null ray, this is only the case if the wavefunction is well
enough localized, so we actually should have used a wave packet sharply peaked
around a certain frequency. It can be shown that this leads to the same results
(see [8]). Moreover, it can be shown that the particle flux is independent of
the details of the collapse, by showing that for wave packets that reach 7,
the Bogoliubov coefficients are indeed, as we have assumed, governed by their
asymptotic forms (see also [8]).

Let us now calculate the Fourier transform of (3.43):

o~ 1 +Oo ’LUJ”U

P = 5 e Vp,(v)dv
T J-—

1 vo ,
s [m exp(w'v — widM[lna — In(vg — v)])dv (3.46)
_4MC

ith —_—
wi a D
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Imv
complex
v-plane
vV =yV,+iX
/ branch cut
Rev
0 Y,

vV =V,-1X

Figure 3.2: The integrand of (3.46) is proportional to e vtiIn(vo=v) —
ew' (ytw)+eln(vo—(y+12)) | There is a branch cut at y = v, since the integrand
vanishes for y > vgy. Since there are no singular points the residue theorem tells
us that § dvew'vtiIn(vo—v) = (. To determine how the contour should be closed
we must investigate the asymptotic behavior of the integrand. In the limit that
y goes to minus infinity the integrand becomes an extremely high oscillating
function. The integral over such a function vanishes. For «’ > 0 the integrand
vanishes when x becomes infinite, so we should close the contour in the upper
half of the plane to get a zero contribution of the part of the contour that lies
at infinity. The same reasoning learns us that for w’ < 0 the contour should be
closed in the lower half of the plane.
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We can solve this by contour integration in the complex v-plane (see Fig.
3.2), we have to pay attention on how to close the contour, though. For v’ > 0
the contour has to be closed in the upper half of the complex plane, for w’ < 0 in
the lower half, because then the contribution of the part of the contour that lies
at infinity vanishes, what remains is the integration along the line v = vg £ 2.
Thus we get for w’' > 0

2 oo
PpoW) ~ —— / exp(—w'z + w'vy — wiM[Ina — In(ze™/?)))dx
4w Jo

o0
7 b 1 _ o
— eZMquezw Y0 wid M e W :cxzwllde
4m/Tw 0
? ! _ 1
— e2Mw7rezw Y0 zw4Mr(1 + zw4M)(w') 1 u/.J4M7 (347)
4dy/Tw

where the Gamma function is defined as
o0
P(z) = / e~ "Lt
0
For w' < 0 we get

Po(w) ~ —ﬁ / exp(w'e + w'vy — wiM[Ina — In(ze*™?)])dx
0

o
1 _ vy L — !
— 2Mw7rezw 0 ¢ wd M / ¥ mxzwéide‘ (348)
0

_47r«/7rwe

When we compare this with the second line of (3.47) we see that
Pu(—w') = —e~4Mume=2w'v0 g (1,1) for o' > 0. (3.49)

So we finally obtain the asymptotic Bogoliubov coefficients by combining (3.45),
(3.47) and (3.49)

Apwr = Vaw'py,(w')
— ¢ e?Mwwezw'voa—zuAMr(l +ZW4M)(WI)—zw4M’ (350)
41V ww!

wa: — _e—4Mw7re—21wlv0 Aww’ . (351)

Now that we have obtained specific expressions for the Bogoliubov coeffi-
cients we can work out (3.34). This tells us what the effect of the collapse is on
the initial vacuum state of the field ®. The fact that we start with a vacuum
state means that we assume that there are no particles present initially. Of
course the matter that will form the black hole is present, but since this will
collapse it has to be localized in the central region of spacetime and its energy
is accounted for in the metric. So it seems reasonable to assume that there is
vacuum in the asymptotic region. The continuous form of (3.34) is

o0
/ |Bowr|? du,
0

but since B, goes as (w')~1/? for large values of w’ this integral diverges.
This means that over all time the collapsing body produces an infinite number
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of particles in each mode (i.e. for each value of w), this divergence is connected
to the fact that we did not impose the restriction that there is a finite amount
of energy present initially, namely the mass of the black hole. To be able to
say more about the character of the outcoming particles we should calculate
the number of particles per frequency interval dw per unit time by constructing
finite wavepackets. This is what Hawking does in [8], but we shall adopt a more
simple method here, that you will encounter in most of the literature (see for
example [9]). Instead of constructing a wavepacket we will discretize the modes
by simply confining the system to a box with periodic boundary conditions. For
the discrete Bogoliubov coefficients we already found the relation

Yo |Aww | = |Bow |* = 1.
In addition to this we now also found
Ew’|wa’|2 = eisMwWEw’|Aww’|2a
(see 3.51), together they give
S| Awer |2 = [Buow |2 = <eSMw - I)walBWIQ =1.
So that the particle number per mode is
<N, >7, = Zu|Buwl

-1
— (eSMuﬂr _ 1) )

The particle flux ® through a sphere of radius R is then®

N -1
p= B0 <N>_dv (eSMW - 1) . (3.52)

N 2R T om
From thermodynamics we know that black body radiation is characterized
by the Planck spectrum?

W Wlth /B = j"’_1 and F = W,

comparing this with (3.52) we can conclude that the black hole radiates at a
finite temperature, appropriately named the Hawking temperature, given by
1

- 8Mn’
Now that a black hole appears to have a temperature, we may identify the first
law of thermodynamics (2.15) with its analog in black hole mechanics (2.14).
For a Schwarzschild black hole one obtains k = 1/4M from (2.13) by setting a
to zero. Inserting this in (2.14) gives

Tw (3.53)

1

1
= -TybA.
110

8The wavefunction modes are of the form & ~ e~wt+wr*y; (9 ). For fixed | and m the
periodic boundary condition, i.e. ®(0) = ®(R), gives w = 2an/R. So the density of states
inside the sphere is dn = % for I,m fixed. Furthermore, it takes a particle a time R to reach
the surface of the sphere, since ¢ = 1.

TRemember that we work in units where i = 1.
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Comparison with (2.15) learns that the black hole entropy scales with its area
as

1
§=7A. (3.54)

The proportionality of black hole entropy and area was also anticipated in sec-
tion 2.4 based on arguments from information theory.

So we find that a black hole emits particles at a steady flux which has a
thermal character. This fact will play a crucial role in the next chapter where
we will explain the information loss paradox.

But before we go there we should make a final comment. The outcoming
particles carry away energy from the black hole so its mass will go down. We see
from (3.53) that the temperature is inversely proportional to the mass. Initially
the temperature will be low so the radiation will not be strong. In this stage the
mass of the black hole will decrease very slowly and can be regarded constant, as
we did in our calculation. However, as the black hole loses mass its temperature
goes up so that it will radiate stronger. Eventually the radiation will become so
strong that the mass can no longer be regarded constant. It can be shown that
this will happen only at the final stage of evaporation when the black hole has
already radiated away most of its mass (see [8]). There are different scenarios
for what will happen at this final stage, they will be discussed in chapter 5.






Chapter 4

Information Loss Paradox

4.1 The Paradox

Let us reconsider for a moment what we found in the last chapter. We started
with the question "What is the effect of the gravitational field of a body that
collapses to form a black hole on quantum phenomena?’. Answering this ques-
tion requires a full theory of quantum gravity, but in the lack of such a theory
we used the next best thing: a semi-classical approximation. In this approxi-
mation the gravitational field is treated as a classical background in which the
quantized matter fields evolve.

Upon inspection we found that for a quantum field theory in curved space-
time there is a difficulty in defining a global vacuum state for the quantized
field. This is related to the fact that a curved spacetime in general does not
have a timelike Killing vector. As a consequence hereof there is an ambiguity
in the choice of a basis for the wavefunction, which results in an ambiguity in
the definition of the vacuum state. The different bases are related by the so
called Bogoliubov transformations. One can, however, define a vacuum state in
a stationary spacetime. The metric of a stationary spacetime is independent of
time, so it clearly has a Killing vector.

The spacetime around a collapsing body consists of three regions: 1) a
stationary and asymptotically flat region at past timelike infinity, 2) a non-
stationary region and 3) another stationary region consisting of a singularity,
an event horizon and again an asymptotically flat region at future timelike in-
finity. In the first and last region we were able to define vacuum states, because
they are stationary. However, when we examined the relation between the two
vacuum states in terms of the Bogoliubov coefficients we found that they do not
correspond. In other words the empty state in the initial region of spacetime is
likely to contain particles in the final region. Thus a non-stationary region of
spacetime can cause particle creation.

In the last section (3.5) we explicitly calculated the Bogoliubov coefficients
for a massless scalar field that evolves in the spacetime of a collapsing body.
What we found is that, independent of the details of the collapse, the black
hole will radiate a steady flux of particles with a Planckian distribution over
the modes. The energy of these particles can have no other origin than the
gravitational field. This implies that the radiation carries away energy from the
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black hole to infinity and we can only conclude that the black hole must lose
mass and eventually evaporate.

In the context of chapter 2 this is a very nice result since it establishes that
a black hole behaves as a body with a temperature that tends to equilibrium by
emitting radiation. This was exactly the missing link in the analogy between
black hole mechanics and thermodynamics. On the other hand, it is at least
remarkable that the so-called Hawking radiation totally undermines the clas-
sical definition of a black hole which states that nothing can escape from its
gravitational attraction!

In this chapter we will thoroughly investigate the implications of Hawking’s
calculation and explain the infamous information loss paradox, but before div-
ing into formulas and calculations, let us give you a qualitative idea of how
the paradox comes about. For this purpose let us first try to understand the
implications of a singularity. In 1965 Roger Penrose [11] proved, using the fact
that gravity is always attractive and the way light cones behave in a curved
spacetime (see also section 2.1), that in the classical theory of gravitation the
collapse of a bulk of matter unavoidably results in a singularity. A singularity
is a region that cannot be described with any of the tools we have to describe
nature, so the laws of physics break down at such a point in spacetime. Since
we have no means to describe a singularity, we have no idea of what can come
out of it. This means that in a spacetime that contains a singularity we would
in principle be unable to predict the future.

This is of course a very disturbing fact and many attempts have been made
to solve this problem. One of these attempts is called the ”cosmic censorship”
hypothesis. This says that any singularity should be hidden from our view by an
event horizon, because then whatever comes out of the singularity will never be
able to interfere with our future!. Singularities that are not sealed off by event
horizons are called naked singularities. The ”big bang” is generally believed to
be a naked singularity, but a black hole is not since it has an event horizon.

The event horizon causes observers outside the black hole to have only lim-
ited knowledge about the internal state of the black hole. He can only measure
its mass, angular momentum and charge, this is called the "no hair” theorem.
So any other kind of information about a black hole, such as the kind of matter
it is composed of, what kind of object it was before it collapsed, etcetera is lost
to an observer outside the black hole. It is believed, however, that this infor-
mation is somehow stored inside the black hole, so that it is not actually lost
to the universe as a whole. This is in accordance with the quantum mechanical
law that the universe evolves unitarily in time, since this means that the initial
state can always be reconstructed, so information may not be lost.

Now that we have established in the previous section that black holes ra-
diate and evaporate, we must conclude that the radiation must return all the
information about the black hole’s history to us. Because only in that case
black hole formation and evaporation is a unitary process and thus allowed by
quantum mechanics. The radiation, however, is completely uncorrelated, as we
will show in the following sections, which means that it does not contain any
information whatsoever. So after complete evaporation of the black hole, the

IThis clearly is the most cowardice solution one may think of and it is not quite satisfactory,
because the fact that we do not understand the physics of a singularity remains. But fact is
that all kinds of calculations on the formation of black holes have so far always produced an
event horizon.
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only information we have left is the black hole’s mass, angular momentum and
charge, all the other information is lost. This constitutes the information loss
paradox.

So the paradox comes down to the following: From a thermodynamical point
of view Hawking radiation is the desired result, but from a quantum mechanical
point of view it cannot be good, since it violates unitarity. Is there any way we
can reconcile these two very contradictory conclusions?

In the following sections we will show exactly how Hawking radiation violates
unitarity. Then in the next chapter we will discuss the validity of Hawking’s
calculation in detail. In this chapter we will also address the question just posed.
Finally, in chapter 6, we will comment shortly on the many different attempts
that have been made to resolve the paradox, before we turn our attention to
one of these attempts in specific on which we will elaborate in the last chapter.

4.2 The Thermal Density Matrix

In section 3.4 we already introduced the density matrix by its definition
< 0 >=Tr(p0), (4.1)

with O an observable. For a pure quantum state |¥ >= ¥;a;|t; > the density
matrix is simply

pp =T >< 0, (4.2)

as is readily checked with 4.1. The density matrix is particularly useful when
describing systems at a finite temperature. Following the principles of statistical
mechanics we put the system in contact with a heat bath and assign classical
probabilities p4 to the quantum mechanical states |¥,4 >. This leads to the
thermal density matrix

pih = Zapa|¥a >< ¥y

For a system at temperature T the probabilities are proportional to the Boltz-
mann factors e #F4_ where f =T, so that

_ EAC_BEA|‘~I/A > Uy
Pth = ZAG_BEA 9

(4.3)

And the expectation value of an observable O then reads

ZAe_BEA < \PA|O|\I’A >
Y e BEa ’

<O >4= Tr(pth()) =

as we would expect in statistical mechanics.

In the preceding chapter we found that a black hole emits particles with
a thermal spectrum, in other words it evaporates. When the evaporation is
complete, the black hole will have disappeared and all that remains is thermal
radiation. So the final state is thermal, which means that at late times the
thermal density matrix should describe the system correctly. To check more
thoroughly that the final state is thermal, one can calculate < N f > <N ]3 >,
etcetera, using pyn, as well as the Bogoliubov coefficients and check that both
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yield the same results?. This is done in [12]. One can also check that all the off-
diagonal elements are zero, as is the case for py,, by calculating the expectation
values of operators like b;b; and b}bl with j #[. It can be shown that they are
all zero (see [12]).

Let us return to the issue of information loss. When the black hole has
completely evaporated, the energy of the final state will equal the initial mass
of the black hole by conservation of energy. From this we can deduce that every
possible configuration of the final state has the same probability in the following
manner. Suppose the final state is [T 4 >, then E4 = My, so

e PBuEa BuMo
PA= 5 BuEx ~ € /%,
where (g is the temperature of the black hole at the time of emission and Z =
Y ae PuEa is the partition function, which is independent of the configuration
of the final state. So we have found that the p4 are equal for all A. The fact that
every possible configuration is equally probable tells us that it is impossible to
reconstruct the initial state (assuming the initial state was pure), since the final
state does not carry any information. This explains intuitively that information
is lost in black hole evaporation.

There is a subtlety in the above reasoning though; it seems as though we
took the temperature of the black hole to be constant. This is of course not the
case, because for E4 to equal My the temperature will increase from /87w My to
infinity. What exactly happens at the final stage of evaporation is unclear (and
different scenarios will be discussed later), but it does not seem unreasonable
to assume that the black hole radiates away most of its mass very slowly (since
the temperature starts low), so that its mass can be assumed constant during
most of the evaporation process. However, in this case the issue is not so much
whether or not the temperature can be regarded constant, but more if the
temperature evolution is more or less the same for different final configurations.
There is little reason to assume that this is not the case, so it seems legitimate
to say that Bg is independent of the state A.

4.3 Evolution of a Pure State into a Thermal
State

In this section we will show that the evolution of a pure state into a thermal
state, as we believe happens in the process of black hole formation and evapo-
ration, is not a unitary transformation and thus in contradiction with quantum
mechanics.

Let us first refresh our memory: why do transformations need to be unitary
in quantum mechanics? Let H be the infinite dimensional Hilbert space spanned
by the orthonormal states |¥; >, which are solutions of the wave equation. Let
U : H — H be a matrix that transforms the state |¥4 > into the state |Up >,
then since < ¥;|¥; >=§;;

1=< T4V, >=< UV > = UU=1,

?For example, < N? >= Tr(pN7) but also < N? >=< 0_\b;[bjb;[bj|0_ > which can be
expressed in terms of tile Bogoliubov coefficients by using 3.30 as we did in 3.34.
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in other words, U is unitary®.

A pure state is described by the pure density matrix (4.2), which is a pro-
jector since it projects the whole Hilbert space H onto one state, so dim(Im
pp)= 1. Whereas the thermal density matrix has

dim(Impyp,) = dim(H) = oo, (4.4)

as can be seen directly from its form in (4.3). In quantum mechanics, however,
the density matrix that describes a system that started out in a pure state has
to obey:

p=Up,U",
S0
dim(Imp') = dim(ImUp,U") = dim(Imp,) = 1,
since U is invertible. When we compare this with (4.4) we must conclude that

Pth ;é UpPUta

S0 a pure state cannot evolve into a thermal state in a unitary way.

This conclusion explains the term paradox. We started with the semi-
classical approximation, in which gravitation is incorporated in quantum me-
chanics by treating it as a classical background field for quantized matter fields.
The result is that the matter fields evolve in a non-unitary way. This is in con-
tradiction with the semi-classical approximation since the matter fields should
obey the laws of quantum mechanics in this approximation. So the calculation
seems to be wrong. On the other hand, regarding the analogy between thermo-
dynamics and black hole mechanics, we seem to have found exactly the missing
link, namely the fact that a black hole emits black body radiation.

Nowadays the result that black holes radiate is generally accepted and most
physicists believe that in a full theory of black hole dynamics there will be
no violation of unitarity and thus no information is lost. But over the past
thirty years it seems that nobody has come up with a satisfactory answer to
the question what goes wrong in Hawking’s calculation, why does it yield two
so very contradictory results - one that seems to be dramatically wrong from a
quantum mechanical point of view and one that seems to be to good to be true
from a thermodynamic point of view.

In the following chapter we will discuss the validity of Hawking’s calculation.
After that a number of modern points of view on this subject will be discussed
in chapter 6.

3For the following it is actually enough that U is invertible, so dim(Ker U)= 0.






