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Abstract

In this report the motion of a closed string in a classical gravitational potential is analyzed.
We chose for a description of the forcefield in 3+1 dimensions because this matches with our
everyday intuition. We were interested in the difference between the motion of a free string
and that of a string in a gravitational field. First a brief review on relativistic mechanics and
Lagrangian formalism was given. Then we introduced a method to describe the motion of
a string using the Nambu-Goto action and the variational principle, which we both tried to
describe comprehensively. Then the variational principle was used to derive an equation that
describes the motion of a string in a classical gravitational field. The imposed gravitational
field is a constant vector field working in one direction. This field describes the gravitational
field as we experience it on the earths surface. We tried to avoid using general relativity in
our the description of the problem. Since in the problem a classical gravitational potential
was analyzed we thought this approached would work out. However it can be concluded that
our approach was wrong and that it is probably easier and more accurate to involve general
relativity into our description. As an extension of our research one could take a look at a
radial vector field which drops with 1

r2
and finally at the behavior of a string close to the

event horizon of an black hole.
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1 Introduction

In modern physics there are two theories that describe physics at two different scales. General
relativity describes gravity at a macroscopic scale. But at small scales, gravity is such a weak
force in comparison to, for example, the electromagnetic force (magnitude differences in the
order of 1040) that it is negligible. The standard model describes forces between subatomic
particles; the electromagnetic-, strong- and weak force and is valid only at a microscopic scale.
String theory is an attempt to unify general relativity and the standard model.

In string theory matter is described by tiny (at least smaller then 10−16 m) vibrating
strings instead of infinite small point particles with an infinite mass density. Each vibrating
mode of the strings would describe another particle as we know them today. Strings have the
property to either be open or closed. Open strings do have two endpoints which are always
connected to a surface. The endpoints move over the surface, while the rest of the string
vibrates between these moving point. Closed strings on the contrary do not have end points
at all and can be seen as continues loops. Both types of strings are described by the same
physics. That their motions differ is because they obey different boundary conditions, for
example the endpoints of an open string should stay attached to the surface while a closed
string does not have endpoints at all. The solution of a closed string should therefore be
periodically.

In this paper we are going to derive the equations of motion for a one dimensional closed
relativistic string moving in a classical potential. In general gravitational force field are radial
and drop with 1

r2
. We are going to use a simplified model of the gravitational field by assuming

that it is constant over the distance the string travels. In fact this approximation describes the
gravitational force on earths surface pretty well and it holds for kilometers above it. Only if
we look at larger scales then kilometers this approximation loses its validity. We have depicted
the force field of this potential in figure (1). We are interested in this problem because we

Figure 1: 2D Visualization of the gravitational field will use in our calculations.

want to know if a string behaves differently in a gravitational field than it would do in free
space. If we will ever be able to perform measurements on string or to make them visible it
will always be in presence of the earths gravitational field. Therefore it would be very good
to know if the theory predicts some extraordinary motion for a string in such a gravitational
field.

We start with a quick review of Special Relativity and Lagrangian Formalism. Then we
derive the equations of motion for a relativistic string in a potential as depicted above. Finally
we try to solve these equations of motion.

2 Basic review of Special Relativity and Lagrangian
formalism

In this paragraph we give a short review of special relativity theory and Lagrangian mechanics.
The main goal is to familiarize the reader with some of the notation we are going to use often.
We also try to give some motivation why we make use them.
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We begin with Special Relativity1. In Special Relativity, events are marked by four-
vectors: (ct, x, y, z), where the first coordinate time is multiplied with the speed of light. This
makes that all coordinates have units of length. Now we introduce some new notation, we
write:

xµ = (x0, x1, x2, x3) ≡ (ct, x, y, z)

Of course, the superscript µ runs over the values 0, 1, 2, 3. This is a very general notation which
allows you to add as many dimensions as your theory needs to describe physics. Therefore
special relativity is very useful to describe strings in string theory. Since we want string theory
to be a grand unifying theory, it should not only describe matter in a non relativistic limit.
Thats the other reason we use relativity theory to describe relativistic strings.

