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1
Introduction

In 1911, superconductivity was discovered by Kamerlingh Onnes, when he noted that the
electrical resistivity of Mercury suddenly drops to zero as the temperature is lowered below
a certain critical temperature Tc [1]. A complete microscopic description of this phenomenon
was given by Bardeen, Cooper and Schrieffer in 1957 [2]. This theory is known as BCS theory.
In 1986, however, a new class of superconducting materials was discovered, which could not
be described by the BCS theory [3]. This class of superconductors is based on copper and
oxygen. Because these materials have a surprisingly high critical temperature, they are called
high-Tc superconductors. At the time of writing, the highest Tc for this class is about 135 K
at atmospheric pressure [4].

The BCS theory describes the pairing of electrons mediated by interactions with phonons,
which are quasiparticles associated with the lattice vibrations of a crystalline solid. In this
theory, the coupling between the electrons and phonons is weak. On the other hand, the
pairing mechanism in high-Tc superconductors is still unknown. Understanding this pairing
mechanism is one of the most prominent open questions in physics today. It is commonly
believed that understanding these materials could enable us to synthesize room-temperature
superconductors.

There is accumulating evidence that the pairing mechanism between electrons in high-Tc
superconductors is primary caused by strongly-coupled interactions with bosons. For a recent
review discussing the experimental evidence for mediation by strongly-coupled phonons, see
[5]. For systems at weak coupling, one is able to perform calculations using perturbation
theory, but for strongly-coupled systems this is not possible. For systems at strong coupling,
there are only a very limited number of tools available to perform calculations on them.
However, in 1997, Juan Maldacena conjectured a duality between a strongly-coupled gauge
theory and a gravity theory in a weakly-curved space [6]. This duality is called the AdS/CFT
correspondence or gauge/gravity duality, and follows from string theory. The AdS/CFT
correspondence provides a tool to perform calculations on strongly-coupled systems. During
the last few years, the study of high-Tc superconductors using the AdS/CFT correspondence
has become a very active area of research. For reviews, see e.g. [7, 8].

In this thesis, it will be reviewed that the self-energy of an electron that is strongly
coupled to phonons at finite temperature, can be written as (an integral over) a product of a
temperature-independent function that contains all the information about the phonons, and a
function that contains all the information about the electrons and thermal occupation factors.
The former is the so-called electron-boson spectral function, and the latter is the kernel. As
the electron-boson spectral function contains all the information about the phonons, it can
be generalized to a glue function to describe the pairing between some unspecified species
of bosons and electrons. A remarkable feature of the glue function is that it is (almost)
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Chapter 1 Introduction

temperature independent.
We will investigate possibilities to apply the AdS/CFT correspondence to the self-energy

of the electron that is strongly coupled to phonons. The hope is that, when this self-energy
in the dual description also can be written as a product of a kernel and a spectral function,
after generalizing to coupling to unknown bosons, the kernel can stripped off and information
about the glue function can be obtained, so that, ultimately, the pairing mechanism between
electrons in high-Tc superconductors can be understood.

Organization of this thesis. To acquaint the reader with the AdS/CFT correspondence,
an introduction is given in chapter 2. This chapter is primary meant to give the reader an
idea how this correspondence follows from string theory, and is aimed at a reader that has
at least a firm basic knowledge of String Theory. In section 2.1, there is an overview of the
subjects covered in this chapter. In order to keep this chapter compact, there are many things
that just have been stated without motivation. When a sentence ends with a reference, this
is probably the case. Section 2.8.3 contains a basic dictionary for mappings in the AdS/CFT
correspondence, and this section is the most important one for what follows in the subsequent
chapters.

In chapter 3, some applications of the AdS/CFT correspondence with a view towards
condensed-matter physics are given. The first three sections of this chapter serve to illustrate
how the AdS/CFT correspondence works in a more or less practical context. Section 3.1 de-
scribes a system where the AdS spacetime —also called the bulk— only contains the graviton
field, which is the simplest possible system in the correspondence. In section 3.2, it will be
shown that when the AdS spacetime is deformed to include a black hole, the dual field theory
is placed at finite temperature. While in section 3.3 it is shown, that adding a Maxwell field
to the bulk, amounts to placing the field theory at a finite chemical potential.

The last three sections of chapter 3 have relevance for the final chapter, where ideas for
applying the correspondence to the aforementioned electron self-energy are discussed. In
section 3.4, a scalar field is added to the bulk, which has a corresponding dual scalar operator
in the field theory. Finally, in sections 3.5 and 3.6, an introduction to linear response theory
and properties of retarded Green’s functions are discussed, respectively.

In the final chapter 4, ideas will be discussed for applying the AdS/CFT correspondence
to the self-energy of an electron that interacts strongly with bosons in a system at finite
temperature. Firstly, a model that describes the interactions between electrons and phonons
will be discussed in section 4.1. Section 4.2 discusses Green’s functions at finite temperature,
and in the subsequent section 4.3, the finite-temperature Green’s function and self-energy for
an electron interacting with bosons will be considered. Subsequently, the electron self-energy
will be described for a strongly-coupled system in section 4.4. This chapter concludes with a
generalization to a strongly-coupled electron-boson interaction, and ideas for a translation of
the electron self-energy using the AdS/CFT correspondence are discussed in section 4.5.