Chapter 5

Discussion of the Validity of
Hawking’s Calculation

At this point it should be clear to the reader what the information loss paradox
is and how it comes about. To understand how the paradox may be resolved
it is natural to start by taking the calculation of chapter 3 under the loop. In
this chapter we will discuss the many assumptions and approximations that are
made in the calculation step by step. Evidently, we will not find a real flaw,
otherwise we would have solved the paradox, but we will be able to point out
at least two assumptions that may not be fully correct.

5.1 Details

In chapter 3 we have left out a couple of details to be able to keep track of the
general reasoning. In this section we will discuss some subtleties that may have
bothered the reader, but do not significantly influence the results. At least that
is what we shall try to convince the reader of.

5.1.1 Backscattering

In the original article Hawking also takes into account that the particles emitted
by the black hole can scatter against the gravitational field surrounding the black
hole. This scattering can sent them back across the event horizon, so actually
only a fraction of the emitted particles will really escape from the black hole and
reach infinity. Suppose a fraction A, of the particles emitted with frequency w
reaches infinity, whereas the fraction (1 — A,) of these particles gets scattered
back into the black hole. Then the total number of particles radiated away with
this frequency is

~1

N>z, = Ay(eMem—1)
On the other hand, however, for particles that come from past null infinity the
same applies. They also partially scatter off the gravitational field outside the

black hole. For particles that come from 7_ with a frequency w the fraction
that does not get scattered and thus reaches the black hole is again A,,. So the
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ratio of absorption and emission by the black hole is still that of a black body,
even when we take the backscattering into account.

5.1.2 Initial Vacuum State

Hawking assumes that the initial state of the massless scalar field is the vacuum
state. Strictly speaking the initial state is not completely empty since the matter
that will form the black hole is present. But one can assume that this matter is
initially localized within a region of radius R, where of course R is greater than
the Schwarzschild radius but also much smaller than infinity. Apart from the
fact that this is a necessary condition for the matter to collapse it also explains
why starting with a vacuum state at spatial infinity is a legitimate choice.

Even if there would be some massless scalar particles present initially, it
is highly unlikely that they will influence the process. Either they will travel
towards the black hole, pass by it and continue towards infinity. Or they will
fall into the black hole where they will just add a tiny bit to the black hole’s
mass. In either case they do not alter the character of the Hawking radiation
in any significant way.

5.1.3 Details of Collapse

To calculate the Bogoliubov coefficients explicitly we needed solutions of the
Klein-Gordon equation in the initially and finally stationary regions. These
solutions we could only find if we were at sufficiently large r (see (3.36)). Fur-
thermore, it is widely believed that spherically symmetric black holes settle
down quite quickly to a stationary state!. In that case the spacetime around
it can be described by the black hole metric, which is entirely determined by
the black hole’s mass, angular momentum and charge. All the details of the
collapse have been washed out. So what we have done to calculate the Bo-
goliubov coefficients is typical for scattering processes; we sent in a plane wave
from far away and then waited a sufficiently long time before we looked at the
wave again. The effect of any finite number of particles that might have been
generated by the explicit details of the collapse has been washed out by that
time. In addition to this, Hawking proves [8] that the result is also valid if the
collapse is not spherically symmetric.

5.1.4 Geometrical Optics Approximation

The geometrical optics approximation (see appendix B) used to relate the plane
wave solutions of the Klein-Gordon equation at future null infinity to the plane
wave solutions of this equation at past null infinity is valid only for quickly
oscillating waves. More precisely the wavelength of the wave has to be negligible
compared to the typical radius of curvature of the spacetime, i.e. A K R. We
shall see that this is the case for the wave we traced back.

First we note that the plane wave solutions of the Klein-Gordon equation
are valid only far away from the black hole and long after the collapse (the
black hole must have settled down to a stationary state). This means that our
observer has to be in the region where r,t — co. From the picture (Fig. 5.1)

I This is known as the Carter-Israel conjecture (see [13], [14]).
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we see that the part of the wavefunction that this observer sees, comes from a
very small region on Z_, just before the event horizon generator leaves Z_. The
event horizon generator is the null geodesic that does not hit the singularity nor
does it reach 7, it is captured by the black hole and bound to stay at r = 2M
for ever.

We have traced the wavefunction back in time so let us first discuss the
first part of this narrow strip. Here the retarded time u goes to infinity and
this corresponds to a diverging physical frequency. This can be seen from the
Schwarzschild metric, since a propertime interval is given by
AT = —y/1 — 2M /rAt, which goes to zero as r goes to the Schwarzschild radius.
So near the horizon the period of the wave becomes extremely short, which
corresponds to an extremely high frequency. So in the first part of the strip
the wavelength is extremely short and the geometrical optics approximation is
valid.

The second part of the strip lies in the region of spacetime before the collapse.
So as we are playing back time, the wave distances itself from the object before
collapse and thus its frequency goes down again. However, this time the redshift
is clearly less than the blueshift it suffered from the object after collapse?. So
the physical frequency will go down a little, but as it does, the curvature also
goes down. So effectively we still have A <« R in the second part if the strip.
Consequently, the geometrical optics approximation is legitimate for the entire
strip, i.e. for the part of the wavefunction we considered in the calculation.

5.1.5 More General Circumstances

To make the calculation as simple as possible, we carried it out only for a
massless scalar field and a chargeless black hole with zero angular momentum.
Hawking discusses generalizations of the calculation in the original article. He
states that the result remains unchanged for massless fields with integer spin,
such as the electromagnetic and linearized gravitational field. So the black hole
will also radiate photons and gravitons with a thermal spectrum. For massless
fermions however, their anticommuting nature causes the bosonic Bogoliubov
matrix relation

AA" - BBt =1
to change the fermionic relation
AA"+ BBT = 1.

It can now easily be derived that massless fermions are radiated with the spec-
trum that is in accordance with the Fermi-Dirac statistics that applies to them,
namely

-1
<68Mw7r + 1) .
To generalize the calculation to massive fields is a little more tricky since they

do not reach null infinity. Hawking argues that this problem can be overcome
and shows that massive particles also get emitted with a thermal spectrum.

2This effect is discussed in more detail in subsection 5.2.2.
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Figure 5.1: An observer at late times only sees modes with large values of
the retarded time u. These are the modes for which the geometrical optics
approximation is valid.



Chapter 5. Validity of Hawking’s Calculation 53

The only difference now is that the production of massive particles requires
more energy and thus will only occur at high enough temperatures (see next
subsection).

Finally, one can generalize to a rotating black hole with non-zero charge.
In this case one should replace the Schwarzschild metric by the Kerr-Newman
metric. It can be shown that for a black hole with angular momentum J and
charge @ the radiation spectrum is

-1
(eSMW(wflﬂfeQ) _ 1) _

where [ and e are the angular momentum and charge of the emitted (bosonic®)
particles respectively and 2 is the angular frequency of the black hole and & is
its electrostatic potential. The above result tells us that particles with angular
momentum in the same direction and charge with the same sign as the black
hole are emitted at a higher rate, so they do not only carry away the black hole’s
mass, but also its angular momentum and charge.

5.1.6 Final Stage

We found that black holes radiate at a temperature inversely proportional to
their mass. A black hole will only radiate effectively and loose energy when it
has a temperature higher than its surrounding. As we know the universe has
a temperature of 3 K originating from the microcosmic background radiation.
For a black hole to have a temperature higher than 3 K it has to be lighter than
1026 grams? (a solar mass is of the order of 1033 g)!

Once a black hole starts radiating it will loose mass and as a result its
temperature will increase. Initially, the black hole will radiate weakly, which
only causes minor changes in its mass and temperature. Since this process
develops so gradually we can justify the fact that we kept the mass constant
throughout the calculation. Only at the very end of the evaporation will the
mass have reduced sufficiently for the production of massive particles. This can
be seen as follows. The probability that a particle with energy E is generated is
given by P(E) o e £/(ksT) S the probability that the black hole will create a
massive particle of mass m becomes significant when E/(kgT) = mc?/(kgTr)
becomes of order one, i.e. Ty ~ ks So the black hole will start radiating

mc?
particles of m when the black hole mass has reduced to

hed hed kg

M = ~ _—
BH = rGTyks ~ 87Gkg mc?

~ 1.06 x 10*2(mc?)'eVyg.

The lightest particles in the Standard Model are electron-neutrinos, their mass
is around 1 eV, so they can be produced by a black hole of a mass of 10?2

3For fermionic particles one finds
-1
(eSMW(w—lQ—eé) + 1) .

4To verify this note that the full expression for the Hawking temperature is given by

hc3

==  ~123x10°M35L gK.
87GMppks BH I

Ty



Chapter 5. Validity of Hawking’s Calculation 54

grams. Electrons, which have a mass of approximately 0.51x10%eV", and protons
(my, ~ 2000m,) are generated by black holes with a mass of the order of 106
grams and 10'® grams respectively.

We would like to know at which stage in the evaporation process the ap-
proximation that the black hole mass is constant becomes dubious. The rate
at which the black hole mass changes is given by the radiation flux out of the
black hole times the black hole area

dMppy

at PradABH ~ MI;?{M?BHv

where we used the Stefan-Boltzmann radiation law, i.e. ®..q4 = oT* with ¢
the Stefan-Boltzmann constant, the fact that Ty oc Mg}, and finally Agy =
16w M3% ;. From this expression we can see that the change in the black hole
mass becomes significant when it becomes of order 1. That is, since we work in
unit where ¢ = A = G = 1, when Mgy becomes of the order of the Planck mass
mp = \/hc/G =~ 1075g.

We have no means to calculate what happens to the black hole at this very
final stage. However, Hawking claims [8] that the black hole will explode, that
it will blast away its remaining energy on an extremely short time scale and
thus the black hole will simply disappear. In this scenario information is lost
since this remaining energy is insufficient to restore the information that was
lost behind the horizon [12].

Another scenario is that there may remain a black hole remnant of some
kind that might contain the presumably lost information. But it seems impos-
sible to construct such a remnant without encountering serious difficulties. For
discussions of the specific problems one encounters when constructing remnants
we refer to [15] and [16].

5.1.7 Violation of the Area Theorem

We have established that in the evolution of a quantized field in a curved non-
stationary background metric particles are created. The energy necessary to
create these particles can have no other origin than coming from the metric
itself. Extracting energy from the metric is accompanied by a decrease in its
curvature. In the case of a black hole generating a Schwarzschild metric a
reduction in the metric curvature corresponds to a decrease in mass of the black
hole.

From chapter 2 we know that a decrease in the mass of a black hole results
in a decrease of its area, since

K
M= _—0A.
) 87r6

This may seem to be in contradiction with the area theorem and thus with the
second law of thermodynamics, but remember that at the end of section 2.4
we anticipated this and concluded that the second law had to be generalized.
The generalized second law states that the total entropy of the universe plus all
black hole entropy can never decrease. This law is not violated in the process of
black hole evaporation, since the decrease in black hole entropy is compensated
by the outgoing radiation that causes a maximal increase in the entropy of the
rest of the universe.
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5.2 Validity of the Semi-Classical Approxima-
tion

To consider the validity of the approximation used in the lack of a full theory
of quantum gravity let us first restate how this approximation was realized.
The gravitational field was treated classically, i.e. it is a solution of the Ein-
stein equation. The matter field was treated quantum mechanically in this
classical background field by replacing the flat Minkowski metric in the wave
equation by the curved metric that solves the Einstein equation. A problem that
immediately arose is the so-called backreaction problem. Once the curvature
of spacetime generates particle creation, these newly created particles change
(the expectation value of) the energy-momentum tensor. But a change in the
energy-momentum tensor causes a change in the spacetime curvature through
the Einstein equation, and so on. In addition, there is the problem that solving
the Einstein equation analytically becomes practically impossible as soon as the
energy-momentum tensor is non-zero.

For the specific case of a collapsing body, however, we argued that initially
the matter was well enough localized around r = 0, such that the energy-
momentum tensor is zero outside a certain radius R <« oo. And after the
collapse all the matter sits at the singularity, so the energy density tensor is now
zero everywhere except at r = 0. So the initial and final stationary spacetimes
could be found analytically from the Einstein equation.

To overcome the backreaction problem one has to be able to argue that it is
so small that it can be ignored. We will discuss what the conditions are in which
this neglect can be justified and investigate whether these conditions were met
in Hawking’s calculation.

5.2.1 Backreaction of High Spacetime Curvature

In section 3.3 we established that for a stationary spacetime one can globally
define a vacuum state. In the asymptotically flat region of this stationary space-
time there is no ambiguity in the particle number because one can distinguish
precisely between all the modes {f;} that form the basis for the wavefunction

é(x) = Tifai fi(x) + aj-fi*(li)]-

For a general point in this curved spacetime this is not the case however. This
is illustrated in Fig. 5.2. The observer at p can distinguish between the mode
fi with characteristic frequency w and its complex conjugate f;* with frequency
—w with very high precision when w is big compared to the local curvature
(the indeterminacy can be shown to be exponentially small). So for modes with
high frequencies compared to the local spacetime curvature one can accurately
distinguish between the annihilation and creation operators, a; and aI, and con-
sequently there is virtually no indeterminacy in the particle number. However,
when the characteristic frequency becomes of the order of the local curvature
the ambiguity between f; and its complex conjugate is almost complete. This
ambiguity results in a complete ambiguity between the annihilation and cre-
ation operator of this mode and consequently there is an uncertainty of i% in

the number operator a;-raz- for this mode.
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high frequency mode: \/\/\V ANV VVVVVAPVVVVVVVVVV
low frequency mode: /\/_j\/\

spacelike slice
of equal time

Figure 5.2: The observer at p can distinguish accurately between high frequency
modes and their complex conjugates. For low frequency modes, however, the
distinction becomes unmeasurable and the ambiguity complete.

A local indeterminacy in particle number will cause an indeterminacy in the
local energy-momentum tensor, this in turn will cause an uncertainty in the
spacetime curvature via the Einstein equation. Thus the semi-classical approx-
imation will breakdown when the uncertainty in the curvature becomes of the
order of the local curvature itself. It can be shown that for a local curvature
B the uncertainty in the curvature is of order B2. This means that the ap-
proximation will breakdown when the curvature becomes of order one, however,
this corresponds to a local coordinate radius R (see Fig. 5.2) of the order of
the Planck length!® For the spacetime of a black hole such high curvatures will
occur only very near the singularity. Since this region is hidden from our view
by the event horizon any particle creation caused by these curvatures will not
effect us.

5.2.2 Backreaction of High Energy Particles

In the previous section we found that the backreaction of particle creation caused
by high spacetime curvatures can be neglected as long as the coordinate radius
stays well above the Planck length. On the other hand, there is the backreaction
caused by high energy modes of the wavefunction.

Naively one would say that the semi-classical approximation breaks down
when there is a significant occupancy of modes with very high frequency. Be-
cause then the expectation value of the energy-momentum tensor of the field
will become so large that its backreaction on the metric can no longer be ig-
nored. There is a subtlety here, however, because in a free field theory, i.e.
where particles do not interact, such a diverging energy can be taken care of by
renormalization. It is only because the particles are not free, since they exert

5The curvature of spacetime is given by the Riemann tensor, which is the unique tensor
that can be constructed from second order derivatives of the metric. Clearly, since the metric is
dimensionless and the derivatives are with respect to the spacetime coordinates, the curvature
of spacetime has dimensions one over length squared. When the curvature is of order one, so
is the coordinate radius. Order one in our units means order Planck length in SI units, that

is Lp = /hG/c3 2 10735m.
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a gravitational attraction on each other, that the semi-classical approximation
breaks down for high energy particles. Because in the approximation this inter-
action is not accounted for and for high energy particles it can not be ignored.
This was first pointed out by 't Hooft [17].

Now let us investigate if the condition that there should be no high energy
particles, is met in Hawking’s calculation. Remember that near the horizon
the wavefunction reaches an infinite number of cycles (see Fig.5.1), which cor-
responds to a diverging physical frequency. This enabled us to construct wave
packets whose trajectories in spacetime could be approximated by null geodesics.
But since these wavepackets are constructed of diverging frequency modes they
will have an extremely high energy. This makes sense, because for a particle to
travel through a collapsing body just before the horizon forms and nevertheless
be able to escape to infinity it must have an extremely high energy. In view
of what we just discussed, however, we must conclude that these high energy
particles cause the semi-classical approximation to breakdown near the event
horizon.

This argument against the validity of Hawking’s calculation is often referred
to as backreaction due to the infrared divergence. This can be understood as
follows. When a plane wave of a certain frequency approaches a heavy object
it will suffer a blue-shift. On the other hand, when it distances itself from the
object after passing through it, it will suffer a redshift. If the object is static
and thus the background metric is unchanged while the wave passes by, the
redshift will exactly cancel the blueshift. For a collapsing body, however, the
time scale on which the metric changes is of the same order as the time it takes
the wave to travel through it. In that case, the redshift is much larger than the
blueshift. This redshift emerges in our calculation of the particle creation in
equation (3.43). Pay attention, however, because in the calculation we traced
the waves back in time so the redshift also occurs in this direction. Namely, null
rays with constant phase u traced back to Z_ pile up densely along the horizon
generating null ray for which v = vy, as we see in Fig. 5.1. The redshift is only
evident from the picture when you realize that the pile up at Z; is an artifact
of the coordinates (u goes to infinity at the horizon), whereas the pile up at Z_
is indeed a physical blueshift. The infinite number of cycles of the wavefunction
thus corresponds to an infinite blueshift. So we would call this an ultraviolet
divergence, however, since we did everything in reverse, convention has it that
this is called the infrared divergence.

So what we have found in this section is that in Hawking’s calculation the
condition of sufficiently low spacetime curvatures seems to be met. However, the
condition that there should be no high energy particles seems to be violated near
event horizon. In this region the matterfield can longer be regarded a free field.
Thus, ingoing and outcoming particles, which have a very high energy near the
event horizon, will interact with each other and it does not seem unreasonable
to this that these interaction will induce long range correlation in the Hawking
radiation.