We define ∆s2 as the invariant interval, the value of this interval is equal to all observers.
In our notation:

−∆s2 = −(∆x0)2 + (∆x1)2 + (∆x2)2 + (∆x3)2 (1)

Note the minus sign in front of x0. This sign represents the fundamental difference between
’timelike’ coordinates and ’spacelike’ coordinates. Another useful notation can be obtained
by simplifying the expression for the invariant interval. We define

∆x0 ≡ −∆x0, ∆x1 ≡ ∆x1, ∆x2 ≡ ∆x2, ∆x3 ≡ ∆x3.

With this definition equation (1) becomes

−∆s2 =

3∑
µ=0

∆xµ∆xµ. (2)

This is the last time we use the sigma-notation, throughout the rest of the paper we use
Einsteins summation convention. In this notation we get −∆s2 = ∆xµ∆xµ, where summation
over all possible values of (in this case) µ is implied. In a more mathematical way we can
also write the invariant interval in terms of the Minkowski metric. This is a very important
metric used to describe spacetime. We get

−∆s2 = ηµν∆xµ∆xν , ηµν = ηνµ. (3)

From (2) and (3) we can see that the Minkowski metric is defined by the matrix

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Another important concept in Special relativity is that of proper time. This is a measurement
that is Lorentz invariant of time. A quantity is Lorentz invariant if observers in different
inertial-systems agree on the value of that quantity. Consider a particle moving in some
direction and imagine we mark two events along its trajectory. If the particle is carrying a
clock, the proper time is the elapsed time between the two events on that clock. Logically
this is invariant because all observers that can ’see’ the clock must agree on the elapsed time.
We can quantify proper time by considering equation (1) in a the Lorentz frame attached to
the particle. In this frame the particle does not move, so the spatial coordinates are equal to
zero. This implies that

− ds2 = −c2dt2, (4)

or

dt =
ds

c
. (5)

We will use this later on to derive the action for a relativistic particle.
The history of a particle is represented in space-time as a curve, this curve is called the

world − line of the particle. A (1-D) string however, traces out a sheet in spacetime, called
the world − sheet. Ultimately, we want to derive the equations of motion in terms of the
parameterization of the world-sheet. But first we review the Lagrangian formalism.

1Based on Zwiebach page 15-18.
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The Lagrangian formalism is based on the assumption that the action is stationary under
infinitesimal variation of the path the particle takes. The action is given in terms of the
’Lagrangian’ L = T − V :

S =

∫ t1

t0

Ldt, (6)

with T the kinetic energy, which for a non relativistic particle is given by T = 1
2
mẋ(t)2 and

with V = V (x(t)), the potential. Equation (6) gives the action for a point-particle. From
this, we can derive the equations of motion using the variational principle. To illustrate how
this is done in principle we work out a short derivation of the motion of a point particle. We
vary the action by varying x(t) an infinitesimal amount δ, we get

δS =

∫ t1

t0

[
1

2
m(ẋ(t) + δẋ(t))2 − V (x(t) + δx(t))

]
dt. (7)

Expanding V(x) as a Taylor series, we can write

S(x+ δx) = S(x) +

∫ t1

t0

[
mẋ(t)

d

dt
δx(t)− V ′(x(t))δx(t)

]
dt, (8)

where we have neglected the terms (δx)2 and higher. We can now write 8 as S(x) + δS(x),
so we see that

δS(x) =

∫ t1

t0

[
mẋ(t)

d

dt
δx(t)− V ′(x(t))δx(t)

]
dt. (9)

To get the equations of motion we must make sure that no derivatives are acting on δx(t).
We can achieve this by using integration by parts, we derive (making use of the fact that
δx(ti) = δx(tf ) = 0)

δS =

∫ t1

t0

δx(t)
[
−mẍ− V ′(x(t))

]
dt. (10)

We can now see that the action is stationary if δS vanishes for every variation δx(t) which
we van only achieve if −mẍ−V ′(x(t)) is equal to zero. We now have the equations of motion
for a point-particle moving in a potential!