A word on notation. Throughout this thesis ‘natural’ units are used, which are defined by
~ = c = kB = 1. There is only one dimensionful unit: mass = energy, and ‘dimension’ refers
to mass dimension. The metric ηµν = diag(−1,+1, . . . ,+1) always refers to the Minkowski
metric. Finally, relevant notation has been listed in the introduction of the chapters.
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2
AdS/CFT Correspondence

In quantum field theory (QFT), calculations can be performed using perturbation theory
only at weak coupling. It is well-known that many interesting phenomena in QFT are non-
perturbative in nature, such as Quantum Chromodynamics (QCD) at low energies. There is
an approach to do calculations in QCD at strong coupling by using numerical simulations on
a lattice, but, generally, for systems at strong coupling, only a very limited number of tools
is available.

In 1997, Juan Maldacena conjectured a duality between a strongly-coupled gauge theory
and a gravity theory in a weakly-curved space [6]. This conjecture has become known as
the Anti-de Sitter-Conformal Field Theory correspondence, or AdS/CFT correspondence for
short. The AdS/CFT correspondence provides important tools for studying systems at strong
coupling, and it is one of the most significant results string theory has produced.

The core idea of the AdS/CFT correspondence goes back to attempts to understand the
Bekenstein bound, which asserts that the maximum physically possible entropy for any system
in a region of space is proportional to the area of the boundary of that region [9]. So, the
number of degrees of freedom inside some region scales as the area of the boundary of the
region, and not like its volume. This scaling behavior is not possible in standard quantum
field theories. In 1993, ’t Hooft conjectured that a consistent quantum theory of gravity must
be holographic, i.e., in a quantum theory of gravity, all physics within a given volume can be
described in terms of some theory on the boundary [10]. This idea was subsequently discussed
by Susskind [11].

Before the advent of string theory, holography was a little more than an accounting mech-
anism, since there was no actual microscopic description of gravity systems like black holes.
In string theory, branes are taken to form the bulk of the mass of a black hole, and by observ-
ing fluctuations of these branes, a microscopic description of black holes is obtained. It was
shown by Strominger and Vafa that the thermodynamics emerging from the state-counting
of those fluctuations corresponds exactly to the holographic thermodynamics of Bekenstein
and Hawking [12].

There are numerous reviews of the AdS/CFT correspondence available. In this chapter,
there has been made an attempt to represent the correspondence at a more or less phenomeno-
logical level to give the reader an idea how this duality follows from string theory. It is by no
means a detailed derivation, but it is intended to act as a guide for studying the AdS/CFT
correspondence in other sources. See for example [13, 14, 15], from which most of the material
of this chapter has been taken. The content and support for the AdS/CFT correspondence
are presented at two levels. First an outline of the duality is given in pictorial form, which is
followed by a more detailed account of the conjecture.

The notation used in this chapter is as follows. Spacetime indices are denoted with µ, ν,

3



Chapter 2 AdS/CFT Correspondence

while α, β denote indices of world-sheet coordinates. The indices a, b are for coordinates
longitudinal to a brane, while I, J denote the transversal ones. Finally, lowercase indices i, j
denote light-cone coordinates.

In the next section, a diagrammatic overview of the AdS/CFT correspondence is given.
In the remaining of this chapter, each part will be worked out.

2.1 Outline of the AdS/CFT correspondence

Type-IIB Superstring Theory

...

...

Stack of N D3-branes

Equivalent descriptions

Coupling

Black p-brane description

Low-energy limit

Far from brane: Close to brane:

Identify
Dual

Valid for

...

...

D-brane description

Valid for

Type-IIB SST
on

Type-IIB SUGRA
on

Type-IIB SUGRA
on

            SYM on
       with 

After compactif.

(2.6.2)

(2.7)

(2.3.2)(2.3.1)

(2.2)

(2.4)

(2.6)

(2.5.2) (2.8.1) (2.6.3)&(2.8.1)

(2.8.2)
(2.8.2)

(2.7.4)

(2.8.1)

Figure 2.1: Outline of AdS/CFT correspondence. The numbers between parentheses cor-
respond to the sections where the subject is covered.
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2.2 D-branes

2.2 D-branes

In this section a short introduction to D-branes is presented in order to show that open strings
ending on a stack of N coinciding D-branes give rise to a U(N) gauge theory. For a more
extended introduction to D-branes the reader can consult the lecture notes on String Theory
of Tong [16], and [18, 20] for detailed accounts including superstrings.

The action describing a bosonic string which propagates in a flat D-dimensional spacetime
is the Nambu-Goto action, which is proportional to the surface area of the world sheet swept
out in spacetime by a moving string,

SNG = −T
∫
d2σ

√
−dethαβ with hαβ = ηµν ∂αX

µ∂βX
ν . (2.1)

Here α = 0, 1, µ = 0, . . . , D − 1, and T the string tension, which is related to the Regge
slope α′ by T = 1/2πα′. The metric hαβ is the induced metric on the world sheet from the
embedding in spacetime.