5.3 Are The Bases of H and Z, Independent?

Finally, one can doubt an assumption Hawking makes at the very start of his
calculation. Namely, he says that the wavefunction is completely determined by
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its data on the event horizon and future null infinity. And thus writes it as
@ >= 25 [Nijlxi >z, Inj > ], (5.1)

with |x; >z, a complete orthogonal set at future null infinity and [n; >4 a
complete orthogonal set at the event horizon. In doing so he assumes that
these orthogonal sets are completely independent. In general this is a valid
assumption, but in view of the non-locality of the process of particle creation
one might fear that in this case they are not independent. Maybe the part of
the wave that escapes to infinity picks up information from behind the event
horizon by some non-local process. These correlations will cause the spectrum
of the radiation to be not exactly thermal and thus unitarity can be restored.
This view is advocated in [18]. The argument goes as follows. In a quantum
field theory on a fixed background locality is expressed by the fact that the
commutator of two observables at any two spacelike separated points x and y
vanishes,

[0i(2), 0;(y)] = 0. (5.2)

However, in a full theory of quantum gravity this is no longer the case. For
example, the creation of a high-energetic particle at the point z will cause the
geometry of the background to change, which in turn may very well influence
observations made at the point y. So then the locality condition (5.2) breaks
down. In their article Giddings and Lippert define the so-called locality bound
below which the locality condition breaks down. They arrive at a specific ex-
pression for this bound, given by

(@ —y)* <p| (5.3)

with p the momentum in the center of mass frame (i.e. for a particle at x
with momentum p and a particle at y with momentum —p), by noticing that in
such a configuration a black hole would form and thus the locality condition is
definitely violated.

Now let us see why the validity of the decomposition of the full Hilbert space
into a product of two independent Hilbert spaces depends on the validity of the
locality condition. Consider a spacelike slice S that cuts across the horizon,
such that part of the points that lie on it are inside the black hole and part of
them are outside the black hole. Clearly, points z that lie inside the black hole
and points y that lie outside the black hole are spacelike separated. Now only
if field operators acting at the points x and y commute, it is possible to write a
state on the slice S as a state on a product of two independent Hilbert spaces,
one inside the black hole and one outside the black hole. So the validity of (5.1)
hinges on the validity of the locality condition.

To show that in black hole formation and evaporation the locality condition
is violated, we consider a spacelike slice S that cuts across the Hawking radiation
outside the black hole as well as the infalling matter inside the black hole. It
has been shown [19] that information will escape the black hole at a relatively
late time, so in order to compare information contained inside the black hole
to that in the Hawking radiation the slice S must be highly deformed. On
such an extreme slice the locality bound is unknown, so what we need to do is
trace back the Hawking radiation to a point 3’ near the event horizon. On the
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new spacelike slice S’ that cuts through a point z inside the black hole and the
point 3’ the locality bound is just (5.3). In [18] it is shown that this bound is
grossly exceeded and thus the locality condition is violated. Qualitatively this
can be understood by remembering that tracing back the Hawking radiation is
accompanied by a huge blueshift, so the relative momentum that occurs in the
locality bound diverges. For further details we refer to the original article [18].

5.4 Conclusion

Although, Hawking makes quite a number of assumptions and approximations in
his calculation, the validity of only two of his many steps can really be doubted.
Namely, the validity of the semi-classical approximation near the horizon and
the assumption that the wavefunction can be written as a tensor product of
states. It is sometimes said that these arguments are actually one and the
same. Both objections indeed seem to rely on the view that near the horizon
quantum gravitational effects will start to play an important role and that this
renders the assumption, that ingoing and outcoming particles are independent,
unreliable. So these objections tell us that if we want to solve the information
loss paradox we shall have to leave the arena of the semi-classical approximation.

In the next chapter we will shortly discuss some of most well known attempts
at solving the paradox. We shall see that nowadays everyone seems to agree
on the fact that all processes in nature are unitary, even the evaporation of a
black hole. The most widely accepted view on the paradox is then that a black
hole does radiate as a body of temperature Ty = %, so a black hole with
its surrounding is a thermodynamic system semi-classically. But the spectrum
of the radiation is not exactly thermal once quantum corrections are taken into
account. These corrections are believed to restore the unitarity of the process
of black hole formation and evaporation. So the laws of quantum mechanics are
not violated.






Chapter 6

Attempts at Resolving the
Paradox

Over the past three decades many attempts have been made to find a solution
to the paradox. Although a satisfactory solution to the paradox has not yet
been found, the issue of information loss seems to have been settled in favor of
unitarity. In this chapter we will summarize the attempts that in our opinion
are the most interesting, because they have contributed most to the current
state of affairs.

We will start by discussing Hawking’s initial proposal for a resolution, in
which he assumes information is lost. Then we shall discuss two new concepts
that resulted from the study of black hole evaporation assuming information is
not lost. They are called black hole complementarity and holography. In section
6.4 we shall sketch the AdS/CFT correspondence. This correspondence may be
seen as a realization of the holographic principle in string theory. Together with
the fact that quantum mechanics is not at variance with the physical world,
AdS/CFT contributed strongly to convincing the grand part of the physics
community that all physical processes are unitary, even black hole evaporation.
Recently, Hawking announced that he also was convinced and admitted to have
been wrong in proposing a modification of quantum mechanics. We will shortly
discuss his present point of view in the last section of this chapter.

6.1 Hawking’s Solution Part 1: Superscattering
Operator

Hawking was the first to publish an article that dealt with the consequences of
black hole evaporation [12]. He accepted his result that apparently pure states
can evolve into mixed states when the effect of gravity on quantized fields is
taken into account. Since this is in contradiction with quantum mechanics he
proposed a modification of this theory. We will shortly discuss this modifi-
cation, but before doing so we should emphasize that with this modification
Hawking accepted a breakdown of predictability caused by the non-unitarity of
the evolution of pure states into mixed states. A full theory of quantum gravity
would contain yet another uncertainty above Heisenberg’s uncertainty principle.

61
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Einstein once said about this uncertainty principle ”God does not play dice”.
Hawking’s solution to the paradox was as he put it: ”God not only plays dice,
He sometimes throws them where they cannot be seen”.

To allow quantum states to evolve from pure into mixed states, Hawking
introduced the superscattering operator that maps density matrices to each
other. Thus for a system that is described in an initial stage by the density
matrix pgp and in a final stage by the density matrix p.q the superscattering
operator S maps pPap t0 Ped

Ped = Scdabpab~ (61)

When both the initial and the final density matrices describe pure systems,
i.e. they are of the form

pp =¥ >< Y,

then the superscattering operator can be expressed in terms of the quantum
mechanical scattering operator. The scattering operator S maps the initial
state to the final state and is unitary so it maps pure states to pure states (see
section 4.3). For a unitary process the superscattering operator can be shown
to be:

1 _ _
Scdap = i(scasbdl + Sadlscb)-

However, if the initial state is such that it has a significant probability to form a
black hole, the final state will be thermal and thus the evolution is not unitary.
For such processes there is no scattering matrix, so the superscattering operator
cannot be expressed in the above form. Hawking proposed that non-unitary
processes are nevertheless allowed and their evolution is given by (6.1).

Since we do not have a complete theory that unifies all four forces of nature,
we do not know whether or not such a theory would have a unitary time evolu-
tion operator. What we do know however is that experiments have as yet never
been in contradiction with quantum mechanics. All processes we have been able
to measure so far can be described by a scattering operator, so the full theory
should at least reduce to a unitary theory in the limit that gravitation is weak.

A problem now immediately arises with Hawking’s modified theory, which
can be understood as follows. It is believed that on the Planck scale gravitational
collapse of massive objects occurs frequently. In Hawking’s modified quantum
theory this would lead to a non-unitary time evolution at all scales. After all,
in his theory the formation of Planck size black holes would effect our universe
in such a way that pure states will evolve into mixed states, which makes his
theory behave non-unitarily in the quantum mechanical limit. As we discussed
above this cannot be reconciled with what we see.

In a very readable and, I might even say, entertaining article [20] Page com-
ments on the effects of the introduction of a superscattering operator. He proves
that if the superscattering operator is to be CPT invariant, then it maps pure
initial density matrices into pure final density matrices. He suggests a number
of possibilities for further investigation of the evolution described by a super-
scattering operator. He concludes his article with saying that ”maybe if God
throws dice where they cannot be seen, they cannot affect us”.

Further difficulties that Hawking’s proposal encounters are discussed in [21],
[22] and [23].
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6.2 Holographic Principle

The holographic principle was introduced by ’t Hooft in 1993 [24]. To under-
stand this idea we should go back to the analogy between thermodynamics and
black hole mechanics for a moment. First it was found that the area of a black
hole behaves in the same manner as entropy. Clues from information theory
indicated that a black hole might even have an entropy that scales with its sur-
face area. Finally, Hawking’s discovery that black holes radiate, which indicates
that they have a temperature, was even more evidence that the analogy meant
more than just a similarity in formula’s.

However, when a black hole is regarded as a hot body that tends to an
equilibrium state with its surrounding, then it has a remarkable feature. Namely,
its entropy scales with its area, whereas the entropy of a thermodynamic system
scales with its volume. In thermodynamics entropy is an extensive quantity.
This can be easily understood from its definition as the logarithm of the number
of accessible states. Consider a system of volume V that is build up from V'
cubes of unit volume. Each cube has a certain number of accessible states. For
example, consider a system that is allowed to have the value 0 or 1 in each cube,
in that case the number of accessible states is 2. The total number of states for
such a system is then simply:

zZ =2,
and thus the entropy scales with the volume of the system:
S=InZ=VIn2.

In [24] the fact that black hole entropy scales with the black hole area is
investigated and a remarkable conclusion is reached. 't Hooft considers a system
that has two accessible states for each unit volume, just as the one described
above. The system is confined to a volume V = 4/37(d/2)? and has an energy
smaller than d/4, such that it does not collapse to form a black hole. He then
shows that the entropy of this system is small compared to that of a black hole
if the volume is sufficiently large. Furthermore, he shows that the entropy is
maximal when the volume is filled with one black hole of the largest possible
size, i.e. with radius d/2. The entropy is then s = 4w (d/2)? = A/4, where A
is the surface area. This is exactly the result we obtained in chapter 3.5 (see
(3.54))!

For a quantum field theory that is build on two assumptions: (1) at Planckian
distance scales it has discrete degrees of freedom and (2) the evolution of the field
theory must be reversible in time, one seems to do an enormous over counting
of the number of accessible states or degrees of freedom. This is because in such
a theory the degrees of freedom are thought to scale with the volume. ’t Hooft
explains this over-counting as a result of the fact that almost all the states of
the field have such a high energy that they would collapse to form black holes
before they can influence the future of the system. He concludes that to describe
what happens inside a volume it is enough to know the degrees of freedom on
the surface of this volume!

The comparison with a hologram is obvious. A two-dimensional hologram
of a three-dimensional object is made by shining a laser beam onto the object
and letting the reflected beam interfere with an unperturbed laser beam. The
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interference pattern registered on a photographic plate is the two-dimensional
hologram and the three-dimensional object can be recovered by shining with
an unperturbed laser beam at the plate. So it appears that all the information
necessary to describe the three-dimensional object can be stored on a two di-
mensional surface. This comparison can be extended to explain how sharp we
see our universe. The information we can store on the photographic plate is
limited by the resolution of our instruments, similarly the information one can
store on the surface area of a system is limited by the finiteness of the Planck
length. The blurring caused by this limitation is so small that in practice we
perceive our universe very sharply.

The holographic principle states that a field theory on a two-dimensional
closed surface suffices to describe all process that take place in the three-
dimensional volume within this surface. If one would be able to find this field
theory it would provide a solution to the information loss paradox. For example,
if this theory is found to be unitary, it is settled that pure states evolve into
pure states, while at the same time the black hole behaves as a hot body.

6.3 Black Hole Complementarity

Also in 1993 Susskind, Thorlacius and Uglum [25] published an article in which
they proposed an original view on black holes in order to reconcile quantum me-
chanics and black hole evaporation. They argue that an outside observer, that
stays at a sufficiently large distance from a black hole, should be able to describe
black hole evaporation using a semi-classical approximation. Furthermore, they
assume that the semi-classical theory has a unitary time evolution, so there is
no information loss in the process of black hole formation and evaporation to
an outside observer.

For an observer to stay outside the black hole he has to have a constant ac-
celeration away from the black hole horizon. It is calculated that such a Rindler
observer experiences a bath of thermalized particles and that the temperature
of this bath goes up as he gets closer to the horizon. In fact, to a Rindler ob-
server the region near the horizon seems to be very hot, so his semi-classical
theory will breakdown there. To avoid this, the concept of a stretched horizon is
introduced. The stretched horizon is located at a certain distance from the hori-
zon. This distance is determined by the energy scale up to which the observer
can justify the use of his theory. This energy scale is called the cut-off. The
observer cannot penetrate beyond the stretched horizon, so for his observations
to be consistent this surface should behave as a hot membrane.

The stretched horizon can be shown to have no observer independent exis-
tence. This, together with the fact that an outside observer does not see any
information loss, led Susskind et al. to formulate the principle of black hole
complementarity which, if correct!, solves the information loss paradox. To
state the principle we quote from [26]:

e "From the point of view of an external observer, the stretched horizon
exists and is a collection of quantum mechanical, microscopic degrees of
freedom which can absorb, store, thermalize and emit any quantum me-
chanical information which falls into the black hole.

1Some serious arguments against the principle are discussed in [26].
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e " A freely falling observer will not detect the stretched horizon, nor will he

experience any other local signal when he crosses the horizon2.”

Complementarity implies that the information carried by the matter that
falls into a black hole is thermalized by the stretched horizon and re-emitted in
the Hawking radiation. The radiation contains the information of the infalling
matter in long-distance correlations, this means that to recover exactly what
fell into the black hole by studying the outcoming radiation one has to measure
for an infinitely long time. In practice this is of course impossible. But this is
no different in everyday processes: try to recover the text written on a piece
of paper that you just burned by looking at the ashes and the heat that was
released.

It was soon realized that the principle of black hole complementarity and
the holographic principle are closely related. The stretched horizon that absorbs
and re-emits all the information that falls onto it is closely analogous to a surface
that encodes all the information contained in the volume it encloses. Shortly
after the formulation of these principles, Susskind and Uglum [26] suggested
that string theory was a possible candidate to realize a holographic description
of black holes.

6.4 String Theory

By now it should have become clear to the reader that solving the information
loss paradox requires a theory that is valid in a regime where both gravity
and quantum phenomena play a role, i.e. a full theory that describes all four
forces of nature quantum mechanically. In the absence of such a theory we
were only able to indicate where the validity of Hawking’s calculation breaks
down and speculate about whether or not the full theory would be unitary. In
short, without a theory of quantum gravity we are left to vague statements and
speculations. Since this, of course, is rather unsatisfying we chose to study the
most promising candidate of a theory of quantum gravity in the remainder of
this thesis, namely string theory. Not only is string theory a quantized theory
that contains gravity, but also more specific clues are present that indicate how
string theory might solve the information loss paradox.

Before we start discussing these clues, it must be emphasized that we make
some huge leaps through discoveries in string theory over the past 10 years
and the reader is by no means expected to really understand the arguments.
Rather we hope to convince the reader that our choice to concentrate on string
theory is based on solid grounds. Furthermore, we must stress that although
our arguments are based on string theory, no real knowledge about this theory
is required to understand the following chapters.

As we discussed previously, the main problem of incorporating gravity into
quantum field theory is that it gives rise to a non-renormalizable theory. In
the low energy limit field interactions can be expanded in a perturbation series,
but in the case of gravity higher order corrections give diverging contributions.
These divergences can be suppressed when gravity interactions are smeared
out over spacetime (see Fig 6.1). String theory is the only known theory that

2In [26] the authors have restricted themselves to big black holes for which the spacetime
curvature is low, such that tidal forces are very small.
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smears out these divergences in a consistent way, i.e. respecting causality and
general coordinate invariance. This is a popular argument why string theory
can describe all four forces consistently.

Interaction in one
point of spacetime

AN

Interaction smeared out
over a region of spacetime

N

Figure 6.1: A Feynman diagram in quantum field theory and in string theory.

Another convincing feature of string theory is that in order to be consistent
it must contain exactly one massless spin-2 particle. In other words, it has a
unique candidate for the graviton. In a low energy limit one can calculate tree-
diagrams for these gravitons and show that they correspond to the interactions
one finds in the classical limit. I.e. the four-point interactions of h,,, which
gives the deviation of the curved metric g,, from the Minkowski metric 7, are
equal to those of the graviton. Finally, there is a conceptually difficult method
using 3-functions® that enables one to recover the Einstein equation from string
theory.

So far for the arguments in favor of string theory as a candidate for the
unifying theory. We will now turn our discussion to the relation of string theory
with the information loss paradox. In the beginning of this chapter we antic-
ipated the importance of the AdS/CFT correspondence. This correspondence
relates string theory in an Anti-de Sitter background of d-dimensions to a con-
formal field theory on the (d — 1)-dimensional boundary. It was derived* by
Maldacena in 1997 [27]. The fact that a theory that lives on the boundary of a
spacetime can describe all that happens in the bulk strongly reminds us of the
holographic principle. And not only does string theory exhibit a holographic
character, it also tells us that, if correct, nature has a unitary time evolution
and information is not lost in any regime. This is because the conformal field
theory that effectively describes all physics in the bulk is unitary.

But this is not all, there is more evidence that string theory can solve the
paradox. To understand this evidence we will discuss a problem that is closely

3 3-Functions tell you how your physical quantities depend on the energy. It can be shown
that setting these functions to zero, i.e. demanding that string theory is scale independent,
gives the Einstein equation.