−mẍ = V ′(x(t)). (11)

This equation of motion however, describes the motion of a nonrelativistic particle. We can
see this by noting that a free particle, according to the above equation, has no constraints
on its velocity: a particle in free space is allowed to move with an arbitrary speed. To give a
generalization we must define the action differently. In particular, we want an action that is
Lorentz invariant, which means that all observers of the particle must agree on its action. If
` represents the world line of the particle, the the quantity related to ` is the elapsed proper
time. The infinitesimal proper time is given by ds

c
. The integral over this quantity gives the

elapsed proper time on `. To get the action we should get the units right. We see that if
we integrate ds

c
over `, we get a quantity with units of time. To get the units of action we

must multiply with a factor of units mass times velocity squared. This quantity must also be
lorentz invariant. We make a guess by claiming that this term is mc2. As it seems, the action
is

S = mc

∫
`

ds. (12)

combining equation 1 with 12 implies that

S = mc2
∫
`

dt

√
1− v2

c2
. (13)

So the Lagrangian of the relativistic particle is given by

L = mc2
√

1− v2

c2
. (14)

But there is still one problem, in the limit c >> v we see that

L ≈ mc2
(

1− 1

2

v2

c2

)
= mc2 − 1

2
mv2, (15)
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this is incorrect because a Lagrangian is always given in terms of L = T − V . Equation (15)
however, is of the form L = V − T . A minus sign should be added to the Lagrangian to
correct for this. The action for a relativistic particle is thus given by

S = −mc
∫
`

ds. (16)

A (1-D) string however, does not trace out a path but a sheet in spacetime. We therefore
have to define the action differently. In the next paragraph we derive the equation of motion
for a string.

3 Lagrangian formalism for a 1D-String

In this paragraph we are going to use the concepts introduced in de preceding section to
derive the action for a 1D-string. Recall that a particle traces out a path in spacetime. For
a string, one could imagine that every single point on that string traces out path as well. All
the worldlines together span a surface in spacetime, which normally is called the world-sheet
of the string. Therefor, we have to define the action and the Lagrangian differently. We start
with taking Xµ(τ, σ) as a parameterized function that describes the world-sheet of the string.
Here, (τ, σ) represent points in parameter space. So Xµ is a function which maps (τ, σ) from
parameterspace to spacetime-coordinates as it is shown in figure (2). We will call Xµ the

Figure 2: Parameterization of the world sheet by τ and σ

string coordinates. To reduce the size of our equations we will define Ẋ ≡ dX
dτ

and X ′ ≡ dX
dσ
.

Now we have to derive the proper area of the world-sheet. For that we need to find an
expression for the area element in terms of the vectors that span the element as indicated in
figure 3. The area is a parallelogram which can be split in to two triangles with equal size.
The area of a triangle is given by 1

2
times base times height. Let ‖v1‖ be the base of the

triangle. We then have to express the height of the triangle in terms of the two vectors v1
and v2. The height of the triangle is equal to sin θ‖v2‖, where θ is the angle between the two
vectors. sin θ can be substituted by

√
1− cos θ2. We can express the cosine in terms of the

two vectors v1 and v2 by using the definition of the dotproduct cos θ = v1·v2
‖v1‖‖v2‖

. The area
dA of the parallelogram can thus be written as

dA = 2 · 1

2
· b · h = ‖v1‖‖v2‖

√
1− (v1 · v2)2

‖v1‖2‖v2‖2
. (17)

Finally we just rearrange the expression and write out the definition of the norm of a vector
and find that

dA =
√

(v1 · v1) · (v2 · v2)− (v1 · v2)2. (18)

In case of the world-sheet the vectors that span an area element are ∂Xµ

∂τ
dτ and ∂Xµ

∂σ
dσ. If

we substitute v1 an v2 by these vectors and integrate the over τ and σ we find an expression
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for the area of the total worksheet of a string

A =

∫
dτ

∫
dσ

√(
∂X

∂τ
· ∂X
∂σ

)2

−
(
∂X

∂τ

)2(
∂X

∂τ

)2

. (19)

Normally, one would think that the sign of the expression under the square root is negative
(because of the Cauchy-Schwartz inequality), but we also have to encounter the fact that one
of the vectors is timelike and the minus sign in the Minkowski-metric changes the sign of the
expression. This is the reason why the two term are switched.

Figure 3: Area spanned by two vectors

Now, the action is proportional to the proper area. The action must have units of kgm2

s
.