In practice it is hard to work with the Nambu-Goto action due to the square root. Instead,
one works with the Polyakov action,

SP = −T
2

∫
d2σ
√
−γγαβ∂αXµ∂βX

µ, (2.2)

where γαβ is an auxiliary world-sheet metric. The Polyakov action is classically equivalent to
the Nambu-Goto action upon elimination of the auxiliary metric γαβ using its equations of
motion. From the point of view of the world-sheet, the Polyakov action describes D massless
scalars coupled covariantly to the metric γαβ.

Using reparametrization and Weyl invariance one can go to conformal gauge, where one
fixes the world-sheet metric to γαβ = ηαβ,

SP = −T
2

∫
d2σ ∂αXµ∂

αXµ. (2.3)

Choose the world-sheet coordinate σ to have the range 0 ≤ σ ≤ π for convenience. By varying
this action with Xµ → Xµ + δXµ, one obtains an extra boundary term for open strings,

δSP,boundary = −T
∫
dτ δXµ∂σXµ

∣∣σ=π

σ=0
,

which must vanish independently. There are two possibilities,

• Neumann boundary conditions: ∂σX
µ = 0 at σ = 0, π. Because there is no restriction on

δXµ, this condition allows the end of the string to move freely and preserves translational
invariance.

• Dirichlet boundary conditions: δXµ = 0. In this case the end points are fixed in space,
Xµ
∣∣
σ=0

= cµ and Xµ
∣∣
σ=π

= dµ, where cµ and dµ are constants. Dirichlet boundary
conditions thus break translational invariance.

It is possible to choose p + 1 Neumann boundary conditions and D − p − 1 Dirichlet
boundary conditions,

∂σX
a = 0 for a = 0, . . . , p

XI
∣∣
σ=0

= cI , XI
∣∣
σ=π

= dI for I = p+ 1, . . . , D − 1.
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Chapter 2 AdS/CFT Correspondence

This fixes the end points of the string to lie in (p+1)-dimensional hypersurfaces in spacetime,
located at cI and dI in the space transverse to the hypersurfaces.

In 1989, Dai, Leigh and Polchinski showed that this hypersurface is dynamical and that it
has degrees of freedom living on it [21]. The wall was then called a D-brane, or Dp-brane when
one wants to specify its spatial dimensions. D-branes are thus objects at which open strings
can end. They are infinitely extended in space, but it is possible to define finite D-branes by
specifying closed surfaces at which strings can end. The dynamics of D-branes are reviewed
in section 2.7.

In the presence of a flat, infinite Dp-brane, the symmetry group of spacetime, which is
the SO(1, D − 1) Lorentz group, is broken into

SO(1, D − 1)→ SO(1, p)× SO(D − p− 1). (2.4)

The SO(1, p) group is the Lorentz group of the D-brane world-volume, while the group
SO(1, D − 1) is a global symmetry of the D-brane theory. This means that a Dp-brane
solution remains invariant under the action of either SO(1, p) or SO(D − p− 1).

2.2.1 Spectrum of open strings on D-branes

To determine the spectrum of bosonic open strings ending on Dp-branes, it is convenient to
work in light-cone gauge, where one sets X+ ∼ τ , with the spacetime light-cone coordinate
chosen to lie within the brane, X± = 1√

2
(X0 ±Xp). After canonical quantization, the mass

M at level N is then given by [16],

M2 =
|dI − cI |2

(2πα′)2
+

1

α′
(N − 1), (2.5)

where the first term is due to the stretching between the branes.
The ground state is defined as

αin|0, k〉 = 0, for n > 0,

where i = 1, . . . , p−1, p+1, . . . , D−1, and αin are the coefficients in the mode expansion of the
solution to the equations of motion following from (2.3). Here k is a quantum number which
is an eigenvalue of the momentum operator, pµ|0, k〉 = kµ|0, k〉. From (2.5) it follows that
when the branes coincide, the first term drops out, and the ground state becomes tachyonic,
i.e., a state with imaginary mass.

String states can be split in oscillators longitudinal and transversal to the branes. The
first excited states are the massless states:

• Longitudinal: αi−1|0, k〉, i = 1, . . . , p−1. The indices i lie within the brane, so this state
transforms as a vector under the SO(1, p) Lorentz group. Since it has p−1 components,
it is a massless spin-1 particle. One can associate a gauge field Aa, a = 0, . . . , p, which
lives on the brane and whose quanta are identified with this state.

• Transversal: αI−1|0, k〉, I = p + 1, . . . , D − 1. These are scalars under the SO(1, p)
Lorentz group, and can be considered as arising from D − p − 2 massless scalar fields
XI , sometimes called Nambu-Goldstone bosons, since they have emerged from breaking
of a symmetry in spacetime. Under the remaining SO(D − p − 1) rotation group they
transform as vectors. As seen from the world volume of the brane this appears as a
global symmetry. These bosons can be interpreted as fluctuations of the brane in the
transverse directions.
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2.2.2 Chan-Paton factors

When there are N parallel D-branes in the theory, then the end points of open strings can
have a label i ∈ {1, . . . , N}, which is called a Chan-Paton charge, that corresponds to a label
of the D-brane on which the string ends. This new degrees of freedom are characterized by
vanishing Hamiltonian, and as a result they are strictly static terms, which means that strings
retain the same Chan-Paton state. Ignoring the Fock-space label, an open string state can
be written as

|k; ij〉,

where k is the momentum, and i, j = 1, . . . , N denote the end points of the string.