4Unfortunately, it is very difficult to test this correspondence directly. This has to do
with the fact that in both theories one can only calculate quantities perturbatively and the
low-energy limit in the one theory corresponds to the high energy limit of the other.
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related to information loss and has to do with black hole entropy. The statistical
mechanical interpretation of the entropy of a thermodynamical system is that it
measures the number of microscopic states of the system. Classically, however,
a black hole, is empty except for the pointlike singularity at its center. So it
seems to have only one internal state and one would accordingly expect it to
have zero entropy. If the identification of the black hole entropy with its area
is correct, which implies that they have non-zero entropy, we would want string
theory to tell us that black holes do have microstates. In the classical limit these
microstates should reduce to our classical picture of a black hole consisting of
just empty space except for the singularity.

In 1996 Strominger and Vafa [28] published an article in which they re-
ported that using new techniques in string theory they were able to count the
internal states of a specific kind of five-dimensional black hole. When they
compared what they found to the area of the black hole they retrieved the rela-
tion Sgpy = A/4. This relation was by then known as the Bekenstein-Hawking
area-entropy relation. Moreover, their article was shortly followed by a number
of publications ([29], [30], [31]) in which also the Hawking radiation rate and
Hawking temperature of this particular type of black hole (called near-extremal
black hole) were correctly found from the string theory description of this black
hole®. Although all these results were obtained for a type of black hole that has
little to do with the physical Schwarzschild black hole, they are very promising.
And what is more, they give way to an approach for solving the paradox that
finally goes beyond speculation.

We would like to conclude this section by restating that we believe that

e Resolving the information loss paradox requires a theory of quantum grav-
ity and string theory exhibits a number of features that makes it a very
good candidate for such a theory.

e The fact that actual calculations can be done, makes this approach all the
more attractive to pursue in the quest for a resolution of the paradox.

Before we get to work, we will shortly comment on Hawking’s present opinion
about the paradox in the next section.

6.5 Hawking’s Solution Part 2: Path-Integral
Approach

In the first section of this chapter we discussed a modification of quantum me-
chanics proposed by Hawking in order to solve the paradox. The modification
was such that processes could be non-unitary and thus information could be lost.
For more than two decades Hawking has strongly believed that information was
lost in black hole formation and evaporation.

Somewhere in the past years, however, he started doubting that information
could really be lost. And, finally, in the summer of 2004 he announced he had
solved the paradox in favor of unitarity! In England Hawking is a celebrity and
the announcement caught a lot of attention from the press. His talk, at the 17th

5In the next chapter we attempt to give the reader an idea of what this string theory
description of black holes is.
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International Conference on General Relativity and Gravitation held in Dublin,
attracted an enormous crowd (for a nice account of this event and a transcript
of the talk see [32]).

We will be very short on the content of the talk, because up till now no article
that provides the calculations necessary to proof his statements has appeared®.
Schematically he suggests the following. Black hole formation and evaporation
can be thought of as a scattering process. Prepare a certain configuration such
that it is very likely to form a black hole, then sit at infinity and send in a bunch
of particles and wait a very long time and see what comes out. So far this may
sound very familiar to you and you would probably guess that what will come
out is Hawking radiation. At this point, however quantum mechanics comes
into play and it tells you that since you are at infinity you can never be sure
that a black hole really formed, no matter how certain it was in the classical
theory. This is the fact that provides a way to maintain unitarity.

Processes as the one described above can be calculated by doing the Feyn-
man path-integral over all histories. Unfortunately, how to do this is not at
all trivial, but usually one starts with selecting a couple of histories that one
assumes to give the most interesting results. From our previous discussion we
assume these to be the geometries in which a black hole forms and the ones in
which no black hole forms, the so-called trivial geometries. Now Hawking ar-
gues that the integral over the trivial geometries gives a unitary result, whereas
the black hole geometries do not. But when one adds the two contributions the
final result is unitary, this has to do with the fact that correlation functions
decay exponentially in a black hole background. Therefore the final state in the
black hole metric is independent of the initial state and accordingly does not
contribute to the transition amplitude.

In the physics society Hawking has received a lot of criticism, because he
violated an unwritten rule: never declare you have solved something, before
you have actually done the calculations. Besides this there are a number of
physicists who believe that Hawking’s solution is not original. In the 2001
article [34] Maldacena reports a calculation that seems to be exactly the one
that Hawking proposes. Hawking argues that Maldacena did not draw the
right conclusions in that article, but many seem to doubt whether Hawking’s
conclusions are legitimate. To proof this he (or better: his students) will have
to provide us with a calculation.

6 Just before this thesis was finished, Hawking put an article [33] on the web following his
annoucement of having solved the paradox. The article does not contain any information that
was not already provided at his talk. In the acknowledgements he mentions that his student
C. Galfard is still working on a proof to support his claims.



Chapter 7

Resolving the Paradox with
String Theory?

In the previous chapter we introduced string theory as a consistent theory of
quantum gravity that is successful in explaining black hole entropy microscop-
ically, albeit only for a special class of black holes. Exactly how black holes
are constructed in string theory and how their microscopic states are counted is
way beyond the scope of this thesis. We will, however, try to give the reader a
qualitative idea of what stringy black holes are and how black hole microstates
can be identified in string theory.

In very rough lines, what we shall do in this chapter is compare the classical
picture of a black hole to a special kind of stringy black hole proposed by Mathur
and try to see whether this stringy black hole, that does have internal states
as opposed to the classical black hole, is able to send out information about its
internal states along with the Hawking radiation. This test is of course crucial
if we want these stringy black holes to be able to solve the information loss
paradox.

We must warn the reader that the stringy black hole lives in ten dimensions
and in the classical limit it reduces to an exotic type of black hole that has little
to do with the physical Schwarzschild black hole. Nevertheless, the outcome of
this test can give us insight in whether or not the approach of Mathur is likely
to be successful in solving the paradox in the long run.

7.1 Constructing Black Holes with Strings

To get an idea of how black holes arise in string theory, we must introduce a
couple of concepts. First of all, there are the building blocks of string theory
which are strings and D-branes. Strings are one-dimensional extended objects
which can either be closed or open, i.e. their endpoints can be joined together
to form a closed loop or not. For open strings their endpoints can either move
freely in spacetime (Neumann boundary condition) or be fixed in spacetime
(Dirichlet boundary condition). Strings live in a d dimensional spacetime! and

I There are five consistent string theories that live in 10 dimensions. They can all be related
to one another by dualities (of which we will come to speak shortly) and since they can all
be obtained in suitable limits from eleven dimensions, it is believed that they are all different
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Dp-branes are usually defined as (p + 1) dimensional objects on which open
strings with Dirichlet boundary conditions end. Since there is a momentum
flow from the open string with fixed endpoints to the Dp-brane, the Dp-brane
is itself a dynamical object.

Obviously, the strings can vibrate and when they are quantized, different
vibration modes can be identified as being different particles. For example, one
of the massless modes of the closed string can be identified as the graviton,
similarly the photon is the massless vibration mode of the open string with free
endpoints. If string theory is to be the unified theory of quantum mechanics and
gravity, then all the Standard Model particles must arise from the string spec-
trum. Furthermore, the string length has to be of the order of the fundamental
Planck length. In turn the string tension is inversely proportional to the string
length squared, consequently massive string modes are of the order of the Planck
mass and this energy scale is way out of reach experimentally. This means that
all the Standard Model particles must in fact be contained in the massless string
spectrum. You may worry that this seems unreasonable, since most known par-
ticles are massive, but compared to the Planck mass these masses are very small,
so to first order they are zero and small symmetry-breaking effects could make
them non-zero.

For this low energy regime, where only the massless fields play a role, there is
an effective action that describes a supergravity theory. Essentially, this effective
theory is obtained by describing a single string or brane in a background of the
fields that arise from the massless string spectrum. The strength with which
strings couple to each other is given by the string coupling constant g5, on the
other hand the D-brane tension is inversely proportional to the string coupling
constant so branes will never arise in a perturbative theory for small g;. This
is why D-branes are called non-perturbative objects.

This is a good point to say some words about another important concept in
string theory, namely dualities. Dualities are believed to be exact symmetries
of string theory that are spontaneously broken. Let us first discuss T-duality.
As we mentioned above the strings usually live in 10 dimensions, but this is
of course not the dimensionality of the spacetime we experience. This should
be solved by compactifying 6 of the 10 dimensions such that the volume of the
compactified manifold is much smaller than the length scales that are currently
experimentally accessible. T-duality is the duality between a theory compacti-
fied on a circle with radius R and a theory compactified on a circle with radius
1/R. S-duality, on the other hand, is the duality between the strong coupling
regime of one theory and the weak coupling regime of another theory. This is
because it sends the coupling constant g5 to 1/gs.

Why these dualities are important in our discussion of black holes in string
theory, is because there are black hole solutions of supergravity that arise from
certain fundamental string configurations as well as ones that arise from certain
D-brane configuration and these different solutions can be related by performing
a number of S- and T-dualities.

At this point we have introduced the concepts one must know to appreciate
what the geometries we wish to study have to do with strings and branes. In
the following section we focus on the particular brane configuration that gives
rise to the black hole geometry we are interested in. And we shall try to make it

limits of one and the same 11 dimensional theory, mysteriously called M-theory.
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plausible that one can derive a classical black hole geometry for this system as
well as a less naive picture that consists of a collection of geometries that may
be identified with black hole microstates. After that we will end this -perhaps
a bit superficial- introduction and we will state the geometries we have taken
from string theory and start studying them thoroughly.

7.2 The D1-D5 System

The geometry we wish to investigate in this chapter is generated by the so-called
D1-D5 system. This system is composed of n, D1-branes that are wrapped
around the y direction which is compactified on a circle of radius R. In addition,
there are four more dimensions compactified on a 4-manifold M (which we shall
take to be a 4-torus). And there are ny; D5-branes wrapped around all five
compactified directions. This picture is probably quite hard to visualize so
now we invoke the S- and T-dualities to relate the D1-D5 system to the F-P
system?. The F-P system is just a single string (called F) that is wrapped n;
times around the compactified y direction and carries n, units of momentum
charge P in this same direction. To obtain this configuration the string has to
be stretched long enough to wrap ny times around a circle of radius R. Since
the string has a certain tension it gains energy when it is stretched. So you
can imagine that a string, stretched very long and rolled up again, may have
enough energy to cause the background in which it is embedded to curve highly.
In fact, it is possible to give the string so much energy in this way that it
generates a singularity! The supergravity solution that is produced by this very
heavy string is asymptotically flat and has a singularity at its center (r = 0)3.
But Mathur [35] claims that this geometry corresponds to the F-P system only
naively, because it is a solution of the low energy supergravity equations away
from r = 0. He claims that the singularity at » = 0 is not really allowed by
the full string theory. He illustrates this as follows. The string that is wrapped
along the y direction carries momentum. This momentum has to be bound to
the y direction if the state is to be a bound state. So the momentum takes the
form of traveling waves along the string. As a consequence of these transverse
vibrations the string moves away from its center in the directions transverse to
the y direction. In other words, upon looking closely one sees that the string
is not confined to r = 0, this is an indication that the singular supergravity
solution may not be correct. If one takes the transverse vibration modes of the
string into account when going to the supergravity theory, one finds a different
geometry for each vibration mode. Although, these geometries are still singular,
it can be shown [36] that the singularities miraculously disappear upon going
to the dual D1-D5 system.

So Mathur argues that the D1-D5 system generates a collection of geometries
that all look very similar to the naive geometry, the only difference is that in
each geometry the singularity is replaced by a smooth ’cap’. At large distances
from the center all these smooth geometries look the same, but they all have a
slightly different cap at their center. Mathur interprets these different caps are
the different quantum states or microstates of the black hole. And it can be

2We just state that these two systems are dual without explaining it, because that requires
a much deeper understanding of string theory.
3What the intermediate region looks like will be discussed in the next section.
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shown [37] that counting these microstates gives you an entropy that corresponds
to the macroscopic entropy that comes from the horizon area®.

To summarize, Mathur claims that there is a classical geometry that cor-
responds to the D1-D5 system and a collection of geometries that should be
interpreted as the microstates of the quantum mechanical version of the black
hole corresponding to the D1-D5 system. He calls the quantum mechanical
black hole a fuzzball, since up to the horizon it looks like a classical black hole,
but inside the horizon it looks like a fuzzball, because of all the different mi-
crostates (see Fig. 7.1). His work is original, not because he was able to find the
entropy by a count of microstates (that was already done for a similar stringy
system by Strominger and Vafa [28]), nor because the found all these different
geometries corresponding to one stringy system (that was done by Lunin, Mal-
dacena and Maoz [36]), but because he interpreted these different geometries as
the microstates of the black hole.

Figure 7.1: On the left a schematic picture of a classical black hole with, except
for the singularity, empty space inside the horizon. On the right the fuzzball, the
proposed quantum mechanical picture of a black hole. The microstates extend
right up to the horizon.

In the next section we will study the classical black hole geometry and a
generic case of the quantum mechanical black hole geometry, namely the geom-
etry that corresponds to the simplest vibration mode of the F-P system. from
now on we shall refer to these two geometries as the CBH (classical black hole)
geometry and the QBH (quantum mechanical black hole) geometries respec-
tively. In section 7.4 we will propose a calculation that allows us to compare
the two geometries. Specifically, we are interested to see if the QBH geometries
exhibit properties that may lead to non-local corrections to the classical limit,
i.e. the CBH geometry.

There is a number of reasons why one expects that solving the paradox re-
quires non-locality. The most naive way to put this is that non-local effects near
the event horizon would allow the Hawking radiation to carry away information

4There are quite a number of subtleties here. Namely, the singular geometry that is
generated here is the one of a massless (!) black hole. This follows from the fact that the
horizon sits at » = 0, so the horizon area which is proportional to the mass squared, is zero.
From this in turn we must conclude that the macroscopic entropy is zero! Whereas a counting
of the different vibration modes of the string gives rise to a non-zero microscopic entropy.
As a solution for this discrepancy between the macroscopic and microscopic entropy Mathur
proposes to identify the horizon as the boundary of the region where the non-naive geometries
differ from each other, i.e. the boundary of the caps. And in fact, it can be shown that this
identification gives a macroscopic entropy that corresponds well with the microscopic entropy
[37].
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from the region inside the black hole horizon to infinity and thus restore the
information that would otherwise be lost in the process of black hole evapora-
tion. Another argument comes from holography. Remember that according to
the AdS/CFT correspondence one can describe everything that happens in a
(d + 1)-dimensional volume with a conformal field theory that lives in d dimen-
sions, which is local and unitary. The fact that the theory on the boundary is
local actually implies that the theory in the bulk can not be local. The example
we discussed before about entropy illustrates this. In a local theory the entropy
of a system scales with the volume of that system, however, holography tells us
that it scales with the surface area of the system. This is clearly a non-local
feature, since it requires that all the information about the internal system is
stored on its surface. So according to the AdS/CFT correspondence we should
expect that quantum gravity is a non-local theory®. An elaborate discussion of
this argument can be found in [38].

7.3 Properties of The Black Hole Geometries

In this section we shall study the CBH and the QBH geometries, in particular
we shall give a short introduction to Anti-de-Sitter spacetime (AdS for short)
and BTZ black holes (for a nice review see [39]).

7.3.1 Anti-de-Sitter spacetime and the BTZ black hole

AdS is a solution to the Einstein equation with a negative cosmological constant.
It is a hyperbolic spacetime, which means that it has a constant negative cur-
vature. Just like a 3-sphere (S®) can be embedded in R*, one can embed AdS3
in R(2) . So the metric of this four-dimensional flat spacetime with signature
(——++)is®

ds® = —dU? —dV? + dX? +dY?, (7.1)
and AdSs is defined by the hypersurface
U2 -VEPeX24Y2 = -2
If we choose the hyperbolic coordinates x, ¢ and t/I such that
—V24+X?2=—cosh’y and -—-U?+7Y?=1%sinh®y

and V =l cosh x cosh ¢, X = [ cosh x sinh ¢, U = I'sinh x sinh(¢/) and
Y = Isinh x cosh(t/l), the metric for AdSs that follows from (7.1) is

ds* = —sinh? xdt* + 1?(dx? + cosh? xd¢?).
With a final coordinate transformation defined by

r = lcoshy

5Note that this means that if you believe in holography it is actually a miracle that in a
classical limit gravity behaves like a local theory!

6In this spacetime there are closed timelike curves, but we shall assume that this periodicity
in the timelike direction has been removed by going to the universal covering space. Both AdS
spacetimes, with or without periodicity in the timelike direction, are solutions to the Einstein
equation with a negative cosmological constant A = —1/12.
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we find the metric of AdS3 in ”Schwarzschild” coordinates

2 r’ 2 r’ o 2 5.2
ds :—(1—2—1)dt +(l—2—1) dr? + r2dg?. (7.2)
Notice that ¢, t and x range from minus infinity to plus infinity and consequently
we have 0 < r < 0o. There is a coordinate singularity at » = [, but this is
merely an artifact of the coordinates, since AdS is a smooth spacetime with no
singularities. As in Euclidean space it can be proven that in AdS spacetime two
geodesics that intersect each other, do so in only one point. On the other hand,
two geodesics that do not intersect have a minimum distance between them
(as opposed to non-intersecting geodesics in Euclidean space which are always
equidistant). This minimum distance is such that there is a unique geodesic
segment of minimal length that connects the two geodesics at right angles.
The fact that we chose to write the metric for AdS3 in ”Schwarschild” coordi-
nates is of course no coincidence. It is now straightforward to obtain the simplest
BTZ metric’, namely by making the following identification: ¢ — ¢ -+ 2m. This
BTZ metric describes a 2+1 dimensional non-rotating black hole. The minimum
distance between the two identified geodesics occurs at r = [ and is 27/. This is
referred to as the horizon ”area”, since it is the minimum distance around the
black hole. Clearly, this horizon size changes when we choose a different identi-
fication for ¢. The standard form of the BTZ metric is obtained by first taking
a more general period for ¢, namely 27wa, and then redefining the coordinates
so that ¢ has its usual period

p—>ap r—rla t—t/a.

