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Summary

This thesis is divided in two parts that treat different subjects, knot theory and
anyons. The aim is to give an introduction to the two subjects and show how
they are related.

The first part is a short introduction to knot theory. It starts with the
definitions of a link and a knot and moves from knot invariants to the Jones
polynomial and the braid group.

The second part is about anyons. Anyons are particles in two dimensions
with strange properties. If you move two anyons around each other the type of
the particle could change. The focus is on the theory of anyonic systems.

In the end a connection between the two subjects is shown. It is shown how
the Jones polynomial that is used in knot theory can emerge from a model of
anyons.
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Nederlandse samenvatting

Het eerste deel van deze scriptie gaat over knopentheorie. Knopentheorie is
een onderdeel van de wiskunde. Pas in de 19de eeuw zijn mensen begonnen
systematisch knopen te bestuderen. Het oorspronkelijke doel was een tabel te
maken met zoveel mogelijk knopen. Sinds die tijd zijn er meer dan zes miljard
knopen gedocumenteerd.

Knopen zijn gesloten lussen in drie dimensies. Twee knopen zijn gelijk als
ze in elkaar om te vormen zijn zonder de lus kapot te maken. De simpelste
knoop is de unknot (figuur 1). Deze is op geen enkele manier om te vormen in
de trefoil knoop, die daarnaast te zien is.

Aan knopen kun je waardes toekennen die niet veranderen als je de knoop
vervormt. Zulke waardes heten knoopinvarianten. Het minimale aantal kruisin-
gen waarmee je een knoop kan tekenen is bijvoorbeeld een knoopinvariant. Deze
invarianten zijn handig om te bepalen of twee knopen niet in elkaar te vervormen
zijn. Als ze een verschillende waarde voor een bepaalde invariant hebben dan
zijn het verschillende knopen. Als de waardes gelijk zijn impliceert dat echter
niet het omgekeerde.

Het tweede deel van de scriptie gaat over deeltjes in twee dimensies genaamd
anyonen. Anyonen hebben eigenschappen die in niet voorkomen bij deeltjes in
drie dimensies. Ze zijn nog niet in de praktijk waargenomen, maar als ze zouden
bestaan kunnen ze fysische eigenschappen van bepaalde systemen verklaren waar
nu nog geen goede verklaring voor is. Ook vormen ze de basis van een topolo-

Figure 1: Een knoop die equivalent is met de unknot, maar niet met de trefoil
knoop.
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vi SUMMARY

gische kwantumcomputer. Dat is een computer die in een seconde berekeningen
kan uitvoeren waar de huidige computers jaren voor nodig hebben.

Anyonen en knopen hebben op het eerste gezicht niets met elkaar te maken.
Beweging van anyonen door de ruimte en tijd kun je echter zien als lijnen die
om elkaar heen draaien. Deze lijnen kun je weer zien als elementen uit de braid
groep, een wiskundige groep die gebruikt wordt in de knopentheorie. Ook geven
anyon modellen aanleiding to knoopinvarianten, waarover in de scriptie meer te
lezen is.
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Introduction

This bachelor’s thesis is divided into two chapters, about subjects that at first
sight are not related. The first chapter is an introduction to knot theory. Knot
theory is the part of mathematics that studies knots and links (chapter 1.1).
Since the 19th century people have been studying knots. The original aim was
to tabulate as many knots as possible, and today about 6 billion knots have
been tabulated. The main problem in knot theory is to find an easy procedure
to determine whether two knots are the same. Since knots are objects in three
dimensions this is not an easy problem. To tell if two knots are not the same
properties of knots known as invariants (chapter 1.3) can be calculated. These
invariants are used to discriminate between knots. If two knots have different
values for the same invariant they are different. An important invariant is the
Jones polynomial, which is treated in chapter 1.4. The last part of this chapter
is about braids.