From (2.5) it is obvious that when the branes are coinciding, there are N2 massless modes,
since each string end can lie on N different branes. So, there are N2 different particles of each
type. The N2 Hermitian N × N matrices λr, r = 1, · · · , N2, normalized to Tr(λrλs) = δrs,
form a complete set of states for the two endpoints, so that an open string state can be written
as [17]

|k; r〉 =

N∑
i,j=1

|k; ij〉λrij .

These matrices are representation matrices of U(N) and are called Chan-Paton factors.

In the case of oriented strings, it can be shown that the non-dynamical nature of the
Chan-Paton degrees of freedom forces each open string scattering amplitude into trace-like
structures [17, 20],

λ1
ijλ

2
jk · · ·λnmi = Tr

(
λ1λ2 · · ·λn

)
,

because the two connecting ends of the string must always be in the same Chan-Paton state.
All such amplitudes are invariant under the U(N) transformation

λr → UλrU−1,

under which the end points of the string transform. There is thus an additional gauge sym-
metry in the theory.

There are now two sets of N2 massless fields corresponding to the massless modes of open
strings ending on a stack of coinciding D-branes. They can be packaged as N ×N Hermitian
matrices

(Aa)ij ,
(
XI
)i
j
, (2.6)

where the components, i, j = 1, . . . , N , of the matrices indicate from which string the field
originates. Written in this way, the gauge field has the form of a U(N) gauge connection, and
the scalar fields transform under the adjoint representation of the U(N) gauge group [16, 17].
So, by adding N coinciding D-branes to the theory, the U(1) gauge field Aa becomes a U(N)
gauge field, making the theory non-Abelian. So the theory becomes a U(N) Yang-Mills theory
coupled to adjoint scalars. For an introduction to Yang-Mills theory, see [19] and [15].

In the next section an overview of superstrings is given, in order to include the field content
corresponding to the massless modes in the description of the dynamics of D-branes in section
2.7.
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2.3 RNS Superstrings

In this section, a short overview of the Ramond-Neveu-Schwarz (RNS) formalism is presented,
in order to describe the massless field content of superstring theory. The RNS formalism is
supersymmetric on the world sheet. For a short introduction to supersymmetry see [19].
In flat, ten-dimensional Minkowski space the RNS formalism is equivalent to the Green-
Schwarz (GS) formalism, which is supersymmetric in spacetime. The GS formalism will not
be discussed here. For details the reader can consult chapter four of [22], from where most of
the material of this section has been taken.

To the action for a bosonic string (2.3) which describes D massless bosons, a Dirac term
can be added to include D free massless world-sheet fermions. In conformal gauge and flat
background this looks like

S = −T
2

∫
d2σ

(
∂αXµ∂

αXµ + ψ̄µρα∂αψµ
)
, (2.7)

where ψµ are two-component spinors on the world sheet and vectors under Lorentz trans-
formations, and ρα, with α = 0, 1, represent two-dimensional Dirac matrices which obey the
Dirac algebra, {ρα, ρβ} = 2ηαβ. Consistency of the theory requires D = 10, so µ = 0, . . . , 9.
This action is invariant under the supersymmetry transformation,

δXµ = ε̄ψµ, δψµ = ρα∂αX
µε,

where ε is a constant infinitesimal Majorana spinor that consist of Grassmann numbers.
By choosing a basis in which the Dirac matrices are purely real,

ρ0 =

(
0 −1
1 0

)
and ρ1 =

(
0 1
1 0

)
,

the spinors ψµ =

(
ψµ−
ψµ+

)
become Majorana fermions, with ψ∗± = ψ±, where ψ+ describes a

left mover and ψ− a right mover. Using ε =

(
ε−
ε+

)
, the fermionic part of the action (2.7) then

takes the form

Sferm = iT

∫
d2σ (ψ−∂+ψ− + ψ+∂−ψ+) ,

where ∂± = 1
2 (∂τ ± ∂σ) refers to light-cone world-sheet coordinates. Under the variation

ψ → ψ + δψ, the boundary terms of this action are

δS ∼ −
∫
dτ (ψ+δψ+ − ψ−δψ−)

∣∣∣σ=π

σ=0
.

For the action to be an extremum, the boundary terms have to vanish. This will give condi-
tions for both open and closed strings.

2.3.1 Open strings

For open strings the two terms must vanish separately, so at each end of the string we have
the condition ψµ+ = ±ψµ−. When we set ψµ+|σ=0 = ψµ−|σ=0 there are two options, which are
called Neveu-Schwarz (NS) or Ramond (R) boundary conditions:
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Neveu-Schwarz boundary conditions: ψµ+|σ=π = −ψµ−|σ=π

The mode expansion in the NS sector looks like

ψµ±(σ, τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ±σ).

From the fact that ψ± are Majorana spinors, it follows that (bµr )† = bµ−r. Canonical quanti-
zation gives {bµr , bνs} = ηµνδr+s,0.