Therefore we must multiply (19) with a constant with units of mass divided by units of time.
A string in free space has energy in the form of tension, so we make an educated gues and
multiply the proper area with the tension in the string T0. Note that tension (with units of
force) divided by velocity (with units of speed) has the desired units. We therefore define the
action to be

SNG = −T0

c

∫ τf

τi

dτ

∫ σ1

0

√
(Ẋ ·X ′)2 − Ẋ2X ′2dσ. (20)

which is called the Nambu-Goto action. The minus sign comes from the fact that the La-
grangian is defined as L = T −V , but in equation (19) we had to change the sign of the term
in the square root. We have to multiply with a minus sign again to compensate. To simplify
our expressions we define

L =
T0

c

√
(Ẋ ·X ′)2 − Ẋ2X ′2, (21)

the so called Lagrangian density. Using the variational principle and following the same steps
as for the one dimensional action we get

δSNG =

∫ τf

τi

dτ

∫ σ1

0

dσ

[
∂L
∂Ẋµ

∂δXµ

∂τ
+

∂L
∂X ′µ

∂δXµ

∂σ

]
. (22)

If we use integration by parts equation 22 can be written as

δSNG =

∫ τf

τi

dτ

∫ σ1

0

dσ

[
∂

∂τ

(
∂L
∂Ẋµ

δXµ

)
+

∂

∂σ

(
∂L
∂X ′µ

δXµ

)
− δXµ

(
∂

∂τ

∂L
∂Ẋµ

+
∂

∂σ

∂L
∂X ′µ

)]
.

We can work out the first two terms of this equation a bit further. Equation 22 then
becomes

δSNG =

∫ σ1

0

dσ

[
∂L
∂Ẋµ

δXµ

]τf
τi

+

∫ τf

τi

dτ

[
∂L
∂X ′µ

δXµ

]σ1
0

−
∫ τf

τi

dτ

∫ σ1

0

dσδXµ

[
∂

∂τ

∂L
∂Ẋµ

+
∂

∂σ

∂L
∂X ′µ

]
. (23)

Most of the times it is trivial to parameterize τ as t. If we do so, Xµ(ti) and Xµ(tf ) are
the initial and the final state of the string. We only consider variations δXµ between these
two points. With other words δXµ(τi, σ) = 0 and δXµ(τf , σ) = 0. We can therefore forget
about the first integral. The integrand of this integral will always vanish. The outcome of
the second integral depends on the boundary conditions. Whatever the boundary conditions
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are, the variation in action should be 0. Therefore the last integral must be equal to 0. Since
δXµ is non zero, ∂

∂τ
∂L
∂Ẋ

+ ∂
∂σ

∂L
∂X′ must be equal to zero.

We have now derived that the equations of motion for a (1-D) string are

∂

∂τ

∂L
∂Ẋ

+
∂

∂σ

∂L
∂X ′

= 0. (24)

In the next paragraph we will derive the equation of motion for a two dimensional closed
string moving in a classical gravitational potential.

4 Derivation of the equations of motion

In this paragraph we derive the equations of motion for a closed string in a classical -earth-
surface like- gravitation field. With this we mean that the gravitational force is always pointing
in one direction and has a constant magnitude. To derive the equations of motion we will
make use of the Nambu-Goto action and the variational principle.

There are several ways to add the imposed gravitational potential into our action integral.
One possibility is, to look at this potential in a classical way. In such way that the presence
of a gravitational field affects the potential energy of the string in the Lagrangian. We chose
the gravitational force so, that it acts in the X1 direction. Then an infinitesimal small length
dl of string increases the total potential energy of the string by µ0gX1dl, with µ0 the mass
density of the string and g a constant, which gives the magnitude of the gravitational field.
The addition to the action of the string would be the additional potential energy integrated
over the time t. So the term we would like to add to the Lagrangian density will look like
µ0gX1dldt. dldt would be de area spanned by the string in a non relativistic way. For a
relativistic description of the string we replace the dldt with the area dA we used to describe
the surface of the world sheet of a free string. Remember from the previous paragraph that

dA is given by
√

(Ẋ ·X ′)2 − Ẋ2X ′2. The additional term for the Lagrangian density of the

whole world sheet is therefore given by µ0gX1

√
(Ẋ ·X ′)2 − Ẋ2X ′2. Ultimately this is not

a correct way to add the potential, because by multiplying with this square root we also
multiply with the kinetic energy of the string. We will discus the influence of this on our
calculations in the discussion section. As said before, there are other ways to think about
adding a potential. The accuracy and the precision of the different methods will be discussed
later on, but from now on we will chose to work the problem out as discussed above.