The second part is about anyons. Anyons are particles in two dimensions
that have properties that are not seen in three dimensions. Experimental physi-
cists are working on ways to directly show the existence of anyons, but they have
never been observed. They arise in theory just from the assumption a system
has two space dimensions. This might seem unreasonable since the world we
live in has three dimensions but it is possible to lock out one dimension by a
magnetic field, like in the fractional quantum Hall effect, which can be explained
by anyonic particles. If it turns out anyons can be created in experiments they
can be used to create topological quantum computers (TQC). TQCs are a short-
cut to quantum computers. They have the same calculating capabilities [9], ie.
TQCs can emulate normal quantum computers and vice versa.

The aim of this thesis is to give small introductions to the two subjects and
show how they are related. In most of the literature out there this is done with
quantum field theory, but since this is only a bachelor’s thesis I will not involve
that. As I will show in 2.4 out one particular anyon model gives rise to the
Jones polynomial. With this fact it is possible to get more physical intuition
about anyons, and get more information about the meaning of the parameter
in the Jones polynomial.

ix



x INTRODUCTION



Chapter 1

A Short Introduction to
Knot Theory

The first part of this thesis will be a short introduction into the mathematical
theory of knots. Most texts start with some history but since there is already
a lot of information out there, and it is not the aim of this thesis to talk about
the history of knot theory I will only give some references [1, 2].

1.1 Knots and links

Figure 1.1: The unknot, the trefoil knot and its mirror image, the Hopf link,
the figure eight knot, two knots with five crossings and one with seven.

Knot theory is the part of the mathematical theory of topology that studies
properties of knots and links. A link is an embedding of one or more circles in
the three dimensional Euclidian space R3. Two links are equivalent if they can

1



2 CHAPTER 1. A SHORT INTRODUCTION TO KNOT THEORY

be transformed into each other via deformation of R3 upon itself. When a link
consists of only one component it is called a knot. When you make a projection
of a knot (link) to the plane, so that no crossings overlap, and indicating over-
and undercrossings by a deleted segment like in figure 1.1 you call it a knot
(link) diagram. Such a diagram contains all the information about a knot. If
you add a direction to each segment by adding arrows to the edges it is called
an oriented diagram.

The most basic knot is the unknot, which is just a circle, shown in figure
1.1. The trefoil knot is the most basic knot with crossings, however there exist
two trefoil knots since a trefoil knot is not equivalent to its mirror image. This
might seem like a trivial fact, but it is by no means trivial to prove this, we
need some more tools to really say something about knots.

1.2 Reidemeister moves

If you take two knot diagrams it might be hard to see they if they belong to the
same knot. To find out if they are equivalent the most basic way to start is just
trying to deform the knot. With some experience and intuition you can see all
the moves you make can be reduced to local moves on two or three strains. It
is even possible to prove this fact, as Kurt Reidemeister did in 1927. He proved
that two different diagrams of the same knot can be related by a sequence of
local moves. The three local moves are called the Reidemeister moves. (figure
1.2).

Type I Type II Type III

Figure 1.2: The three Reidemeister moves.

Two diagrams that can be related by the moves I, II and III are called
ambient isotopic and if only II and III are needed they are called regular isotopic.

1.3 Knot invariants

To really tell something about a knot we want to have a value that doesn’t
change under transformation of the knot. Such a quantity is called a knot
invariant. For two equivalent knots the value is the same. Such a quantity could
be a number, a polynomial, just a binary value, or anything else. Two knots
with a different value of some invariant are different knots, however if they have
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the same invariant it doesn’t mean they are equivalent. To prove something is
a knot invariant it suffices to show it is invariant under the Reidemeister moves.

A simple example of a knot invariant is tricolorability, which is the ability
of a knot to be colored with three colors under certain rules. If you can color
the edges of a knot diagram one of three colors, with all the colors at a crossing
being either all the same color or all different colors and using more than one
color the knot is called tricolorable. The unknot is not tricolorable so if a knot
is tricolorable you know it is not equivalent to the unknot. It is a simple but
nice exercise to check that tricolorability is invariant under the Reidemeister
moves. This proves tricolorability is is an isotopy invariant of a knot.

Figure 1.3: The trefoil knot is tricolorable but the figure eight knot is not.