The BTZ metric then reads

2 r’ 2 r’ oo 27,2
ds =—(l—2—m)dt +(l—2—m) dr? + r2dg?, (7.3)
where ¢ has period 27 and m = 1/a?. The minimal length around the black hole
is now 27ly/m and the dimensionless quantity m is called the mass parameter®.
The BTZ metric is asymptotically AdS. This can be seen by writing the AdS
metric in different coordinates. Take the R(??) coordinates to be

V= lcoshysin ;
U = —lcoshycos %
X = Isinhysinf
Y = —lsinhycosé,

this leads to the metric

ds® = — cosh? xdt? + 12 (dx? + sinh? yd6?),

TThis three-dimensional black hole was first found by Bafiados, Teitelboim and Zanelli
([40] and [41]), hence the name BTZ black hole.

To construct a rotating BTZ black hole one has to apply another identification simulta-

neously with the identification ¢ — ¢ + 27, namely ¢ — ¢t + % In this way one obtains a

2
rotating black hole with mass M =m + Jnﬁ and angular momentum J. For details see [39].
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where x and ¢ are given the full range, but 6 is now periodic: 0 < 6 < 2.
Finally, upon substituting r = [ sinh x, we find

2 r’ 2 r o 2 702
ds :—(l—2+1)dt +<z_2+1) dr? + r2d6?. (7.4)
If we now compare this with (7.3) we see that they become equal for r — 0.
So the BTZ metric is indeed asymptotically AdS. Furthermore, we see that for
m = —1 the BTZ metric is just AdS.

A special type of BTZ black hole is the m = 0 case. This is the one we are
particularly interested in, because this is the type of black hole that is generated
by the D1-D5 system in the classical limit. Since the horizon size of a BTZ black
hole is given by 27l\/m, we find that the m = 0 BTZ black hole has zero horizon
size. It is not really clear if one should consider the m = 0 BTZ black hole as a
black hole with a horizon at r = 0 or a singularity at r = 0 or both®. For our
purposes it suffices to acknowledge that it is a black hole.

7.3.2 The Classical Black Hole Geometry

The low energy supergravity solution that corresponds to the D1-D5 system
away from r = 0 is the CBH geometry. Remember that the branes are wrapped
around compactified dimensions. The y-direction is compactified on a circle of
radius R and the four z,-directions are compactified on a four-torus'® 7%. The
CBH geometry is given by the following metric

3
ds®> = %(—dt2+dy2)+h§dmidxi
V1+9% 3
+ ;Zdzadza, (7.5)
1+ ?; a=0
with
p
= [+ 20 %)) 2

where 7 = Y 22 and @ and Q5 proportional to the number of D1- and D5-
branes respectively!!. The coordinate y is periodic, it runs from zero to 27 R.

9We have to be a bit careful with the word singularity here. There is a coordinate sin-
gularity for r = 0, but as we know that does not yet make it a true singularity. In fact it
can be shown that the spacetime is smooth at 7 = 0 and it can be continued to negative 72.
However, in that case ¢ becomes timelike and since ¢ is periodic, this means that there are
closed timelike curves in the negative r? region. Since closed timelike curves are unphysical,
the common practice is to remove them from the spacetime. Hence we shall restrict the metric
to r > 0 and call the removed point r = 0 a singularity.

10This torus will play a role of little importance for reasons that will become clear in the
next section.

11 As we said in the previous section, the metric was first obtained for the F-P system and
then by dualities transformed into this metric for the D1-D5 system. The dual F-P system
consists of ni strings (F) and the string carries np units of momentum (P). The duality
transformation can be represented schematically as follows P(np) F(n1) <+ D1(np) D5(n1),
50 Q1 < np and Q5  n1. Both Q1 and Qs have units [length]2.
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When we introduce polar coordinates for the z;-directions, the metric becomes

ds?

1
E(_dt2 + dy*) + hdr?
v I (d02 + cos? Odip? + sin? 6d¢2)

1+ %

T

i

3

= 3" dzadza, (7.7)
+ r25 a=0
where r > 0, 6 runs from zero to 7 and ¢ and v have period 27, so the second
line of (7.7) is just a 3-sphere. Finally, ¢ runs from minus to plus infinity.

To understand better what kind of spacetime we have at hand let us zoom
in on two regions of this spacetime. First, we let r go to infinity. From (7.6) we
see that in that limit h — 1, so (7.7) reduces to

ds* ~ —dt* +dy* + dr*
+ 2 (d02 + cos? Bdy)? + sin? 9d¢2)

3
+ Z dz.dz,, (7.8)
a=0

which is just flat (ten-dimensional) spacetime (with 4 compactified dimensions
and a circle). Note that in this limit the radius of the 3-sphere goes to infinity
as 2. On the other hand, when we take the limit r?> <« Q1Qs, we find that
h ~ @ and the factor in front of the four-torus becomes approximately

V/Q1/@s. So in this limit the metric reduces to

2
2 r 742 2y, V@1@s , 5
ds® = Qle( dt® + dy®) + 2 dr

+ V@1Qs (d02 + cos® fdyp? + sin® 0d¢2)
0L <

+ /2 dzadz,. (7.9)
Qs =

First of all, we see that the 3-sphere becomes of a fixed size (as does the 4-torus).
Furthermore, the first line is proportional to the metric of the m = 0 BTZ black
hole. This can be seen as follows

r? 2 2 VQ10Qs , 5
0.0 (=dt” +dy*) + Tdr

dr?
5( dt® + dy*) + 2 )
d
V@iQs (- rat? + %y + ),
with t = Rt', r = 7' /(R/Q1Q5) and y = Ry’, so 0 < 3y’ < 2. So this part of

r
the metric is proportional to the m = 0 BTZ metric, as can be seen by setting
l=1and m=0in (7.3).

12




Chapter 7. Resolving the Paradox with String Theory? 7

So the CBH geometry consists of an asymptotically flat region, an inner
region for which the 3-sphere has a fixed size, this is called the throat and
finally a horizon/singularity at its center (r = 0). Fig. 7.2 pictures the geometry

schematically.
flat space
A
/ “throat”

Figure 7.2: A schematic picture of the CBH geometry, with an asymptotically
flat region, a throat and a singularity at » = 0.

7.3.3 The Quantum Mechanical Black Hole Geometries

In this section we shall study the geometry of one of the microstates of the
fuzzball. As we mentioned in the previous section, the geometries of the different
microstates are obtained from different vibration profiles of the F-P system.
The geometries that correspond to the D1-D5 system are then obtained after
performing a number of dualities. The microstate we shall study corresponds
to a very simple vibration profile of the F string. Although, we will not derive
the geometry from this vibration profile, but merely state the result, we shall
for completeness give the explicit profile that corresponds to the metric we shall
study. The string is restricted to bend only in the 4 noncompact directions z;.
So the displacement profile of the string is given by a four-vector ?(v)7 where
v =1t —y. For a string with all its energy in the lowest harmonic the vibration
profile is

Fy =acoswv, Fy=asinwv, F3=F,=0,

where a is a constant and w = (nqR') !, with R’ the radius of the compactified
direction y before dualities and n; the number of strings in the system. After
dualities the geometry that corresponds to this profile is found to be (see [42])

1 . dr?
2 _ L, 4 2 2
ds? = (-t +dy)+hf(d9 +T2+a2)
2/01 05
- %}fc’%(cos2 Odipdy + sin® Oddt)

2 2
+ h[(r2 + %) cos? Odyp?

2 )
2 _ a thQQ;ZSIH 0) sin2 0d¢2]

VO1+ T
\/Q5—+Zd dza, (7.10)

+(r2 +a

+
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with h given in (7.6), f =2 + a® cos? § and a proportional to a@ The constants
@)1 and Q5 are the same as in the previous subsection. Finally, it can be shown
that a = v/Q1Q5/R ([35]), so as expected a has units [length]. From now on
we shall call this geometry the SQBH geometry, where the S stands for simple,
since it was derived for a very simple vibration profile.

Just as we did for the CBH geometry, we shall zoom in on some particular
regions of this spacetime to get a better understanding of its properties. In this
case, however, we have three regions of interest instead of two (this is of no
great surprise, when you realize that we have introduced a second lengthscale a
beside the original one: (Q1Qs)"/*).

First we investigate the asymptotic region: r — oco. In that case we find
that h approximates unity again and f ~ r? and we can neglect all 1/f terms.
Finally, also the term in front of the four-torus approaches unity in this limit.
So we find that the metric again has a flat asymptotic region

ds?

Q

dr?
2 2 2 2
—dt* + dy +r (d9 + T_2)

n [r2 cos? Odip? + r? sin? 9d¢2]
3
+ ) dzadz, (7.11)
a=0

and again the radius of the 3-sphere goes to infinity in this region (compare
with (7.8)).

The inner region, i.e. r < (Q1Qs)'/*, can be split into two regions, one with
(Q1Q5)Y* > r > a which is called the near horizon region and the other with
r € a which is called the cap. Let us first go to the inner region, by taking
r < (Q1Qs)Y/*. In this limit we find that h ~ —VQles7 so the metric becomes

f
V@1Qs
2a(cos? Odipdy + sin? Odgdt)

v Q;QS [(r2 + a? cos? 0) cos? Ody? + (1"2 + a® — a®sin® 0) sin® 9d¢2]

0 3

1

+ - E dz,dz,.
V @ =

The third line is actually just +/Q1Qs(cos? 8di? + sin? §d¢?), as can be seen
by taking a factor f = r%2 + a%cos? 6 out of the big square brackets, which
cancels with the 1/f in front of it. Furthermore, we would like to get rid of the
crossterms in the second line. To do so we collect all the terms containing dt,
dy, d¢ and/or dip and massage this a little:

ds?

dr?
2 2 2
(—df +dy) + V/Q1Qs (d6” + 5=—3)

+

f 2 2 2 . 2
—d — in
—Q1Q5( t* + dy*) — 2a(cos” 8diydy + sin”® Od¢dt)
+ VQ:1Qs [cos2 fdi)* + sin® 9d¢2}

dt? dy? dt? dy?
2. W L 2sin?6 + a? cos? —2

VQ1Qs T V@Q1Qs VQ1Qs V@Q1Qs

= —(r’+ad?)
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2a(cos? fdipdy + sin? Bdpdt) + /Q1Qs [cos2 Odi)? + sin® 0d¢2]
dt? e dy?
V@1Qs VE@1Qs

n \/Ql—%[cosza(dw_\/%)24.511120(@5—%)2].

To get a better idea of what the inner region looks like, we need to transform
to new angular coordinates

—(’I‘2 + a2)

' ady 1 _aidt
Ve Tmas YT oG

Notice that on the old coordinates we had the identifications

(W,y) ~ @ +2m,y) ~ (¥,y + 27R),
whereas on the new coordinates they have become

a2n R
VQ10Qs

where we used a = /Q1Qs5/R. In these new coordinates the metric in the inner
region becomes

i~ —(Pra)—d_ e W g A
- V@1Qs V@1Qs T2 4 g2

+ V0105 [d92 + cos? i’ + sin? 0d¢'2]

(¢/7 y) ~ (W + 27T,y) ~ (W -

= - 2m,y + 27R),

Q1 ¢
+ — dzqdz,. 7.12
05 ;) (7.12)

The first line is actually just AdSs, this can be seen as follows
dt? ,  dy? dr?
+r + -
V@15 V@1Us QlQSTQ +a®

. 2dt? a’dy? dr'?
0.0-( — (+2 + 1) & 12
QlQS( =+ )Q1Q5 T Q105 * 7”'2+1)

” 29202 dr”
. B0 (— (7 1 )
Q1Q5( (r'* + 1)dt"” + r'*dy +’I“'2+1

where ' = r/a, t' = ta/\/Q1Q5 = t/R and y' = ya/\/Q1Q5 = y/R, so the
period of the new coordinate y’ is again 27. This is indeed AdS; (see (7.4) with
1=1).

So the inner region is AdS;xS%xT* and the 3-sphere and the 4-torus have
a fixed size in this region. Just as the CBH geometry, the SQBH geometry
consists of an asymptotically flat region and then for smaller r is has a throat
with local geometry AdS3;xS®xT*. In fact, the near horizon region, i.e. a <
r < (Q1Qs)Y4, is exactly the same as the inner region of the CBH geometry.
This can be seen by setting a to zero in (7.12) and comparing this with (7.9).
This is no surprise because the CBH geometry is exactly the SQBH geometry
with a set to zero (see (7.10))!

—(r? 4+ a?)
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Clearly, the difference between the two geometries becomes manifest when
r becomes of the order of a. And by taking the limit r <« a in (7.12) it is easily
seen that the metric becomes

i~ 2 W et
- V@105 V@105 P g2

+ V@105 [d02 + cos? §dy)? + sin? 9d¢'2]

3
+ @ > dzadza, (7.13)
Qs =

which is smooth, so there is no singularity at » = 0. This region is called the
cap. For different vibration profiles of the string one finds similar asymptotic
and near horizon regions, but different caps ([35]).

So we have found that the SQBH geometry looks very much like the CBH
geometry for large enough values of r. The asymptotic region is flat. When
moving towards the center there seems to be an m = 0 BTZ black hole with a
throat at the center of the geometry. But upon moving even closer one finds
that there is no horizon nor singularity at the center, instead the geometry is
smooth at r = 0. It is often said that ’the throat is sealed off with a smooth
cap’ (see Fig. 7.3).

/N

flat space

|
|
A |
|
I

/ “throat” T

smooth “caps”

Figure 7.3: A schematic picture of the SQBH geometry, with an asymptotically
flat region and a throat that is sealed off with a smooth cap, so there is no
singularity at r = 0.

7.4 Subjecting The Fuzzball Proposal to a Test

We have seen that there is problem that is closely related to the information
loss paradox, which has to do with the black hole entropy. There are two
ways to calculate the entropy of a system. In one approach it is derived from
macroscopic properties of the system and in the other it is derived from the
number of microscopic states which the system has access to. Either way the
answer should of course be the same. For classical black holes, however, the
entropy derived macroscopically is non-zero, whereas the microscopic approach
yields zero entropy.

Already in 1996 Strominger and Vafa discovered that string theory provided
an answer to this problem. Roughly speaking, the answer is that black holes do
have microstates, but they can only be seen when black holes are discussed in
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a full theory of quantum gravity. In the fuzzball proposal of Mathur it is made
explicit what these black hole microstates are. They correspond to different
vibration modes of the string system.

If the fuzzball proposal is to solve the information loss paradox, it is not
enough that it has microstates, in addition it has to be able to communicate
information about these microstates to the region outside the black hole. For
a classical black hole the regions inside and outside the horizon are causally
disconnected, this means that there is no correlation between the value of a
matterfield at a position X inside the horizon and its value at a position Y
outside the horizon. So the correlation function (also called Green’s function or
propagator) of the field between positions X and Y vanishes. What we would
thus like to see is that the fuzzball picture yields corrections to the correlation
function such that the black hole can sent out information about its microstates.
This is the test we propose to do to find out whether or not the fuzzball is not
only a solution to the entropy problem but maybe also to the information loss
paradox.

Ideally we would calculate the correlation function of a matterfield'? in the
CBH geometry as well as in the SQBH geometry and compare the results.
Unfortunately, the differential equation we run into in this calculation cannot
be solved analytically. In fact, it turned out that finding the correlation function
for the CBH geometry was already too difficult a task. What we did instead
was solving the differential equation for the matterfield in both geometries and
then, using the fact that the SQBH metric reduces to the CBH metric for a — 0,
writing the matterfield in the SQBH geometry as the matterfield in the CBH
geometry plus corrections. Finally, from this we try to extract information
about the difference between the correlation functions in the different metrics.

The critical reader may have noted something funky about what we just
proposed. We want to write the wavefunction that lives in one spacetime as the
wavefunction that lives in another spacetime plus corrections. The wavefunc-
tions are functions of the coordinates of different spacetimes, so comparing the
wavefunctions is a bit like comparing apples to oranges. However, we justify
this comparison, because the spacetimes are very similar and in the limit of
a — 0 they are equal. So by setting a to zero we can check that the coordinates
we choose in the SQBH spacetime reduce to the same coordinates in the CBH
spacetime. This enables us to be quite confident in saying where a point X in
one spacetime would be in the other spacetime.

In the following sections we shall start by solving the wave equation for a
massless scalar field in the CBH geometry. Then we shall use perturbation
theory to find the solution of the wave equation in the SQBH geometry to first
order in a. After we normalize both these solutions we shall concentrate on the
correlation function. In the final section we present our results and propose a
number of ideas for successive research.

7.5 Solving The Wave Equation

We have already discussed the Klein-Gordon equation in a curved spacetime
in section 3.3. The wave equation for the massless scalar field ® in a curved

12We shall restrict ourselves to the massless scalarfield.
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spacetime with metric g,, reads

0% = \/%_ga,,(\/—_gg"”aﬂtﬁ) =0.

To solve this equation we shall have to plug in the metrics for the D1-D5 system
given in the previous sections. As you can expect this is going to be a pretty
messy calculation, so we would like to simplify things as much as possible. We
want to compare two geometries, so we are particularly interested in their differ-
ences. We noted that the SQBH and the CBH geometry are equal for a zero. So
clearly the non-local effects, if there are any, will come about when a becomes
non-zero. Now we note that for both the CBH metric as well as the SQBH
metric the four-torus looks exactly the same, whether a is zero or not. This
suggests that the four-torus cannot be the source of any differences in locality
between the two geometries. So to make things easier we shall just discard the
whole four-torus and compare two six-dimensional geometries instead. For the
CBH metric the six-dimensional part of interest is

1
ds®> = E(—dtQ + dy?) + hdr?

£ (d02 + cos? Odip? + sin? 0d¢2), (7.14)
and for the SQBH metric this is

1
ds? = 3(=dt*+dy?) +hf (d02 +

_ 2095 (2 iy + sin? Bdodt)

hf
2 2
+ h[(r2 + %) cos? Odyp?
a?Q1Qs sin® 0
h2 f2

dr? )
r? 4 a?