The Nambu-Goto Action is the integral of the Lagrangian density L over the parameteri-
zation variables τ and σ. With the Lagrangian density given in terms of the string coordinates
Xµ(τ, σ) and their derivations dX

dτ
, dX
dσ

. To get the get the action of the string, the term
discussed above is now added to the Lagrangian density. The Nambu-Goto Action for a string
is thus given by

S = −
∫ τf

τi

dτ

∫ σ1

0

[
T0

c
+ µ0gX1

]√
(Ẋ ·X ′)2 − Ẋ2X ′2dσ. (25)

Just to be clear, the first term of the integrand is the contribution of the because of the
tension in the string. The second term in this action is an addition of the gravity potential.
Where the gravitation is chosen to act in the X1 direction.

To get the equations of motion for the relativistic string from the action we make use of
the variational principle. A small variation in X should not result in a variation in action.
We vary X and we impose that the variation in action is equal to 0. The most general way
to write down the variation in the action is

δS =

∫ τf

τi

dτ

∫ σ1

0

[
dL
dẊµ

d(δXµ)

dτ
+

dL
dXµ′

d(δXµ)

dσ
+

dL
dXµ

δXµ

]
dσ, (26)

where L for this problem is given by

L = −
[
T0

c
+ µ0gX1

]√
(Ẋ ·X ′)2 − Ẋ2X ′2. (27)
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By substituting L into equation (26) we get an equation in terms of X, Ẋ,X ′. For convenience
we define

Pτµ ≡
dL
dẊµ

= −
[
T0

c
+ µ0gX1

]
(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ√

(Ẋ ·X ′)2 − Ẋ2X ′2
, (28)

Pσµ ≡
dL
dXµ′ = −

[
T0

c
+ µ0gX1

]
(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′µ√

(Ẋ ·X ′)2 − Ẋ2X ′2
(29)

and

PXµ ≡
dL
dXµ

=


0

−µ0g
√

(Ẋ ·X ′)2 − Ẋ2X ′2

0
0

 .

We can now rewrite the variation in the Nambu-Goto action δS in terms of Pτµ , Pσµ and PXµ

δS =

∫ τf

τi

dτ

∫ σ1

0

[
Pτµ

d(δXµ)

dτ
+ Pσµ

d(δXµ)

dσ
+ PXµ δXµ

]
dσ = 0. (30)

We then make use of the chain rule to separate the equation into a part that is easy to
integrate and a part that depends only on δX and not on its derivative, we get

δS =

∫ τf

τi

dτ

∫ σ1

0

[
d(PτµδXµ)

dτ
+
d(Pµσ δXµ)

dσ
+ δX(PXµ −

dPτµ
dτ
−
dPσµ
dσ

)

]
dσ = 0. (31)

The first term of the integrand can easily be integrated over τ . The result is a term which
must be evaluated in τi and τf . X is fixed in τi and τf , since we will only look at variations
in X between these two points. The variations δX(τi, σ)andδX(τf , σ) are therefore set to be
0. So this term vanishes.

The second term can be integrated over σ first and be evaluated in zero and σ1. It depends
on the boundary conditions what the outcome of this will be. We try to find solutions for
the motion of a closed string, this implies periodic boundary conditions. We can identify the
point Xµ(τ, σ) with the point Xµ(τ, σ + σ1). The variation in the points 0 and sigma are
equal: δXµ(τ, 0) = δXµ(τ, σ1). Therefore, this whole term will vanish as well for any solution
to our problem. There is only one term left in the variation of the action. Since we state that
the variation in action under a small variation of X must be 0 this last term must be equal to
zero too. Since δX represents the small variation, it is definitely not equal to zero. Therefore
dPτµ
dτ

+
dPσµ
dσ
− PXµ must be 0. So the equations of motion can be written as:

dPτµ
dτ

+
dPσµ
dσ

= PXµ . (32)

5 Solving the equation of motion

Choose a parametrization

In the previous paragraph the following partial differential equations were found. In this
paragraph we try solve these equations.

dPτµ
dτ

+
dPσµ
dσ

= PXµ . (33)