Other important invariants are knot or link polynomials, which assign a
polynomial to a link. Famous examples are the Alexander polynomial [4], the
HOMFLY polynomial and the Jones polynomial. The next section will be about
the last one, and in the second chapter the defining relationship of the Jones
polynomial will emerge from a model of anyons. An interesting question is if
there exist an invariant that discriminates all knots, so it gives a different value
for each knot. No such invariant has been found yet.

1.4 The Jones polynomial

The Jones polynomial was discovered by Vaughan Jones in 1983. This polyno-
mial assigns a Laurent polynomial to each oriented knot or link diagram. It can
be defined by three properties.

1. If K and K ′ are ambient isotopic then VK(t) = VK′(t)

2. Vunknot(t) = 1

3. 1
tVL+

(t) − tVL−(t) = (
√
t − 1√

t
)VL0

(t) where L+, L− and L0 indicate

diagrams that differ only at one crossing like in figure 1.4. This is called
the skein relation.

With this definition it is possible to recursively calculate the Jones poly-
nomial for every knot or link. In appendix A there is an example of how to
calculate it for the trefoil knot. It is not obvious these properties are well-
defined or that such an invariant even exists, but the Jones polynomial can
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L+ L− L0

Figure 1.4:

σ1 σ2 σ3

.

Figure 1.5: Three exchanges ant their inverses generate the 4-stranded braid
group, B4.

also be defined in other ways. One is by the Kauffman bracket, an invariant
of regular isotopy, with the proper normalization as shown by Kauffman in [7].
Another way is by braid representation [8]. This is the way Jones originally
formulated his polynomial.

The Jones polynomial is not very intuitive. It is hard to tell something
about a knot just by looking at its Jones polynomial, other than if the Jones
polynomial has a lot of terms it also has a lot of crossings. All knots with seven
or less crossings have different values of the Jones polynomial. There are non-
equivalent knots that have the same Jones polynomial, however it is not known
if there exists non-trivial knots with Jones polynomial 1, like the unknot. It is
known there are links with the same Jones polynomial as the unlink (two circles
that are not linked). For the simplest example see [8].

1.5 Braids

One more thing needed to understand the relation between knots and anyons
is the braid group. The braid group on n strands, Bn, is a generalization of
the symmetric group Sn. It is generated by the exchange of the i-th strand, σi,
with the constraints known as the Artin relations,

σiσi+1σi = σi+1σiσi+1 for i = 1, 2, ..., n− 1

σiσj = σjσi for |i− j| > 1.

The first one is known as the Yang-Baxter equation. The braid group can be
represented quite intuitive, for example the 4-stranded braid group has three
generators shown in figure 1.5, and satisfies the two relations (figures 1.6).

A braid is the product of the generators and their inverses. Each braid
represents a link if you take the closure. You can take the closure of a braid by
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σ1σ2σ1 σ2σ1σ2 σ1σ3 σ3σ1

Figure 1.6: The Artin relations, the first one is the Yang-Baxter equation.

σ3
1 ∈ B2 σ3

1 = trefoil

.

Figure 1.7: The closure of a braid is a knot.

tying the start- and end-points. For example β = σ1σ1σ1 is a braid in B2. Its
closure β is the trefoil knot (figure 1.7). In general any link can be represented
by the closure of braid. If you try it you will find that it is fairly easy for simple
knots, but as the number of crossings increases it gets harder. It is however
always possible as Alexander proved in 1923 [5].

There are some intuitive facts about the closure of braids. If β1 and β2 are
braids, then β1β2 = β2β1. Or equivalent,

gβg−1 ∼= β for g, β ∈ Bn,

the closure of the conjugate of a braid is equivalent to the closure of the braid,
since g and g−1 cancel through the closure strands. Also for a n-stranded braid
in Bn, if you add a disjoint crossing it becomes an (n+1)-stranded braid. The
extra crossing adds an extra loop to the closure knot (Reidemeister move I) so
this doesn’t change the clusure.