+ (r2 +a? - ) sin® 9d¢2] . (7.15)

7.5.1 The Klein-Gordon Equation in The CBH Geometry

The CBH metric is diagonal, so its inverse is trivially found. This also means
that the wave equation consists of six terms, each of them containing derivatives
with respect to one variable only. Finally, we note that the metric is a function
of r and §. With these observations we can write the Klein-Gordon equation as

O = Dr,gq’ + Dt,qﬁ,y,x[;@ =0,

with
1 1
0,02 = —.(vV—99"70,9®) + 9 (v/—gg°? 9y ®
Otyow® = ¢"07® +g™o,d + g?*0;® + g¥¥ 0, ®.

The fact that the CBH metric has four Killing vectors 0, 0y, 04 and 0y, i.e.
the metric does not depend on ¢, y, ¢ and ¢ (so ;g = 0, etcetera), suggests
us to write the wavefunction as ® = e~ \v+w¥+wég(r @), Physically this
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can be understood as follows. When the metric is independent of a certain
coordinate, there is no curvature in that direction, thus a particle moving in this
spacetime will feel no force in that direction and moves freely. Its wavefunction
is then just a plane wave with a constant frequency. This frequency is the
conserved charge associated to the Killing vector (see section 1.2).

Upon writing the solution like an eigenfunction of the Killing vectors the
differential equation for @ reduces to a differential equation for ¥ depending only
on two variables. When we plug in this expression for ® and the components of
the inverse of the CBH metric (7.14), we find that

Uty,pp® = (}”"2)71{‘02 I:Q71,,2Q5 + Q1+ Qs+ 1"2]
1 2[@1@s ] WV
A [ r2 +Q1+Q5+T} sin? 6 cos20}q)'

And when we use that the determinant of the metric is ¢ = —h?r% sin? 6 cos? 6,
we find that the remaining part of the wave equation reads

1
sin 20

1
Oro® = () {=0:(°0,8) + —-05(sin 200,@) }.
After dividing out the factor (hr?2)~! and the exponential part of the wave-
function, we can use the separation of variables trick again (we write U(r,0) =
H(r)©(0)) to obtain the following radial and angular equations

Lo, (o) + {3 [ 4 Qu 4 Qs 407 —AbH () =0 (716)
and
1 . u? v? _
— 2069(sm2069®(0)) - {m 005—20}@(9) = _AO®B),  (7.17)

where A is the ’separation constant’.

The Angular Equation

The angular equation is just the Laplace equation on S3. Its eigenvalues are
known to be k(k + 2). So for A = k(k + 2) the solutions of (7.17) are

Ok (0) = cos”' 6 sin!#l g PURLIYD (cos 26), (7.18)

plul 1)

where is the Jacobi polynomial

PUbID () = %Ef:o ( lul +¢ ) ( v +c ) (4 1) (u = 1Y%,

i c—i
and
k= (ul+ o)
2
and k, p and v are integers, |u| + |v| < k and p + v = k(mod 2).
The Radial Equation

The remaining task is to solve the radial equation (7.16). Unfortunately, we
can not find the exact solution to this equation. However, we can solve it in the
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limit that 2> < /Q1Q5. We found in the previous sections that the CBH and
the SQBH geometry look very similar for large values of r. And, as we said, we
are interested in the differences between the geometries. So we can argue again
that we do not loose any crucial information when we restrict ourselves to the
inner region of the spacetimes.

In this region, i.e. for r? < +/Q1Qs, the radial equation (7.16) reduces to

QIQE’)
2

r

%ar (r36TH(r)) + {(w2 ) - A}H(r) =0.

With the substitution z = 1/r this can be rewritten as

20, (J0.H()) + {(* ~ ¥)2(@1Qs) ~ A} H () = 0.
Now put H(z) = 2G(z) to obtain for G(2)

2292G(2) + 20,G(2) + (w? — M) Q1Q52%G(2)
-(A+1)G(2) =0.

This is Bessel’s differential equation and its solutions are!'3

G(2) = C1J:(V@1Q5(w? — A)z) + CaYo (v Q1Q5(w? — A?)z),
with
c=VA+1=Fk+1,

since A = k(k + 2). So the solution to the radial equation is

H) = [0, (Y ALl Az)) + oYy (Y G ’\2))]. (7.19)

r r

So finally we found the eigenmode solutions to the massless Klein-Gordon
equation in the CBH metric for r < 1/(Q1Q5 to be

(ﬁw Mgk X efzwt+z)\y+zu¢>+zmp

%I:Cljo—(\/m) +CQYU(\/W)]

T r
x  cos”! @ sinl#l 9 PULLID (cos 26). (7.20)

13More generally the Bessel functions Z, (z) solve the differential equation

22027, (x) + 285 Zu (z) + (2% — 1) Zu(z) = 0.

X

and J, (z) is the Bessel function of the first kind, given explicitly by

APt A —

T 2KKIT (v + k + 1)

2k
[[argz| <],

since r is real, so is z = 1/r and thus its argument is zero. The general solution to the Bessel
equation is of the form ¢1J,(z) + caJ_,(z). From the expression for J, we see that, for v a
natural number n, J_,(x) = (—1)"J,(z), so they are no longer linearly independent. In that
case the solution is of the form c¢iJn(x) 4+ c2Yn(z), where Y, (x) is the Bessel function of the
second kind. For more on Bessel functions see [43].
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with & a non-negative integer, |u|+ |v| < k and p+v = k(mod 2). Furthermore,
C:1 and C, are constants and
k()
2 )
o = k+1.

Finally, remember that the y coordinate is periodic; y ~ y + 2nR. When we
impose the periodic boundary condition on the wavefunction, ®(y = 0) = ®(y =
27 R), this implies that A is quantized

1 = e27r1R)\
= 2mRA = nm with n integer
n
>\ = —. 7.21
5 (7.21)

7.5.2 The Klein-Gordon Equation in The SQBH Geome-
try

The procedure to solve the Klein-Gordon equation in the SQBH metric is exactly
analogous to the procedure we followed in the previous section. The determinant
and non-zero components of the inverse of the SQBH metric (7.15) are'*

vV—g9g = hfrsinfcosf

9" = gg =mH7
9" = g, = ()T +d?)
o _ —f2h2(r?2 + a?) + a?Q1Qs sin? 6
9 - f2h(r? + a?)
g = o= _ av@Q1Qs
fh(r? +a?)
g®? = (h(r® +a?®)sin? )71
a?Q1Qs cos? 6
vy _ a” (15 cos™ 0
g ht
g = ¥ = avQ1Qs
fhr?
g = (hr?cos?f)7h.

Again by inserting ® = e~ WitA+wvtwe g (r ) we find

_ 1 2 2 1 .
Oro® = (hf) {2000 +a*)3,®) + — 0y (sin 260,0)}
_ _1f o @1Qs 2] _ 2apwvVQ1Qs a’p?
Die® = ()| 3225 + Qi+ Qs tr o S
2 2 2p N2 &
+ w?a” cos _sin20}

14 Note that we chose to use the metric in these coordinates instead of the twisted coordinates
(7.12). Clearly, for the result this makes no difference, however, if you choose the twisted
coordinates you will have to twist them back in order to compare the solution in the SQBH
metric to the solution we found in the CBH metric.
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2a1/)\\/ Q1Q5 _ 6121/2

r2 r2

[Qle

Oyw® = ({2 + QU+ Qs +17] -

2
v } &
cos?d
Two separate differential equations for the variables r and € can now be
obtained by writing ¥ = H(r)©(#). We find them to be

— A2a%cos?9 —

20, (107 +a0, 1) + {28 4@+ Qs +7]
2apwy/Q1Q i @:1Q
_ “‘:‘2"+a; 5+T2afa2—)\[ L5 Q1+ Qs +r]
2 >\ 2,,2
_ 2 VT2Q1Q5 ) - AH @) =0 (7.22)
and
2 V2

Y o (si 2 _\aeosho Y
Sinzeag(&n%@g@(e)) +{(w A9)a® cos” 6 70 cos20}®(0)

— —AO(0). (7.23)

The Angular Equation

We shall start with the angular equation again. This time, however, we will
not be able to find an exact solution to the differential equation. As expected
the equation reduces to the Laplace equation on S® when a is set to zero. So to
zeroth order in a the solution to this equation was already found in the previous
section, see (7.18). We can find the first order correction to this solution using
perturbation theory. This is done in appendix D and we find that the angular
part of the wave function to first order in € = a?(w? — \?) is

0(8) = cos” B sin* PY) (cos 20)
+a*(w? — \?) cos” §sin” G[APC(i’IV) (cos 20) + BPC(f’lu) (cos 26)],

with
(c+D)(c+p+rv+1)
A =
42c+p+v+1)(2c+ p+ v+ 2)2
B (c+p)(c+v)

42c+p+v+1)2c+p+v)?
and the corresponding eigenvalues are

0, . (u? —v?) 1
A:k(k+2)+a2(w2_/\2)[2(2c+,u+1/+1)(20+,u+1/) _5]'

The Radial Equation
To solve the radial part of the differential equation we proceed as in the
previous section, i.e. we restrict ourselves to the region of spacetime where

r? € v/Q1Qs. So (7.22) reduces to
Q105

1
;ar( r(r? + a?)o, H(r)) {w2 27 o2
200/ Q1 Qs | a’p? 32 @1@s

r2 + a? r2 + a? r2
2av)\y/ v
_ v r2Q1Q5 b0 - AH () =0
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We can recast this as
%ar (r(r2 + a2)6TH(r))
¢ (WG w0l ) sy =0 (r24)

r2 + a2 r2

and then we change to x = r? to find

49, (:c(x + az)azH)
4 ((w\/Q;Cisa; ap)? ()\\/Q1€i5 + av)2)H — AH =0.

When we substitute H(z) = z%(z + a?)? H(z), with o = (vVQ1QsA + av)/(2a)

and 8 = (VQ1Qsw — au)/(2a), the remaining differential equation for H(z) is
a hypergeometric equation:
4z(x + a®)02H + 422(B + a + 1) + a*(1 + 2a)]0, H
+A4(B+a)(B+a+1)—AJH =0.

This equation is solved by H(x) = F(d,e, f, —x/a?), with'?
d = a+pB+1/2+1/2V1+A

e = a+f+1/2-1/2V1+A
f = 142a.

When we construct the solution to the Klein-Gordon equation in the SQBH
metric from all the intermediate results, we find that the eigenmodes of the
wavefunction for small a and in the region where 2 < 1/Q1Q5 are the following

By O e whFAVTmtwy ooilvig sin!#l 9
X [Pc(“‘"'”')(cos 26)
+a?(w? — )\2)[APC(J|f1|’|”D(cos 26) + BPc(l_”1|’|V|)(cos 26)]]
x r*@? +a*PF(d,e, f,—(r/a)?), (7.25)
with
= a+f+1/2+1/2V1+A

= a++1/2-1/2v1+A
= 142

a = (VQ1QsA+av)/(2a)

15The hypergeometric function F'(a, b, ¢, 2) (also written as 2 F (a, b; ¢; 2)) solves the equation

0

—2(z +1)82F(a,b,c,z) + [2(a + b+ 1) — ¢]d. F(a, b, c, 2) + abF(a,b,c,z) = 0.
and is given by

— weo D@+ )b +4)I(c) z°
Flabe,o) = 2%, T(a)D(B)T(c+i) !
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B = (VOO — ap)/(2a)
(c+D)(c+p+v+1)
42c+p+v+1)2c+ p+v+2)?

(c+p)(ct+v)

B —
42c+p+v+1)(2c+ pu+v)?
and
A=k(k+2)+a2(w2—)\2)[ (e —v*) —1] (7.26)
22ctptv+)2e+putr) 20

where k is a non-negative integer and |u| + [v| < k and p + v = k(mod 2).
Finally, A is quantized as before (see (7.21)).

7.6 The Propagator

In section 7.4 we argued that to test the metrics found for the quantum me-
chanical black hole, or actually just a generic example of such a metric, namely
the SQBH metric, we should calculate the fieldpropagator in this metric. The
propagator or Green’s function for an arbitrary linear differential operator Din
six dimensions is defined by

DG(X,Y)=6(X -Y), (7.27)

where X and Y are six dimensional position vectors. Suppose ¢,(X) are
the eigenfunctions of the differential operator and their eigenvalues are Ey,, so
D¢ (X) = E,¢n(X), then an explicit expression for the propagator can often
be found in terms of this basis of eigenfuncions. The procedure is the following.
Write the Green’s function on the basis of eigenfunctions

G(X,Y) =D an(Y)én(X), (7.28)
n=0
as well as the delta function
(X —Y)=> ba(Y)$n(X). (7.29)
n=0

To find the coefficients b,, multiply both sides of the expression for the delta
function by ¢* (V) and integrate over X

/ 65, (V)S(X V)X = 3 / 61, (V)bn (V)65 (X)X
n=0
= ¢jn(Y) = Z bn(Y)6mn = bm(Y)a

so plugging this result back into (7.29), we obtain

(X -Y)=> ¢h(Y)dn(X). (7.30)
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We can now obtain the coefficients a,, by plugging (7.28) and (7.30) into (7.27)

faia - gqﬁ:(Y)qﬁn(X)
ﬁzan D (X)) = iﬁ( )6 (X)
ﬁZan [Engn(X)] = i%
Sany) = %n),
so the Green’s function reads
= i 7"5"(2@(1/) . (7.31)
L7 E,

In the previous sections we have found the eigenfunctions of the differential
operator for the Klein-Gordon field for both metrics, so in theory we have all
the ingredients to calculate the propagators for the massless scalar fields and
compare them. However, as you can easily imagine from looking at the expres-
sions for the wavefunctions, it is impossible to perform the mode sum in (7.31)
analytically!'®

Another option for finding the propagator in the CBH metric would be by
performing the following steps

¢ Remember that the CBH metric is the product of the metric of a 3-sphere
and the metric of a BTZ black hole with zero mass parameter. We shall
write this as BTZxS?. Due to this fact we may write the eigenfunctions in
this metric as ¢(X) = ¢prz(Xpr2)ds(Xs) and consequently the prop-
agator can be obtained from the propagator in the BTZ metric and the
eigenmodes in the S® metric (see [44]):

G(X,Y) ZGI (XBrz,YBT2)o5(X35)05 (Ys),
7

where the sum is over the multiindex I =k, u, v

e The eigenmodes of the Klein-Gordon equation on S® are spherical har-
monics [44].

e The propagator in the BTZ metric can be obtained from the propagator
in the AdSs metric using the imaging technique [45].

Unfortunately, apart from many subtleties'” that will arise when one really
tries to carry out these steps, one runs into an infinite sum when calculating the

161t would be very interesting to perform the mode sum computationally. We did not look
into this possibility further, since writing a program that performs this calculation can be the
subject of a thesis in its own right.

17Such as boundary conditions in AdS3 that prevent causality violations caused by lightrays
that travel to infinity and back in a finite amount of time.
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propagator in the BTZ metric [45] that is possibly worse than the mode sum in
(7.31), which we are trying to circumvent with this approach.

It seems that at this point we must conclude that we shall not be able to find
explicit expressions for the propagators, at least not analytically. Nevertheless,
we will not yet give up our aim to test Mathur’s fuzzball proposal. Instead we
suggest the following. Suppose we can find a way to express the wavefunction
in the SQBH metric, 9 (X), for small a as

32 (X) m B (X) + 6@, (X), (7.32)
where ¢ (X) is the wavefunction in the CBH metric and §®,,(X) is the leading

correction there to. Then it follows from the fact that the eigenfunctions form
a complete basis that we can write

68, = 2,,Grm®C, (7.33)

the symbol we used for the coefficient-matrix is suggestive, since it has something
to do with the Fourier transform of the correction on the propagator in the CBH
metric. This can be seen as follows
PP (X) (2R (V)"
E,
(Y +0®,) (¢ +69,)*
E,
o (884G 8E)(®S + Gy 8"
n,m En
8 (Grm®5)" + G @5 (25)"
E,

where Gg(X,Y) and G¢(X,Y) are the propagator in the SQBH metric and in
the CBH metric respectively. From this expression for the propagator in the
SQBH metric we see that it is going to differ significantly from the propagator
in the CBH metric when G, becomes of order one. So by calculating this
function we may be able to find out for which modes the propagators become
significantly different, in other words for which frequencies of the wavefunction
there may be non-local effects.

To find G we take the innerproduct of the (normalized!) CBH modes with
(7.33)

Go(X,)Y) = %,

Xn

Q

~ Go(X,Y)+Sum . (7.34)

((I>k076<1)n) = (CI)g,Zméan)g)
= Z:7nC~"Ynm5k7n
= G (7.35)

The innerproduct is a generalization of the innerproduct in four-dimensional
curved spacetimes given in (3.18) to a six-dimensional spacetime

(@.,2,) = [ d>* VGE(8;0,8; - 80,8, (7.36)
)

where X is a Cauchy surface and dX# = n#*dX with n* a six-dimensional vector
normal to this surface pointing in the positive time direction.

In the following subsections we shall consecutively normalize the eigenmodes
of the Klein-Gordon equation in the CBH metric and expand the SQBH eigen-
modes in a Taylor series in a to obtain an expression of the form (7.32).
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7.6.1 Normalizing The Eigenmodes

In this subsection we shall normalize the eigenmodes (7.20) of the Klein-Gordon
equation in the CBH metric such that

(27, ®;) =( ‘I’) (7.37)

The innerproduct is given in (7.36). Since n* a unit vector pointing in the
positive time direction, we have n* = «/h and n* = 0 for i = y,r,0,1, 6. So
dx*o, = wW/hdrdydediydfd;, furthermore we have gs, = hr® sin? 6 cos? § and for
r? < \/Ql @5 we may use the approximation h &~ v/Q1Q5/r?. When we use the
general argument that the innerproduct should be independent of the Cauchy
surface one chooses to evaluate it on, in other words it should be independent of
time (9;(®;, ®;) = 0), we find for the CBH eigenmodes, whose time-dependent
part is e~ that

01(®;, ®;)

/ dSH /g5[0,(®10,8;) — 04(9,0,0})]

>

= (- w) (3, 8;)

=0 =5 w=uw. (7.38)

Note that we have chosen to indicate the quantum numbers of ®; with a prime
(wj =w', Aj = X, etcetera) and those of ®; without a prime (w; = w, etcetera).
This is just to minimize the number of indices.