In light-cone gauge, where again X+ ∼ τ , with X± = 1√
2

(
X0 ±X9

)
, the mass M of a

state |φ〉 is given by
α′M2 = N − aNS ,

where aNS is the normal-ordering constant which is required to be 1/2 to retain Lorentz
invariance of the theory, and N is the number operator,

N =
∑
n≥1

αi−nα
i
n +

∑
r≥ 1

2

r bi−rb
i
r

which gets replaced by the eigenvalue for the state |φ〉. The αin, i = 1, . . . , 8, are the coefficients
of the Fourier modes in the mode expansion of the bosonic string.

The ground state |0, k〉NS in this sector is defined by

αin|0, k〉NS = bir|0, k〉NS = 0, for n, r > 0.

The full Fock space of states is obtained by acting with the negative modes on the vacuum.
Acting with the momentum operator αµ0 gives

αµ0 |0, k〉NS =
√

2α′ kµ|0, k〉NS .

The ground state is unique, so it is a spacetime scalar. Open strings with Neveu-Schwarz
boundary conditions thus give rise to spacetime bosons.

Ramond boundary conditions: ψµ+|σ=π = ψµ−|σ=π

The mode expansion in the R sector is given by

ψµ±(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ±σ).

Again, since ψ± are Majorana spinors, it follows that (dµn)† = dµ−n. Canonical quantization
gives {dµm, dνn} = ηµνδm+n,0.

In light-cone gauge the mass M of a state |φ〉 is given by

α′M2 =
(∑
n≥1

αi−nα
i
n +

∑
n≥1

ndi−nd
i
n

)
− aR ≡ N − aR,

where aR is the normal-ordering constant which is required to be zero, and N gets replaced
by its eigenvalue of |φ〉.

Since now m,n ∈ Z, it follows that dµ0 commutes with the number operator, so it can
act without changing the mass of a state. Therefore the ground state of the R sector is

9
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degenerate. To account for this degeneracy, the ground state gets an extra label, |a; 0, k〉R.
The ground states, with N = 0, are massless, and obey

αin|a; 0, k〉R = din|a; 0, k〉R = 0, for n > 0,

as well as the massless Dirac equation.
The zero modes satisfy {dµ0 , dν0} = ηµν , which is the Dirac algebra {Γµ,Γν} = 2ηµν up to

a factor of two. The ground state of the R sector is thus a spinor,

dµ0 |a; 0, k〉R =
1√
2

Γµab|b; 0, k〉R,

where Γµ are ten 32× 32 matrices since a general Dirac spinor has 2D/2 components. So, the
ground state in the Ramond sector is a spacetime fermion.

GSO projection in the NS sector

The ground state in the NS sector is tachyonic, as α′M2 = −1/2, and such states are unwanted
in the theory, since they violate causality. Furthermore, since this ground state is a spacetime
boson, there should be a fermionic counterpart with the same mass as this tachyon, in order
for the theory to possess spacetime supersymmetry, and this particle is not present in the
spectrum.

The problem is solved by using Gliozzi-Scherk-Olive (GSO) projection, where one only
keeps states with positive G-parity, i.e., states which have

G = (−1)FNS+1 = 1,

with FNS =
∑

r≥ 1
2
bi−rb

i
r the number of world-sheet fermion excitations. Since now only odd

values for FNS are allowed, the new ground state becomes

bi− 1
2

|0, k〉NS ,

which is a (transverse) vector in spacetime, having eight degrees of freedom, times a spacetime
scalar. This corresponds to a gauge field, and therefore the ground state in the Neveu-Schwarz
sector is a gauge field with eight degrees of freedom.

GSO projection in the R sector

As in ordinary quantum field theory, one can construct a chiral projection operator

P± =
1

2
(1± Γ11) ,

with Γ11 = Γ0Γ1 . . .Γ9, which can be regarded as the analog of γ5 in four dimensions. These
projection operators project out spinors with definite chirality, called Weyl spinors. The
ground state of the R sector can then be decomposed into a direct sum of positive and
negative chirality parts

|a; 0, k〉R = P+|a; 0, k〉R ⊕ P−|a; 0, k〉R ≡ |a,+; 0, k〉R ⊕ |a,−; 0, k〉R,

where the two Weyl states have Γ11|a,±; 0, k〉R = ±|a,±; 0, k〉R.
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The G-parity operator in the Ramond sector is defined as

G = Γ11(−1)FR ,

where FR =
∑

n≥1 d
i
−nd

i
n. One can choose the chirality of the ground state in the R sector by

keeping states with positive or negative G-parity. So in the Ramond sector, GSO projection
reduces the ground state from a Dirac spinor to a Weyl spinor. In ten dimensions, it is possible
to impose the Weyl condition together with the Majorana condition. Therefore, the ground
state in the R sector becomes a Majorana-Weyl spinor. A Dirac spinor in ten dimensions has
32 components but after applying the Majorana and Weyl conditions, 16 real components
remain. After applying the Dirac equation, the ground state in the R sector is a Majorana-
Weyl spinor with eight real degrees of freedom. This degrees of freedom match that of the
ground state of the NS sector.