The solution of this differential equation describes the world-sheet of the string. This solution
is parameterized by the two parameters τ and σ. Until now we did not specify what τ and σ
are, which give us the freedom to chose how to parameterize. First we fix τ to be X0. Since
X0 represents the timecoordinate t, dX

dτ
becomes dX

dt
which is recognizable as the (transversal)

velocity. It can be shown that, with this parameterization of τ , the following relation between
the area element dA and the transversal velocity is true2.√

(Ẋ ·X ′)2 − Ẋ2X ′2 = c
ds

dσ

√
1− v2

c2
(34)

2See Zwiebach page 120-122.
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The parameterization of σ is still free to choose. Since τ represents only a displacement in
time it seems logical to choose σ as a spatial-parameter. From that parametrization it follows
that dX

dt
· dX
dσ

= 0. This result simplifies (33) and (34) because one whole term is 0. We now
write down the equations of motion with τ and σ parameterized as explained above:

1

c2
d

dt

(T0 + µ0gcX1)
ds
dσ
Ẋµ√

1− v2

c2

− d

dσ

[
(T0 + µ0gcX1)

√
1− v2

c2
X ′µ

ds
dσ

]
=


0

−µ0gc
√

1− v2

c2

0
0


(35)

There is still some freedom in the parameterization because we did not totally fix σ.
Because we chose τ to be perpendicular to σ only a function of σ only can be parameterized
in a desired way. A function that also depend on t could not be parametrized to any desired
function because we already fixed τ . To get a time independent function we will look at the
differential equation with µ = 0. We already know what the solution of this equation should
be, since we chose our parameterization X0 = t. Derivatives with respect σ are 0 and dX0

dt
= 1

which leave us with the equation

1

c2
d

dt

(T0 + µ0gcX1)
ds
dσ√

1− v2

c2


︸ ︷︷ ︸

f

= 0. (36)

This equation tells us that the derivative of some function, lets call it f, with respect to time
is equal to 0. Of course this implies that the function f is independent of time. We now fix

σ in such way that
[
T0
c2

+ µ0g
c
X1

] ds
dσ√
1− v2

c2 f

= 1. After applying this extra parameterization

condition we can simplify the equations of motions to

1

c2
d2Xµ

dt2
− d

dσ

[
(T0 + µ0gcX1)2

dXµ

dσ

]
=


0

−µ0gc
√

1− v2

c2

0
0

 . (37)

1

c2
d2Xµ

dt2
−(T0 + µ0gcX1)2

d2Xµ

dσ2
−2 (T0 + µ0gcX1)µ0gc

dX1

dσ

(
dXµ

dσ

)
=


0

−µ0gc
√

1− v2

c2

0
0

 .

(38)
To be clear, Xµ is a vector, so we have to solve a set of differential equations. One of the

equations is different from the others. For µ = 1 , it looks as if this is a differential equation
that depends on only one unknown function X1. However, we must be aware that the v in
this equation is the transversal velocity, which is not a constant, but a function of the vector
Xµ and derivatives of this vector. It is important to know how this whole term depends on
Xµ and its derivatives. This maybe simplifies the equation, but it can also make it even more
complicated if it turns out that it also depends on other components of the vector Xµ then
just X1. Recall that [

T0
c2

+ µ0g
c
X1

] ds
dσ√
1− v2

c2

= 1

and
√

(Ẋ ·X ′)2 − Ẋ2X ′2 = c ds
dσ

√
1− v2

c2
.

(39)

First multiply these two equations with each other and then divide both sides with
ds
dσ√
1− v2

c2

.

This results in [
T0

c2
+
µ0g

c
X1

]√
(Ẋ ·X ′)2 − Ẋ2X ′2 = c

(
1− v2

c2

)
. (40)
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Remember that we choose the parameterization in such way that dX
dt
· dX
dσ

= 0, which allows
to simplify the equation as[

T0

c
+ µ0gX1

]√
Ẋ2X ′2 = c2

(
1− v2

c2

)
. (41)

We are now very close to the desired result. As a last step we take the square root on both
sides of the equation and multiply by −µ0g and find that

− µ0gc

√
1− v2

c2
= −

√(
T0

c
+ µ0gX1

)
‖Ẋ‖‖X ′‖. (42)

One of the differential equations can be written as

1

c2
d2X1

dt2
−(T0 + µ0gcX1)2

d2X1

dσ2
−2 (T0 + µ0gcX1)µ0gc

(
dX1

dσ

)2

= −

√(
T0

c
+ µ0gX1

)
‖Ẋ‖‖X ′‖.