So to normalize the modes we have to evaluate the following integral

(%4, 9;) = / 1hr? sin 6 cos 05(w' — w)[®;0,®,; — ®,;0,9}|drdydpdipdh
b
= / 1hr® sin 6 cos 05 (w' — w)(—w’ — w)®; 0} drdydedipdf. (7.39)
b

The integrals over ¥, ¢ and y are easily obtained

27R 27 27 ,
/ dy / a9 | dipeN v otV = NS = — (O3 RGN\ O
The integral over # now reads

/ df cos 0'sin 0 cos?!”! § sin?*! GPC(,‘”MVD (cos 20) P{K1YD (cos 26).

When we make the substitution z = cos 26 we can rewrite this integral into a
standard form. Note that cosfsinfdf = 1/2sin20df = —1/4dz and cos®§ =
(1+2)/2 and sin®# = (1 — 2)/2. So the integral reads

_32_|y‘_m‘/dz(1+z)\u|(1 2) 6l PURLD () pUsLIFD ()

1

Ly, 27l + e+ DT(w] +e+1)
4

‘A (Jul + [v] + 2¢ + DT ([u[ + [ + ¢ + 1)
= —Ng(u, v, k)ék,k.
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The solution to the integral was found in [43]. Note that since we already found
delta functions for p and v, the delta function for ¢ could be replaced by dx.
The remaining integral over r is

[ V@@ [Cututa/r) + CaYalafn)] [Codm(al fr) + CaYor(al )]

where we have defined o = /Q1Q5(w? — A\?) and inserted the approximate
value for h. This can be simplified using the fact that o = o/, since we already
found delta functions for both w and A and even more so, since we just found
k = k', we also have 0 = ¢’ (remember that o = k + 1). Finally, we note that
Y, diverges for r — 0, so it is not square integrable. It follows that we must set
C5 to zero. So we should evaluate

/dr\/Q1Q5% [Jg(oz/r)]2

Which gives, as can be found in [43], after substituting ¢t = 1/r

/dt Jo(at)Jy(at) = 210 (7.40)

We can plug all these results into (7.39) to obtain

(‘I’i,@j) = Z(_2lw)(27‘-)3R5}\’A6H’M5y’yék’k;é(w_wl)
XNg(/l,,V,k)C(O)

= N52(5,\/,\6N/M6,,:,,5k:k6(w—w') (741)
with
ct
Clo) = Q1Q5%
and

T(lu| + ¢+ DTy +c+1)
2T (|l + [v| 4+ 2+ DT (|p] + [v] +c+ 1)

No(, v, k) =
So the normalization constant is given by

Ne(o, v, k) = (2w(2m)* RNy (v, k)C(0)) /7. (7.42)

7.6.2 Expanding The Eigenmode in a Taylor Series

In this subsection we shall write the wavefunction in the SQBH metric as the
wavefunction in the CBH metric plus corrections, ®%¢(X) ~ ®%(X) + 6®(X).
When we compare the two expressions for the wavefunctions (7.25) and (7.20),
we see that it is clear that the first reduces to the latter upon setting a to zero
except for the radial part of the function. So what remains to be done is express
the hypergeometric function in terms of Bessel functions. This can be done (see
[46]), but there is an easier way. We can simply use perturbation theory again
to find that the radial part of the wavefunction in the SQBH metric to first
order in a reads (see appendix E)

H(r) % £ Cr oo (/A0/7) + 0 (g1 (V) = T (/30 7))]

\/%
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with

a0 = QiQs(w® —\?)
—/Q1Qs(wp + Av)

a; =
oo = k+1.
Now let us define
Fo(t,y,ab,¢) = e withrhivtwiotwiv
©2(9) = cos” §sin* OP! (cos 26)
0

Hi(z) = 2C1Jep1(Vaoz).

The normalized solution to the Klein-Gordon equation in the CBH metric then
reads

®f = No, FY(t,y,¢,9)07(0) H (2),

with N¢ given in (7.42). The normalized solution to the Klein-Gordon equation
in the SQBH metric, on the other hand is

O = No, F(t,y,4,9)[0%(6) + a®OL(9)][H? (2) + aH} ()],

where
0}#H) = cos” fsint H(w? — \?) [APC“J;'; (cos20) + BPY"" (cos 26)
a
Hzl (Z) = 32 4\/107001 [Jk(,/aoz) — Jk+2(\/a02)]

From the normalization condition on the SQBH modes we find that Ng, ~ N¢;
to first order in a (see appendix E). So finally the correction to first order in a
on the CBH modes is found to be

0P; = NQi\IJzQ - NCi“I}iC

7.6.3 Calculating G

In the previous two subsections we have found all the ingredients we need to
calculate G;;. From (7.35) we see that we have to evaluate the following inner-
product

G = (9F,69))
= (N¢, F{ORH},aNc, FO7H}).
The integrals over y, ¥, ¢ and @ are just as in section 7.6.1 and are simply delta

functions for their respective quantumnumbers, i.e. A, v, u and k. The integral
over r causes a bit more trouble. It is given by

dz
53

_/dZJk+1(\/a_OZ) [Jk(\/o‘_éz) - Jk+2(\/a_62)]’

I, HYH}
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where we have used z = 1/r and thus hr® & /Q1Qsrdr < —z"3dz. And we
have used the fact that the integral over 8 gave a deltafunction for k£ to set
kr = k; = k. The solution to this integral can be found in [43] and is given by

1 Ot() k/2 !
NG (a_o) for ag > g
I.,=¢X 0 for ap =
k/241/2
—_1 ([« /
- (%) for ag > ag

Plots of this function for various values of the parameters are given in Fig. 7.4.

As you can see this function vanishes almost everywhere, except for a narrow
strip where ag and «f approach each other. As k increases the strip becomes
more narrow and as ag and o, increase the maximum value of the function
decreases. Most important, however, is that even its maximum value is really
quite small. And in addition to that remember that this term is suppressed by
a factor a in the expression for the propagator in the SQBH metric (7.34). So it
seems that we have found that the propagator in the SQBH metric equals the
propagator in the CBH metric to first order in a. A false conclusion would be,
however, that there are no correlations in the SQBH metric that would appear
non-local in the CBH metric. The result is probably due to our approach as
can be seen as follows. If there are non-local effects in a certain spacetime this
means that a particle traveling through spacetime that finds itself at a position
X can be affected by things that occur at a causally disconnected position Y.
In terms of the Lagrangian this means that there should be interaction terms
that connect the positions X and Y, in other words there should be non-local
terms in the Lagrangian. In our approach we wrote the SQBH wavefunction
as the CBH wavefunction plus corrections, ®q(X) = ®¢(X) + 0®(X), clearly
this is a local correction. Consequently, this local correction cannot introduce
non-local terms in the Lagrangian.

The appropriate conclusion is thus that possible non-local effects in the CBH
metric caused by corrections from the SQBH metric will not be manifested in
the function G.

7.7 Comparison of The Wavefunctions

In the subsections 7.5.1 and 7.5.2 we have found the wavefunctions of a massless
particle in the inner region of the CBH metric and SQBH metric respectively. In
this section we will compare the radial parts of these wavefunctions. To simplify
things we will set the quantum numbers A, &, u and v, corresponding to the
compactified directions y, 6, ¢ and 1 respectively, to zero. The respective radial
parts of the wavefunction are then given by

Hepn(r) o %Jl (7&;@5“’) (7.43)
and
Hsqpu(r) o< (r’ +a®)PF(B+1,8—1,1,—(r/a)?), (7.44)

with 8 = wv/Q10Q5/(2a).
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Figure 7.4: The plot shows I, as a function of ,/ag, for /o =10 and k = 1.
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Figure 7.6: The plot shows I,. as a function of ,/aq, for /af = 40 and k£ = 10.
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The periodicity of Hogy blows up as r approaches zero. This can be inter-
preted as the particle getting caught in the throat and bouncing back and forth
inside the throat an infinite number of times before hitting the singularity. The
hypergeometric function Hsgpg that solves the radial part of the differential
equation in the SQBH metric exhibits quite a different behavior in this respect.
The number of times the particle bounces back and forth inside the throat is
finite, thus it can reemerge from the throat in a finite amount of time.

Furthermore, we have seen that the solution in the SQBH metric reduces to
the solution in the CBH metric for a sufficiently small. From figures 7.7 and
7.8 we see that their behavior is indeed very similar for sufficiently large values
of r. From the plots we see that the approximation breaks down just after
the wavefunction crosses zero for the second time (counting in the direction of
decreasing r). However, it is very difficult to determine at what distance this is
in terms of the characteristic lengths of the system. This is because the behavior
of Hsgpn depends much stronger on the relation between a and w/Q1Q5 than
on the relation between r and these parameters.

We find that for increasingly large values of 8 = wv/Q1Q5/(2a), the number
of oscillations in the region of small 7 also increases. So for fixed values of the
characteristic lengths of the system, i.e. a and v/@Q1@Q)s, this seems to imply that
as the energy or frequency w becomes larger, and thus the wavelength shorter,
the number of times that the particle, described by the wavefunction, bounces
back and forth inside the throat, before it reaches the cap and gets reflected,
also increases. On the other hand, the resemblance between Hopp and Hsgph
completely disappears when 8 becomes of order one. Or equivalently, when w
becomes of the order a/+/Q1Qs. This can be explained as follows. Remember
that first of all we restricted ourselves to the inner regions of spacetimes by
setting 7? < v/Q1@s. In addition we found that Hsgpn approximates'® Hoppy
for small values of a, i.e. for a < r. So the breakdown of the resemblance is
simply due to the fact that the wavelength of a wave with frequency ~ a/+/Q1Q5
is ~ v/Q1Q5/a, which exceeds the size of the region in which we found the
resemblance, i.e. a®? € 12 K /Q1Qs.

Finally, we see from the plots of Hopy and Hsgpm that our results do
not seem to contradict Mathur’s idea that a black hole geometry is in fact a
superposition of various geometries like the SQBH geometry. Remember that
the SQBH geometry is the supergravity solution corresponding to one possible
vibration mode of the fundamental string. Different vibration modes give rise to
geometries similar to the SQBH geometry, but each with a slightly different cap.
The different caps correspond to different microstates of the black hole. Since
the SQBH geometry is a generic case we would expect that also the wavefunction
we found in this background can be considered generic. When we compare the
plots in Figs. 7.7 and 7.8 it does not seem unreasonable that a superposition of
functions like the radial part of the wavefunction in the SQBH metric will look
similar to the the radial part of the wavefunction in the CBH metric.

18We found this by solving the radial wave equation for small values of a using perturbation
theory. However, one can also find this directly from the expression for Hggpn by letting a
go to zero. This procedure can be found in [46].
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Figure 7.7: Radial part of the wavefunction in the CBH metric. On the vertical
axis its amplitude, on the horizontal axis the distance to the singularity at r = 0.
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Figure 7.8: Radial part of the wavefunction in the SQBH metric. On the vertical
axis its amplitude, on the horizontal axis the distance to the origin » = 0. We

have set wy/Q10Q5 > a.
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7.8 Discussion

In this chapter we have studied a candidate solution to the information loss
paradox put forward by Mathur. We motivated our choice of this particular
proposal with two reasons. Firstly, because we argued that solving the paradox
required a theory of quantum gravity. String theory, that underlies Mathur’s
work, is such a theory, and in addition to that it exhibits a holographic feature
that seems to be a characteristic of black holes. The other aspect of Mathur’s
proposal that made it attractive to us is that it provides the possibility to do
actual calculations.

After this chapter we are confident to say that the fuzzball proposal has
indeed proven to be a fruitful source of lengthy calculations. Our efforts led
to nice expressions of the solutions to the Klein-Gordon equation in both the
CBH and the SQBH metrics. We normalized the CBH solution and expanded
the SQBH solution in a Taylor series for small values of a, the characteristic
lengthscale on which the two geometries differ. Not surprisingly, the SQBH
solution reduces to the CBH solution to zeroth order in a.

At this point we seemed fully equipped to calculate the propagators in both
metrics, however, we ran into quite a number of difficulties. In retrospect, the
choice we made at that point, namely to calculate the first order correction to
the CBH propagator, was unfortunate. It failed to provide us any information
about possible non-local effects in the SQBH metric and this was most probably
caused by the fact that we had already filtered out these effects by writing the
SQBH solution as the CBH solution plus corrections.

Nevertheless, we learned from our mistakes and would not want to miss the
opportunity to propose some alternative methods to obtain the answer to the
question ”Does the fuzzball have the property required to restore information,
namely non-locality?”. One option is to stick to comparing the propagators
in the different metrics. In that case, one should either turn to computational
methods, or invest more time in studying the differential equations to obtain an
analytical expression for the propagator. Either way it seems wise to use the
twisted coordinates for the SQBH metric (see (7.12)), since then the calculation
is the same in both metrics. One only has to be a bit careful when transforming
back to the original coordinates.

A different option is to study geodesics instead of propagators. Locality and
causality are closely related concepts and it would be a very good indication
of non-locality if one could find a geodesic in the SQBH metric that connects
two points that are spacelike separated, i.e. causally disconnected, in the CBH
metric. Since calculating propagators has proven to be quite difficult in these
metrics, this seems a nice alternative.

Finally, we made a very handwaving observation regarding Mathur’s idea
that a superposition of SQBH-like metrics will reduce to the CBH metric. It
would be nice to make this observation more precise, since as we said Mathur
argues that the metrics, which correspond to the different vibration modes of
the string, reduce to the CBH metric upon ’coarse-graining’ over these metrics.
What he means by coarse-graining is keeping only the part of the geometries
outside the horizon, where the horizon is identified as the place where the caps
start, i.e. where the geometries start to differ. This is similar to the procedure
for going from statistical physics to thermodynamics where the differences be-
tween the microstates of the system are ignored and the system is described by a
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few macroscopic parameters that the microstates have in common. We find this
explanation of the ’coarse-graining’ procedure a bit unsatisfying, since it will
trivially work in this case, because the metrics already equal the CBH metric
except for the cap, but it does not explain at all how the singularity arises in this
‘coarse-graining’ procedure. It may be that the inspection of a superposition of
functions like Hsgpn will gives some more insight in this matter.






Conclusion and Outlook

The first goal we set ourselves at the beginning of this thesis was to give an
account of the information loss paradox accessible to a fourth year undergrad-
uate student in physics. Obviously, the reader is in a better position than we
are to judge whether or not we have achieved this goal. Nevertheless, we would
like to note the following. Since the paradox is widely studied, many introduc-
tions on the subject of various levels of complexity are available. During our
studies we encountered many an introduction that does not really mention the
analogy between thermodynamics and black hole mechanics. They merely point
out that the area of a black hole cannot decrease which is reminiscent of the
second law of thermodynamics for entropy. In our opinion it is crucial to know
that the analogy extends much further in order to fully appreciate the paradox.
Hawking’s calculation provides the missing link in the analogy, namely that
black holes have a temperature just as thermodynamic systems. If this were
not the case it is unlikely that anyone would have believed the calculation, since
its implication, information loss, is in contradiction with the very fundaments
the calculation was built on.

It is very difficult to get a clear overview of Hawking’s calculation because
of the many steps and approximations he makes. Clearly, this also makes it
difficult to point out where the calculation may be wrong. After a thorough
study of the validity of the many steps in the calculation, we concluded that the
semi-classical approximation most probably breaks down near the event horizon
due to the diverging redshift photons suffer in this region.

The breakdown of the semi-classical approximation already suggests that
information is not lost in black hole evaporation. Namely, Hawking radiation is
ezractly thermal in the semi-classical approximation, which leaves the possibility
that in reality the radiation does carry information through long range correla-
tions. In that case information is not lost, it is just very hard to restore, but
this is no different in the case of a burned piece of paper that used to have text
on it. Most physicists always believed that information did not really get lost
in black hole evaporation and the discovery of the AdS/CFT correspondence
probably took their last doubts away. In short, this is because 't Hooft argued
five years before this discovery that black holes seem to tell us that nature is in
principle holographic. That is, all the information about a bulk can be stored
on its boundary. And this is exactly what the AdS/CFT correspondence says,
namely everything that happens in the bulk can be described by a theory that
lives on its boundary. And what is more, it tells us that the theory that lives on
the boundary is a unitary theory, which means that information does not get
lost.

In the final chapter we studied the fuzzball proposal, an idea of Mathur
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that seems to offer a solution to the black hole entropy problem. This problem
is closely related to the information loss paradox, so an obvious question to
ask, is if this idea also has the potential to solve this problem. In an attempt
to answer this question we decided to try and calculate the propagator of a
field in a generic fuzzball metric and compare it to a propagator of a field in
a classical black hole metric. This proved to be a particularly difficult task
and although we did find the wavefunctions in the different metrics we failed
to find the matching propagators. Since, in essence, all that you need to find
the propagator is the wavefunction, one could pursue our line of research by
resorting to computational methods. But we tend to believe that studying
geodesics in the different metrics instead of propagators is more promising if
one wants to find non-local effects.

Although, we could not answer the question as to whether or not the fuzzball
proposal is likely to offer a solution to the information loss paradox based upon
actual results, we will not refrain from commenting on the subject anyway. First
of all, we believe the fuzzball proposal does not really solve the paradox as long as
there are no four dimensional fuzzballs. On the other hand, the paradox seems to
indicate that black holes have microstates and in the framework of string theory
it seems very plausible that these microstates arise from string vibrations. So
as long as there is no evidence that says that four dimensional fuzzballs cannot
exist, we think it is a neat idea that is worthy of further investigation. The
suggestions we make for successive research can be crucial in determining its
potential for solving the paradox. They can make or break the fuzzball proposal,
so we strongly recommend their pursuit.