In conclusion, the massless states of open strings in superstring theory give rise to a
massless scalar field Aµ and a chiral spinor χ in ten-dimensional spacetime, both having
eight degrees of freedom. The two fields can be combined into a ten-dimensional N = 1
supersymmetric vector multiplet. The RNS superstring theory, which was supersymmetric on
the world sheet, has become supersymmetric in spacetime after applying the GSO projection.
As mentioned in section 2.2, open strings end on Dp-branes. If the D-brane is taken to be
3 + 1 dimensional, then, when dimensional reducing the six transverse dimensions on a torus,
the N = 1 multiplet becomes an N = 4 multiplet, and the gauge field splits into a four-
dimensional massless gauge field Aa, which lives on the Dp-brane, and six scalar fields XI .
For an example how this works, see [15].

2.3.2 Closed strings

For closed strings the condition ψµ±(σ) = ±ψµ±(σ+π) must be fulfilled. For fields with Ramond
boundary conditions the mode expansions are given by

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ); ψµ+(σ, τ) =

∑
n∈Z

d̃µne
−2in(τ+σ),

whereas for fields with Neveu-Schwarz boundary conditions they are given by

ψµ−(σ, τ) =
∑

r∈Z+ 1
2

bµr e
−2ir(τ−σ); ψµ+(σ, τ) =

∑
r∈Z+ 1

2

b̃µr e
−2ir(τ+σ).

The coefficients in the expansions obey the same commutation relations as the ones in section
2.3.1.

There are now four ways to combine left and right movers, giving rise to four sectors: NS-
NS, R-R, NS-R, and R-NS. As in case of open strings, when GSO projecting in the R sector,
it is possible to choose the chirality of the ground state. This choice of chirality can be done
independently for the left or right movers, which yields two distinct type-II string theories.
In type-IIB string theory, left- and right-moving R-sector ground states are defined to have
the same chirality, chosen to be positive, which are denoted by |+〉R. After eliminating the
tachyon in the NS ground state using GSO projection, the massless states of closed strings in
type-IIB string theory are given by (left ⊗ right mover):

b̃i− 1
2

|0〉NS ⊗ b j− 1
2

|0〉NS ; |+〉R ⊗ |+〉R;

b̃i− 1
2

|0〉NS ⊗ |+〉R; |+〉R ⊗ b j− 1
2

|0〉NS ,

11
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where the momentum labels have been suppressed. The upper two states are spacetime bosons,
while the lower ones, being a tensor product of a vector and a spinor, are spacetime fermions.
Each sector has 8× 8 = 64 degrees of freedom.

The massless spectrum of the bosonic fields can be decomposed as

NS-NS︷ ︸︸ ︷
35︸︷︷︸
Gµν

+ 28︸︷︷︸
Bµν

+ 1︸︷︷︸
Φ

+

R+-R+︷ ︸︸ ︷
1︸︷︷︸
C0

+ 28︸︷︷︸
C2

+ 35︸︷︷︸
C4

= 128,

where: Gµν is a symmetric traceless field, called graviton; Bµν is an antisymmetric gauge field,
called Kalb-Ramond field; Φ is the trace part of the NS-NS ground state, called dilaton field;
and C0, C2, C4 are antisymmetric tensor fields. Note that the indices i, j have been replaced
by µ, ν. This can be done because both Gµν and Bµν enjoy a spacetime gauge symmetry
which allows the removal of the extra modes [23].

The fermionic fields of type-IIB string theory can naturally be decomposed into

NS-R+︷ ︸︸ ︷
8−︸︷︷︸
λ1
a

+ 56+︸︷︷︸
ψ̂1i
a

+

R+-NS︷ ︸︸ ︷
8−︸︷︷︸
λ2
a

+ 56+︸︷︷︸
ψ̂2i
a

= 128,

where the traceless parts of ψia, defined as ψ̂ia with (γiψ̂
i)a = 0, are gravitinos with the same

(positive) chirality, and λa = γiψ
i
a are dilatinos with negative chirality. Note that i = 1, . . . , 8

is the vector index, while a is the spinor index.
In summary, type-IIB string theory contains two Majorana-Weyl gravitinos and dilatinos

coming from the NS-R and R-NS sectors, and the bosonic fields from the NS-NS and R-R
sectors. These fields match precisely with the field content of type-IIB supergravity, which
will be reviewed in section 2.5.2. The closed-string modes form background fields in which
other strings propagate. However, there is a technical obstruction for coupling the R-R sector
fields to the string world sheet in RNS formalism. In order to overcome this obstruction, one
could use the Green-Schwarz formalism, but this will not be discussed in this thesis. For this
reason, R-R sector background fields will be ignored until section 2.6. The coupling to the
NS-NS sector background fields, Gµν , Bµν and Φ, will be explained in the next section.

2.4 Coupling to string backgrounds

In the previous section, it was shown that the massless states in the NS-NS sector of type-IIB
string theory give rise to a graviton Gµν , a Kalb-Ramond field Bµν , and a dilaton Φ. In
this section arguments will be given that these fields generate backgrounds in which strings
propagate. For reasons of simplicity only the bosonic part Sbos of the action (2.7) is considered,
an account including the fermionic part can be found in [18]. The material of this and the next
section has mainly been taken from [16] and [17]. In this section and later ones, differential
form notation and the notion of pull-back are used. Very accessible introductions to these
subjects can be found in respectively [24] and Appendix A of [25]. A short overview of
differential forms is given in Appendix A.