β ∼= σnβ for β ∈ Bn

If two braids have equivalent closures then they are related by a series of these
moves. This is known as Markov’s theorem, and the two moves of conjugating
a braid and adding an extra strain are called the Markov moves.
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With this knowledge it is possible to read the second part of this thesis and
understand the relation between Anyons and knot theory.



Chapter 2

Anyons

Anyons are particles that live in two dimensions. Their properties can differ
from particles in three dimensions in a way that they obey neither Bose-Einstein
statistics nor Fermi-Dirac statistics. In three dimensions particles can be either
bosons or fermions. These two cases were believed to be the only possibilities
for almost fifty years, until 1977 when Leinaas and Myrheim showed that in two
dimensions more exotic possibilities are possible [6].

2.1 Non-abelian statistics

The fact that in three dimensions the only possibilities that exist are bosons
and fermions involves some advanced mathematics. To make it more intuitive
take a look at two particles in three dimensions that are exchanged two times
(figure 2.1 a). The path the particles take can be contracted to one particle not
moving at all and one moving around the other (2.1 b). The path can even be
contracted like a lasso to no movement at all (2.1 c).

Figure 2.1: Particle exchanges in 3+1 dimensions

This means the wave function of the particles has to remain the same after
applying the exchange operator, R, twice, since these situations are equivalent.
So R2ψ = ψ which implies Rψ = ±ψ, the wave function of two particles can
only pick up a minus sign or no sign when the particles are exchanged. This
corresponds of course to the particles being fermions and bosons respectively.

7



8 CHAPTER 2. ANYONS

In two dimensions (figure 2.2) however the path cannot be contracted with-
out the two particles moving through each other. This means there is no re-
striction on the wave function like in three dimensions, and there can be more
possibilities besides bosons and fermions.

Figure 2.2: Particle exchanges in 2+1 dimensions

It is possible when the particles are exchanged the wave function picks up
a phase, ie. Rψ = eiθψ. This way θ = 0 corresponds with the particles being
bosons and with θ = π the particles are with fermions. In general the particles
are not anyons or bosons but anything in between.

When the wave function just picks up a phase the particles are called abelian
anyons. Non-abelian anyons are more complex. Their wave function is a vector,
and moving the particles multiplies them with a matrix. These non-abelian
anyons could be used for building TQCs. The abelian ones could be used for
building topological quantum memory.

2.2 A model of anyons

A general theoretical model of anyons can be defined by three properties. Preskill
describes this model in detail in his lecture notes [9]. This is a short summary.
The three properties that define an anyon model are:

1. A list of particle types.

2. Rules for fusion and splitting.

3. Rules for braiding.

The first property describes which particles can be formed. There are finitely
many particles which can be ordered. Particles are denoted by labels, for ex-
ample a list of particles might be {a, b, c, ...}. There is always an identity- or
vacuum particle, denoted 1, 0 or e most of the time. Also each particle has an
anti-particle. A particle a can fuse with together with its particle ā into the
vacuum, or a× ā = 1. The rules for fusion and splitting describe which particles
can form when two particles fuse, and in what way one particle can split into
two particles. These rules are associative, so if three particles fuse it doesn’t
matter in what order they fuse; (a× b)× c = a× (b× c). The rules for braiding
describe what happens to two particles when they are exchanged.
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For each two particles a and b there are N c
ab ways to fuse into c, so the rules

of fusion can be described like

a× b =
∑
c

N c
abc.

Each way a and b can fuse into c can be regarded as state in a vector space,
V cab. The basis of this so called fusion space can be denoted as

{|ab; c, µ〉, µ = 1, 2, ..., N c
ab}.

Exchanging the particles before fusing does not change the total charge of the
pair so there is a unitary transformation R, the braid operator:

R : V cab → V cba

|ab; c, µ〉 7→ |ba; c, µ′〉

Three particles fusing form the space V dabc
∼=
⊕

e V
e
ab

⊗
V dec
∼=
⊕

e′ V
d
ae′
⊗
V e
′

bc .
There are two bases for this space that are related by a unitary transformation
F:

F :
⊕

e V
e
ab

⊗
V dec →

⊕
e′ V

d
ae′
⊗
V e
′

bc

|(ab)c→ d; eµν〉 7→
∑
e′µ′ν′ |a(bc)→ d; e′µ′ν′〉(F dabc)e

′µ′ν′

eµν

Four particles can fuse into one particle in five different ways. The bases can
be related by the F-matrix, as shown in figure 2.3.