Appendix A

General Solutions of the
Klein-Gordon Equation in
the Schwarzschild Metric

The Klein-Gordon equation for massless fields in curved spacetime reads
D0, ®(x) = 0. (A1)
Equivalently,
9""[0,0, —T},0.]® =0, (A.2)

where I'}, is the Christoffel-symbol. Since, for the Schwarzschild solution, the
metric is diagonal (see (1.15)), we only need the non-zero components of the

Christoffel-symbol with g = v. They are

M
Ftl)ozr—3(T—2M) Ih=—soimny L2 =—(r—2M)

T35 = —(r —2M)sin®f I3, = —sinfcosf. (A.3)
And the non-zero components of the inverse of the metric are

900:_(1_¥)*1 911=(1_¥) =12 g% = (rsin6)2. (A.4)

So we can write (A.2) as

OM . 1, oM, ., 1 _, 1 )
-(1-= 1-— = -
[ (1-==) F+01-= )6T+T280+r28m208¢
2M — 2r cosf
0+ aag] ® = 0. (A.5)

Because of the spherical symmetry of this problem we can write
& =U(r,t)Y (0, ¢), which enables us to split (A.5) into two parts, one depending
only on r and t and the other only on # and ¢, so each part should be constant.
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We will choose this constant such that Y (6, ¢) are the spherical harmonics. The
two equations obtained are

5 1 5  cosé _
|95 + it oag]Y(a, ¢) =11 +1)Y(0,9) (A.6)
2M —1 49 _% 2_2M—2T _
[_(1 T) 2+ (1 - )02 —F o |U(r,t) =
I(0+1
D06y @an

Since we also have translational symmetry, we can write U(r,t) = T(t)u(r) and
split (A.7) again which gives rise to

T (t) = —w?T(t) (A.8)
and
[0- 2% - (1= 252220 Jur) =
(0= 2055 - utn)

So T'(t) ~ e~*! when we throw away the solutions moving in the negative
timelike direction. To simplify the second equation we write u(r) = r~1R(r)
and obtain

(0= 22y + - 2020 ] rer) =
[a- ¥) [l(l:; D, i—ﬂf] - *| R(r).

Finally when we use r* = r+2M In |54 — 1|, we can write 8, = (1—2M/r) 0,
and 82 = (1—2M/r)=20% — (1 —2M/r)=2(2M/r?)d,+. So the equation for the
radial part of the wave function becomes

Il+1) 2M oM

S+ [l - =R =0. (A9)

OZLR(r) +{w® - |



Appendix B

Geometrical Optics
Approximation

Intuitively it makes sense that quantized matter fields should describe particles
moving along geodesics in the classical limit, otherwise general relativity would
not be the classical limit of quantum theory. But what exactly are the conditions
for the fields to be correctly described by the classical limit? And how do
we obtain the classical limit from quantum theory? These questions will be
addressed in this appendix.

First of all, note that the particles that succeed at traveling through the
collapsing body just before the horizon forms must have extremely high kinetical
energy and will approximately travel at the speed of light and their mass will be
negligible. In other words, these particle are quantum theoretically described
by massless quantized fields and classically they move along null geodesics.

Let us state the fundamental laws of geometrical optics in curved spacetime:
(1) massless particles move along null geodesics; and (2) the amplitude is gov-
erned by an adiabatic invariant which, in quantum language, states that the
number of quanta is conserved. In general there is a third law that says: (3) the
polarization vector is perpendicular to the rays and is parallel transported along
the rays, but the waves we consider do not have a polarization since we restrict
ourselves to massless scalar fields. For the derivation of this last law we refer to
[47], where the calculation is done for the electromagnetic vector potential.

Now we will define three typical lengths, onto which we have to impose
certain conditions to be able to work in the classical limit. These lengths are:
(1) the wavelength A of the waves as measured in Riemann normal coordinates;
(2) the typical length £ over which the amplitude, wavelength and polarization
of the waves vary; and (3) the typical radius of curvature R of the spacetime
through which the waves travel.

The geometrical optics approximation, i.e. the classical limit, is valid when-
ever the wavelength of the waves is very short compared to the other two typical
lengths

AL L and AKR, (B.1)

in other words, the waves should locally look like plane waves traveling through
flat spacetime.

105



Appendix B. Geometrical Optics Approximation 106

This answers our first question about the conditions our field has to satisfy
in order to obey the laws of geometrical optics. In the following we will use
(B.1) to obtain the laws of geometrical optics from the quantum theoretical
wave equation, which is in our case the massless Klein-Gordon equation.

As we saw in section 3.5 we can write the outgoing waves (see (3.40)) as

B = RIA(r, 0, 6)e="] = RA(2")e ™), (B2)

where § = wu is the phase and A(x*) is the amplitude of the wave. The
condition that the amplitude of the wave should vary only over distances much
larger than the wavelength, tells us that the amplitude can be written as a series
in A

A(z*) = a(z?) + b(z") + c(@*) + ... with a o A%, b AL, cox A2, ...

Furthermore, we know that 8 ~ 1/)\, since w is inversely proportional to the
wavelength. If we now define the dimensionless parameter

AL with L=min(L,R),

we can keep track of the order of expansion by introducing the dummy expansion
parameter €, which has eventual value unity. So any term with a factor € in
front of it varies as (A/L)™. When the conditions for the classical limit, i.e.
(B.1), are satisfied, A\/L will approach zero, so higher order terms in e will
vanish. When we use this parameter we obtain the following form for (B.2)

& = R[(a(z") + eb(z") + Ec(a) + ...)e /9. (B.3)
With this we find
0°® = R([0%(a(z") + eb(z*) + 2c(z*) + ...)
= (a(e*) + eb(a") + e(a) +..)a"6le ),
So the Klein-Gordon equation, i.e. D,0%® = 0, gives us
D,0*® = R([Dad*(a(z") + eb(z") + ...) — é(a(:c“) + eb(a*) + ...)D,,0%0
- 2260‘08a(a(x“) + eb(z?) + ...)
- eiz(a(x") + eb(azt) +...)0%00,0]e™"/<)
= 0. (B.4)
From the leading term (oc €~2) we obtain
9%60,0 = 0, (B.5)

To obtain the classical laws in their simplest form we define the wave vector
as k¥ = 0*6. From this it follows that the phase is of the form 6 = k,x*+
constant. When we write down the corresponding wave

P ~ 8:&[6—z(l:o‘-:i'—lzot)]7
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we see that k° is the angular frequency and that k points along the direction
of propagation of the wave for each surface of constant phase. At each point in
spacetime there is a wave vector and when they are glued together end-to-end
they construct a family of curves P(o) with tangent vector k*, which are the
light rays since those are defined to be the curves normal to the surfaces of
constant phase. This suggests that we write the wave vector as

_dx®

k¢ = —.
do

(B.6)

Tt is now simple to obtain from (B.5) that massless particles move along null
geodesics. First we note that

dx* dx”

O

k'E

which is exactly the condition for a geodesic to be null. Secondly, we find also
from (B.5) that

0 = D, (k%kq) = 2k*D ke,

but since Dyko = D,;,0,0 = D, D8 = D D,0 = Dk, this equals

0 = k"Dyk,
dx® dx
= —Dp,=t
do do
dx® 1, dx, dxzg
= — 9,2 T8 =28
do [8 do * do ]

_ dx_a[d_aid&_rﬁ dﬁ]
do ldz® do do *H do
d*z, g do® dug

do? ke dy do

which is exactly the geodesic equation! Furthermore, we can now identify o as
the affine parameter.

We have now derived the first law of geometrical optics, which states that
massless particles move along null geodesics. The third law can be derived by
looking at the term proportional to e ! in (B.4). For the details we refer to [47].



Appendix C

Derivation of Hawking
Temperature using Path
Integrals

The method described in this appendix is not meant to give further insight in
the physics behind the calculation of Hawking radiation, it is rather meant as a
tool to find the expression for the Hawking temperature in a quick and simple
way [48].

Path integrals are only defined in Euclidean spacetime, so we will use a
sequence of substitutions to obtain a suitable expression of a Euclidean metric
from the Schwarzschild metric (1.15)

oM . oM .
ds* = —(1— T)dt2 + (1 - T)—1dr2 + r%(d#?* + sin® 0d¢?).

We can simplify this by choosing to work in the equatorial plane, i.e. § = 7/2.
We then define 7 = 1t, to obtain the Euclidean signature

1_% 2M r—2M
r

Jr? + (1= 257 = M e

dr? dr®.
o T T ™
Near but outside the horizon we have r = 2M + p with p > 0, substituting this

in the equation above gives us

ds* = (

p 2M

d52 = dT2 + 7dﬂ2 (C].)

T oM

If we finally set p = y2, giving dp? = 4pdy? and substitute this into (C.1), we
get

dr?

16M2)'

2
ds? = ;/WdT2 +8Mdy? = 8M(aly2 + y?

Now compare this last equation with dr? + r2d¢?, which is a well defined de-
scription of a smooth Euclidean space if 0 < ¢ < 27, we then see that this
condition gives us a periodic time condition

dr? T

2 T 2
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Path integrals with periodic time are equivalent to systems with finite tem-
perature T = Fi/Tpax, S0 this final argument leads to precisely the Hawking
temperature



Appendix D

The Angular Equation in
The SQBH Geometry For
Small a

In this appendix we shall calculate the solution to the angular differential equa-
tion in the SQBH metric to first order in the small parameter € = a®(w? — A\?).
Let us restate the differential equation (7.23)

! - 2 _ 2ot — L
Sin2089(sm2089®(6)> +{(w A¥)a® cos® 6 7 g cos20}®(9)

= —AO(9). (D.1)

This differential equation in 6 reduces to its analog in the CBH metric (7.17)
if aw, a\ — 0. So for small a the solution is approximately (7.18) with the
eigenvalues A approximated by

A =10 +2) + O((aw)?) + O((aN)?). (D.2)

The leading correction to these eigenvalues (for solutions with y = v = 0) is
calculated in the appendix of [46] and is found to be

€ a2

A= —— = ——(w? = \?). D.3
3 g @ ) (D.3)
Using perturbation theory we can also find a first order correction to the
eigenstates ©(f) (we shall start with 4 = v = 0 and generalize later). This goes
as follows, we introduce the differential operator D

|
" sin 26

Op ( sin 2989) + (w? = \?)a? cos? 6,

or with the substitution 2z = cos 26

91+ 2

b= 48,,((1 — 22)8,,,) + (@ = M)t

For aw, aX — 0 the second part of the differential operator is small compared
to the first part. Using the small parameter € we can write D = Dy + €Dy,
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O =0 +€0; and A = Ay + eA;. With this notation the differential equation
reads

(150 + 6D1)(@0 +€01) = —(Ag + €A1)(Og + €0y),
dropping terms of order €2 we find
DoO¢ + (D01 + D10g) = —AgOg — €(Ag®; + A10y). (D.4)
The leading part of this equation is just (7.17) with 4 = v = 0 and is solved
by the Legendre polynomials P,(z) for Ag = 4n(n + 1),! so O¢(z) = P.(2).

Furthermore, we already know that A; = —1/8 from (D.3). When we put all
this into (D.4), we can reduce the equation for ©; to

The solution can be found to be

1

013 = v

(Pry1(2) = Poa(2))-
To obtain A; and ©;(z) for general p,v > 0, we first rewrite (D.1) by
substituting ©(6) = cos” 6 sin* 0T'(0) and z = cos 26, this gives

( - i(ﬂ + V)2 - %(u + V))T(z) +Wv—p—(u+v+2)2)0.7(2)
HL = 2)2T() + & (@ = W1+ 2)T ()

As before we write D = f)o + eDl, T =To+€T1 and A = Ag +€A;. In this case
we have

A 1 1
Dy = —z(u+v)’ =5u+v)+ ¥ —pn—(n+v+2)2)0: +(1-23;
A 1+ =z
Dy = —
Ao = k(k+2)
(u,v) : k_(:u-*_y)
To(z) = PIM(z) with c==——C .

To find T and A; we have to solve
Ag Ay

DoTy + DiTyy = _ZTI - ZTU, (D.5)
or equivalently
241 o)
TPC Z)+clc+pu+rv+1)Ti+ v —p—(p+v+2)2)0,T1

A

2192 1

+(1 - 22021 = —IPC(W’) (), (D.6)
! Comparing with (D.2) tells us that these eigenvalues correspond to even values of I only

(I = 2n). The eigenvalues for [ odd can be found by considering the case in which (p — v) is

an odd integer.
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where we inserted To(z) = P{*")(2) and Ao = k(k +2) = (2c + p + v)(2c +
4+ v + 2). Comparison with the case where y = v = 0 suggests us that
Ti(z) = APC(J’i’IU) (2) + BPc(f ) (%) may very well solve this equation. And some
algebra shows that indeed it does. Start by noticing that?

(v — i — (p+ v +2)2)0:(APYY (2) + BV (2))
+(1 = ) (APL () + BPY (2))
=—Alc+D(c+p+v+ 2)PC(J’:’1")(z) — Be(e+ p+ V)Pc(f’f) (2).

Plugging this into (D.6) gives

1 v v
2L POz 4 cle+ v+ D(APY () + BRLY(2)
—Ale+1)(c+p+v+ 2)PC(J’:’1") (2) = Be(e+ p+ I/)Pc(f’lu) (2)

Ay

= —IPC(H’V) (Z),
rearranging this gives

2PW) () = 8(2e+ p+v+2)APYY) (2) = 8(2¢ + pu+ v)BPY) ()
(271 4+ 1) P ().

This can be solved for A, B and A; by using the relation
(2c+ p+v+1)2c+ p+v) (2 + p+ v+ 2)2PHY)(2)
+(2c+ p+ v+ 1)’ —v)PH(2)
=2(c+1)(c+p+v+1)2c+pu+v)PEY(2)
+2(c+ p)(c+v)2c+ p+ v + 2P (2).
We then obtain
(c+D)(c+p+rv+1)

A =
A2+ p+v+ D)2t ptv+2)2
(c+p)(c+v)
B =
42c+p+v+1)(2c+ p+v)?
2 _ 2
A = (W —v?) 1

22+ pu+v+1)2c+p+v) 2

It can easily be checked that this is in accordance with our previous results by
putting p = v = 0 (note that you obtain A; = —1/2, instead of the expected
—1/8, but this is only a matter of definition which you can see upon comparing
(D.4) and (D.5)). So to first order in € = a?(w? — A\?) we found

O(8) = cos” B sin* PHY) (cos 20)
+a?(w? — A?) cos” @ sin* 0[APC(i’1V) (cos 20) + BPY" (cos 26)]
and

_ 2/ 2 2 (N2_V2) 1
A= E(k+2) +a(w? — A )[2(2C+M+y+1)(26+u+y) —5].

2See for example [43].



Appendix E

The Radial Equation in The

SQBH Geometry For Small
a

To find the radial solution in the SQBH metric to first order in a we do per-
turbation theory, just as we did for the angular differential equation. We start
from (7.24)

20, (% + a0, H() + {0~ 3)(Qu + Qs+ 1)
G OV ) — sty = 0

+
r2 4 a2

and recast the differential operator to be of the form Do + aﬁl, where Dy is
the radial part of the differential operator in the CBH metric. This can be done
by doing a number of substitutions and then neglect all terms of order a? and
higher. Start by substituting z = 1/r and H(z) = 2G(z) and dividing by z, this
gives

202G (2) + 20,G(2) — G(2) + a® [z3az (:G(2)) + 220, (z2azG(z))]

oo PRy
+{z2 w ?:_Q;%QGH) - 22 (A Q1Q5 + au)Q}G(z)

—{ = @ =A@ + Qs + 272 +A}G(2) =0,

As before we can neglect the term (w? — A\?)(Q1 + @5 + 2~ %) when we restrict
ourselves to the inner region of spacetime, i.e. 7> < \/Q1Qs. Now we throw
away all terms that are of order a? or higher. What remains is

2202G(2) + 20,G(z)
+H@1Q5(@* = N) = av/QiQs(wp + W) }22G(2) = (A +1)G(2).
This is again a Bessel’s differential equation and the solution is

G(2) = C1J,(Vao + acrz) + Cod o (vVao + aay 2),
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with
ap = Q1Qs(w® —)\?)
a1 = —Q1Qs(wp+ Av)
c = VA+1.

We would like to write this as G(z) = Go(z) + aG1(z). To do so we first note
that

Vao + acrz = Jag(l + a—)z

2&0

and since A can also be expanded in orders of a (see (7.26)), so can o

o = VA+1xAg+a?A+1

A
~ \/A0+1(1+a2(A0+1))_00+a01.

Now we can develop the Bessel function in a Taylor series in a, to obtain

J00+a201(va0+aalz) Oo(v z)+a2\/—za Jdo( )w:\/%z
a/ o 2 5 9
+5( 5 mz) Bos(@)|_ _ + a0 u(/a02)|

From this we see that to first order in a the Bessel function is of integer order,
since og = k + 1 is integer. Finally, using
1

5 (Jo-1(@) = g (2))

Oz J,(x) = 5

we find
G(2) ~ O [Jk+1(\/_z ta

r 2(T(v/a02) = Trr2(v/a52)) |-

As you can see we have put Cy to zero, this is again to make sure that the
wavefunction is square integrable.

Finally, we would like to normalize H(z) to first order in a. Upon comparison
with the normalization procedure for the modes in the CBH metric, we find that
we have to solve (see (7.40))

—/ Qle/dz—zG2(z) ~ =105 / dz_sz [Jk+1(\/04_02)]2
—2\/0:1Qsa / 42} g T (VT2 (VB52) = T (/5]

2

\/Qle (k+ 0’

in the last step we have used that

/ dzJ(B2)Tu-1(82) = Juta (B2)] = % - % 0,

as can be found in [43]. So to first order! in a the modes in the SQBH metric
have the same normalization constants as the modes in the CBH metric.

ITo second order in a this is not true since there is at least a correction that comes from
normalizing the angular modes found in appendix D.
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