Coupling to the graviton field

Curvature of spacetime can be regarded as a coherent background of gravitons. The Gµν of
section 2.3.2 were called gravitons, because these fields are in the symmetric traceless second-
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2.4 Coupling to string backgrounds

rank representation of SO(8) by construction, and are thus massless spin-2 particles. From
now on, for Gµν the more common notation gµν for the metric will be used. The action (2.7)
can be generalized to describe strings moving in a curved spacetime, which for the bosonic
part looks like

Sbos,G = −T
2

∫
d2σ
√
−γγαβ∂αXµ∂βX

νgµν , (2.8)

where gµν are the Gµν from section 2.3.2.

Since the spacetime metric is generated by a coherent background of closed string states,
it is natural to include the backgrounds of the other massless string states as well. Note
that from this viewpoint, massless states of closed strings are regarded as fluctuations of the
background geometry.

Coupling to the Kalb-Ramond field

Based on the requirement of diffeomorphism and Weyl invariance, the coupling to the anti-
symmetric Kalb-Ramond field Bµν has the form

Sbos,B =
T

2

∫
d2σ
√
−γεαβ∂αXµ∂βX

νBµν , (2.9)

where εαβ is the Levi-Civita tensor, normalized as
√
−γε12 = +1.

This action is the two-dimensional analog of the (electrical) coupling of a charged point
particle to a background gauge potential Aµ,

SA = q

∫
dτ Aµ(X)

dXµ

dτ
= q

∫
Σ1

A1, (2.10)

which has the geometrical interpretation of being the pull-back of the one-form A1 = AµdXµ

in spacetime onto the world-line of the particle Σ1. This is possible because the world-line is
one dimensional.

In case of two-dimensional string world sheets, the analogous coupling should be a two-
form gauge field in spacetime, which is antisymmetric by definition. Thus the integrand in
(2.9) is nothing more than the pull-back of the two-form gauge field B2 onto the string world
sheet, i.e., T

2

∫
B2 in differential form notation. The coefficient in front of the integral says

that the two-form charge is equal to the string tension, which is required by supersymmetry.

The action (2.9) is invariant under the gauge transformation,

Bµν → Bµν + ∂µCν − ∂νCµ, (2.11)

with Cµ an one-form, under which it changes by a total derivative. This is similar to the
gauge invariance of the point particle of (2.10) under Aµ → Aµ + ∂µΛ, where Λ is a scalar.
In electromagnetism there is a two-form gauge field strength defined by F2 = dA1, which is
gauge invariant. Similarly, a three-form field strength H3 = dB2 can be defined,

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , (2.12)

which is invariant under the gauge transformation (2.11).
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Coupling to the dilaton field

The coupling to the dilaton field is given by

Sbos,Φ =
T

2

∫
d2σ
√
−γα′ΦR(2)(γ), (2.13)

where R(2)(γ) is the Ricci scalar of the two-dimensional world sheet. This term vanishes on
a flat world sheet, and it does not respect Weyl invariance. However, for a constant dilaton
Φ(X) = Φ0 it does, and in that case the action becomes

Sbos,Φ = Φ0
1

4π

∫
d2σ
√
−γR(2)(γ) = Φ0χ, (2.14)

where χ is the Euler characteristic of the world sheet, which is a topologically invariant and
integer. For a world sheet without boundary, the Euler characteristic is related to the number
of handles h on the world sheet by χ = 2− 2h.

When calculating the partition function in string theory, one has to include summations
over world sheets with different topologies. For example, in bosonic string theory the action
(2.2) can be augmented by

Sstring = SP + λχ,

with λ a real number and small, so that the (Euclidean) string partition function becomes

Z =
∑

topologies
metrics

e−Sstring ∼
∑

topologies

e−λχ
∫

[DX][Dγ] e−SP[X,γ],

which can be regarded as an expansion in eλ, and hence the string coupling constant can be
defined as gs = eλ. Comparing with the action for the dilaton (2.14), learns that the string
coupling constant is determined by gs = eΦ0 .

Non-linear sigma model

As mentioned in section 2.3.2, there is a technical obstruction for coupling the R-R background
to the string world sheet in the RNS formalism, and so they will be ignored. So, the action
describing a bosonic string coupled to a background generated by the massless modes of closed
strings is given by,

S = −T
2

∫
d2σ
√
−γ
[(
γαβgµν + εαβBµν

)
∂αX

µ∂βX
ν + α′ΦR(2)

]
. (2.15)

This is called the non-linear sigma model. Since the backgrounds in this action depend on
the scalars Xµ, it is a interacting, two-dimensional theory, which generally cannot be solved
exactly. For low energies one can describe the same system using an alternative action, which
has the same field content, interactions and symmetries. This is the subject of the next
section.
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2.5 Effective actions and supergravity

In flat space and conformal gauge, the Polyakov action (2.3) describes a free theory. When
including the backgrounds generated by the massless modes as in (2.8), or more general (2.15),
the theory becomes interacting. This can be seen by expanding around a classical solution of
a string sitting at point xµ, Xµ(σ) = xµ +

√
α′Y µ(σ), where the factor

√
α′ has been inserted

for dimensional reasons. The interaction terms then come from powers of Y µ in the Taylor
expansion of the metric,

gµν(X) ' gµν(x) +
√
α′Y ω∂ωgµν(x) +

α′

2
Y ωY ρ∂ω∂ρgµν(x) + · · · .

The derivatives of gµν at x can be regarded as coupling constants. In a target space
with radius of curvature R, derivatives of the metric are of order 1/R, and consequently
the coupling constant is given by

√
α′/R, which is dimensionless. This coupling constant is

called world-sheet loop-expansion parameter to distinguish it from the string loop-expansion
parameter gs of the previous section [17]. The application of perturbation theory to study
(2.8) or (2.15) is valid when the coupling constants are small, i.e., when

√
α′ � R, so when

the radius of curvature is large compared to the string length `s =
√
α′.