There are two unitary transformations to go from the left to the right basis
which must be identical. This gives rise to the pentagon equation 2.1c.

|left; a, b〉 =
∑
c,d

|right; c, d〉(F 5
12c)

d
a(F 5

a34)cb (2.1a)

|left; a, b〉 =
∑
c,d,e

|right; c, d〉(F d234)ce(F
5
1e4)db(F

b
123)ea (2.1b)

(F 5
12c)

d
a(F 5

a34)cb =
∑
e

(F d234)ce(F
5
1e4)db(F

b
123)ea (2.1c)

Analogous to the pentagon equation you can derive the hexagon equation
(2.2).

Rc13(F 4
213)caR

a
12 =

∑
b

(F 4
231)cbR

4
1b(F

4
123)ba (2.2)

These two equations must hold for any anyon model.
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Figure 2.3: The two ways to go from the left base to the right base give the
pentagon equation.

2.3 Fibonacci anyons

The simplest non-trivial model of anyons is the Fibonacci model [10], also called
the Yang-Lee model. The model has only two particle types, the trivial particle
1 and τ , the Fibonacci anyon. The braiding rules are given by

τ × τ = 1 + τ.

This means two Fibonacci anyon can either fuse into another Fibonacci anyon
or they can annihilate into the trivial particle.

Three Fibonacci anyons can fuse into τ via |ττ ; 1〉|1τ ; τ〉, via |ττ ; τ〉|ττ ; τ〉,
or they can fuse into 1 in only one way via |ττ ; τ〉|ττ ; 1〉. This means three
Fibonacci’s can fuse in three distinguishable ways. Continuing this, the fusion
rules for four τ ’s are τ4 = 2 × 1 + 3 × τ , so that is five ways. Five τ ’s fuse
in 8 ways, and in general for n Fibonacci anyons the number of ways they can
fuse is the (n+ 1)-th Fibonacci number. This is of course why this is called the
Fibonacci model. Preskill shows this model is sufficient to create a topological
quantum computer.

2.4 SU(2)k

Chern-Simons theory is a type of quantum field theory introduced by Edward
Witten [12]. One particular type of Chern-Simons theory with gauge group
SU(2) at level k is denoted SU(2)k. The anyon model that is an instance of
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Figure 2.4: Proof of the hexagon equation.

Figure 2.5: The R-matrix acts on a 2 dimensional space.

SU(2)k has particle types are irreducible representations of the gauge group
SU(2), truncated by k

List of particles = {j | j ≤ k

2
},

with fusion rules
j1 × j2 =

∑
j ∈ {|j2−j1|, ..., j1+j2

| j1+j2+j≤k}

j.

For an example of SU(2)2 see appendix B.
One way of looking at the world lines of anyons is as strains in the braid

group. If the anyons just move around each other and do not fuse they can
be seen as braids. If we calculate properties of these anyons that satisfy the
Markov properties it is possible to calculate invariants for links.

L(αβ) = L(βα) (2.3a)

L(σnβ) = τL(β) (2.3b)

This is possible for any anyon model. The anyons at the bottom should
match the anyons at the top of the braid in order to take the closure. In the
SU(N)k model we can take all the anyons of type 1

2 . The fusion space with 4
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external lines is 2-dimensional (figure 2.5). Three vectors in a two dimensional
space have the property that αψ1 + βψ2 + γψ3 = 0 always has a non trivial
solution. So with the three vectors

ψ+ = ,

ψ0 = = Rψ+,

ψ− = = R2ψ+,

there is a solution to

αψ+ + βψ0 + γψ− = 0. (2.4)

Since R is a 2× 2 matrix of full rank it obeys the characteristic equation

(R̃− λ1)(R̃− λ2) = 0

(where R̃ = Q−1RQ is a diagonal matrix) and thus

R2 − tr(R)R+ det(R) = 0,

R2ψ+ − tr(R)Rψ+ + det(R)ψ+ = 0,

ψ− − tr(R)ψ0 + det(R)ψ+ = 0.