(43)
We can now conclude that even this differential equation depends on more then one unknown
function and so did the others. Now we are left with three coupled differential equations.
The equations are all very different that we cannot even combine the equations to get a
solvable one. Several attempts to solve these equations failed and we conclude that there
is no analytical solution to the problem. There maybe is a numerical solution to this set
of equations. However, we did not tried to find this numerical solutions since these difficult
equations indicates that we might be on the wrong way with our approach. We will discuss
this in the next section.

6 Discussion

We were able to derive equations of motion for a one dimensional string in a constant grav-
itational force field. The derived equations however are very hard to solve. The differential
equations we found are all coupled differential equations. There is no equation that depends
only on one of the functions for which we try to solve the equation. The equations are cou-
pled in such a complicated way, that we failed to find an analytical solution to this problem.
We could have tried to find an numerical solution to the equations of motion. However,
we stopped at this point to question ourselves, wether we were on the right track with this
approach.

General relativity is based on the equivalence principle, which states that a observer in
a gravitational field has equivalent observations as an observer that moves with constant
acceleration. This is a powerful statement, which directly leads to the conclusion that a
string in a constant gravitational field should move with constant acceleration. Since this
analytical solution is definitely not a solution to the equations of motion we know that our
approach is wrong.

We could ask ourself where we made a wrong assumption. We have to remember that the
way we added the potential to our equations was not totally justified. We already mentioned
before that the multiplication of the additional potential with the surface area also multiplies
with the kinetic energy of the string. So apparently we cannot approximate the action in this
way. We should define the action more carefully for reasons mentioned above. If we did not
also multiply with the kinetic energy we might find the expected outcome.

To make sure the motion of the string is derived from correct equations we should involve
general relativity in our description of the gravitational field. In general relativity the addition
of a gravitational field (the presence of mass) is not described by adding a potential field but
by a curved spacetime, which in mathematical sense means that the Minkowski-metric should
be replaced by another metric gµν()x, which depends on the position of the particle. In other
words: a curved spacetime. For a weak gravitational field one could argue that the metric
should be very similar to the Minkowski-metric. Therefore it should be possible to give a
good linear approximation of the field by writing gµν as gµν = ηµν + hµν . With hµν a small
variation on the metric. For the gravitational field of the problem we tried to solve, the
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variation hµν is described by the metric

hµν =


dX1 0 0 0

0 dX1 0 0
0 0 0 0
0 0 0 0

 . (44)

Describing the gravitational field this way lead to a more accurate solution for the motion of
the string, since it is more general then the classical approach. The classical description is
only valid for limited situations.

As an extension of our research one could think of a more interesting gravitational field. A
radial gravitational force with a magnitude that drops with 1/r2 since this is a more realistic
model for the gravitational force. We think the best approach for this problem would be to
again, describe the curved spacetime with a metric. First a correct metric should be found and
then new equations of motion can be derived. When this is accomplished our next step would
be to look at the behavior of a string close to the event horizon of a black hole. The metric
that describes a black hole is a well known one. It is described by the Schwarzshild metric.
In the article from de Vega and Egusquiza [3] the motion of a string in such a curved space is
computed numerical and the result is being visualized. In the same article multiple variations
on this curved spacetime are described as well. From this article we learn how powerful the
metric description from general relativity is also in the describing strings. Finally, It would
also be interesting to generalize this problem to higher dimensions since the string theory
needs more then three spatial dimensions to describe physics.

7 Conclusion

In this paper we derived the equations of motion for a one dimensional relativistic string
moving in a classical gravitational potential. This was done by varying the Nambu-Goto
action for a relativistic string. Then we tried to solve the obtained differential equations. We
tried to solve these equations but we failed to find an analytical solution. We can conclude that
approach that we used to define the action of the string was wrong. The wrong assumption
led to equations that were too hard to solve. The best continue this research would be to
involve general relativity in to our description of the problem.
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