This implies α = det(R), β = −tr(R) and γ = 1. The only things still missing
are the eigenvalues of R. These eigenvalues are given in Witten’s article [11]
and they are

λ1 = exp

(
iπ(1−N)

N(N + k)

)
,

λ2 = −exp

(
iπ(1 +N)

N(N + k)

)
.

With these values a skein relation can be derived. This relation is

qN/2VL+(q)− q−N/2VL−(q) = (
√
q − 1
√
q

)VL0(q) (2.5)

which is for N = 2 exactly the skein equation of the Jones polynomial.
In general from any anyon model a knot invariant can be derived. Kauffman

[13] shows how to create knot invariants from models that satisfy the Yang-
Baxter equation.



Chapter 3

Conclusion

By now you should have a basic understanding of knot theory and anyons and
see the link between the two subjects. I’ve given only a short introduction to
both subjects, but if you want to know more, the references will point you in
the good direction. About knot theory there is a lot of material that can be
read. There is not one particular book or paper, however [1, 4] are good places
to start reading. A lot of the things about anyons in this thesis can be found in
more detail in the Preskill lecture notes [9]. In there is even a lot more for the
interested reader, so this is a good overview about anyons.

Some things were not mentioned in this thesis. Everything shown here is
purely theoretical, but to benefit from the properties of anyons they must be
created in experiments. According to Preskill two approaches to realizing anyons
in practice have been discussed in recent literature. The theory of anyons is quite
young and since they could be a short way to quantum computers the interest
is pretty big.

Anyons have not been created in experiments. The theory emerges from just
the assumption of particles in two dimensions. My view is, since nothing forbids
anyons in practice is must be possible to create them in the real world. It might
take some time, but as the interest in them grows a breakthrough might be
near.

13
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Appendix A

The Jones polynomial of
the trefoil knot

To demonstrate how to recursively calculate the Jones polynomial by the three
relations in 1.4 here is an example calculation for the trefoil knot.

If you look at figure A.1 the skein relation of the Jones polynomial tells us

1

t
Vtrefoil(t)− tVunknot(t) = (

√
t− 1√

t
)Vhopf (t).

Since since Vunknot = 1 and the skein relation with figure A.2 is
1
tVunknot(t)− tVunknot(t) = (

√
t− 1√

t
)Vunlink(t), it follows

Vunlink(t) = −(
√
t+

1√
t
).

Together with 1
tVhopf (t) − tVunlink(t) = (

√
t − 1√

t
)Vunknot(t) (figure A.3)

this system of equations can be solved, and it turns out the Jones polynomial
for the trefoil knot is:

Vtrefoil(t) = t+ t3 − t4

Figure A.1: The trefoil knot, the unknot and the hopf link.

17
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Figure A.2: Two times the unknot and the unlink.

Figure A.3: Hopf link, unlink and unknot.



Appendix B

Fusion matrices for SU(2)2

The SU(2)2 model has three particle types: 0, 1
2 and 1. The fusion rules are:

1
2 ×

1
2 = 0 + 1

1
2 × 1 = 1

2

1× 1 = 0

The fusion spaces V y1
2

1
2x

, V y1
2x

1
2

and V y
x 1

2
1
2

with x ∈ {0, 1} are one dimensional.

For example the space V 0
1
2

1
2 1

has base {| 12
1
2 ; 0〉|01; 1〉}, so the transformation to

another base is trivial. The only non trivial F-matrix is the matrix with V
1
2
1
2

1
2

1
2

which is 2× 2. The pentagon equation becomes

1 = ((F
1
2
1
2

1
2

1
2

)10)2 + (F
1
2
1
2

1
2

1
2

)10(F
1
2
1
2

1
2

1
2

)01.

Together with the unitarity conditions F is given up to overall phases and com-
plex conjugation:

F =
1√
2

(
1 1
1 −1

)
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