Low-energy limit

In the previous sections, only the massless modes were considered, which corresponds to the
α′ → 0 limit, i.e., large string tension, or point-particle limit. In this limit the masses of the
massive states become very large and decouple. In a Minkowski space background the only
dimensionless parameter is α′E2, so this corresponds to the low-energy limit. Note that when
considering the massless modes only, the condition for a large radius of curvature,

√
α′ � R,

is implicit.

2.5.1 β-Functions

The free theory without background fields (2.2) enjoys Weyl-transformation invariance of the
world sheet. At a classical level, the theories (2.9) and (2.13) also respect Weyl invariance.
However, when perturbatively expanding the string partition function in

√
α′/Rc, loops occur

due to interactions, and an UV-cutoff has to be introduced in order to render the theory finite.
After renormalization, the fields gµν and Bµν can be dependent on a scale µ, and therefore
they have β-functions associated with them. Additionally, as mentioned in section 2.4, the
dilaton term in (2.15) does not respect Weyl invariance, even at classical level.

The breakdown of Weyl invariance is reflected in the non-vanishing of the trace of the
stress-energy tensor 〈Tαα〉, which turns out to be equal to [26]

〈Tαα〉 =
∑
i

βi〈Oi〉,

where Oi are the graviton, B-field, dilaton and other massless vertex operators. Vertex
operators will not be discussed here; they are described in [17]. The β-functions can be
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calculated in an one-loop α′ expansion. For the NS-NS fields they are [26],

βgµν = α′Rµν + 2α′∇µ∇νΦ− α′

4
HµκλH

κλ
ν +O(α′2),

βBµν = −α
′

2
∇λHλµν + α′∇λΦHλµν +O(α′2),

βΦ = −α
′

2
∇2Φ + α′∇µΦ∇µΦ− α′

24
HµνλH

µνλ +O(α′2),

where Rµν is the Ricci tensor derived from gµν , and H3 is the three-form field strength coming
from the two-form gauge field, H3 = dB2.

The key point is that Weyl invariance is restored when these β-functions vanish,

βgµν = βBµν = βΦ = 0, (2.16)

which are equations in terms of the background fields gµν , Bµν and Φ. Therefore, these
equations will give constraints on the background fields, and they can be interpreted as the
equations of motion for the backgrounds in which the string propagates.

For low energies, instead of working with the action (2.15) and the equations following
from the β-functions, one can construct a target space action which has the same symme-
tries as the original action, and which reproduces the same equations of motion for the fields
corresponding to the massless modes of closed strings. This turns out to be a supergravity the-
ory, and in particular, when starting with type-IIB superstring theory, type-IIB supergravity
theory.

2.5.2 Dynamics of closed strings - type-IIB supergravity

In section 2.3.2, it was shown that the massless spectrum of closed strings in type-IIB su-
perstring theory includes two Majorana-Weyl gravitinos and two Majorana-Weyl dilatinos
coming from the NS-R+ and R+-NS sectors. Further there are the bosonic fields, gµν , Bµν
and Φ from the NS-NS sector, and C0, C2 and C4 from the R-R sector.

In ten dimensions, type-IIB supergravity with N = 2 supersymmetry is a unique super-
gravity having the same field content. Also, the type-IIB supergravity action yields the same
equations of motions for the fields as the ones from the β-equations (2.16). So, the low-energy
effective action of type-IIB superstring theory is type-IIB supergravity theory in ten dimen-
sions. In other words, string theory provides higher-order α′ corrections to the supergravity
equations of motion.

Supergravity can be considered as a theory of local supersymmetry, or equivalently, as a
supersymmetric theory of gravity. For an entry-level introduction to supergravity see [13],
while a more advanced version can be found in [15]. More detailed introductions to the subject
can be found in [27, 28, 29].

Ignoring the fermionic fields, the ten-dimensional type-IIB supergravity action, describing
the dynamics of the bosonic fields corresponding to massless excitations of closed strings, is
given by [18]:

SIIB = SNS + SR + SCS, (2.17)

where the action containing the NS-NS fields is given by

SNS =
1

2κ2

∫
d10x

√
−g e−2Φ

(
R+ 4∂µΦ∂µΦ− 1

2
|H3|2

)
, (2.18)
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where R is the Ricci scalar derived from gµν , and |H3|2 = 1
3!HµνλH

µνλ. The gravitational
coupling constant κ is given by

κ2 = g−2
s κ2

10, and 2κ2
10 = 16πG10,

where G10 is Newton’s constant in ten dimensions,

16πG10 = (2π)7g2
s`

8
s.

Note that κ does not contain any powers of gs.

The dynamics of the fields from the R-R sector, C0, C2 and C4, split up in a Maxwell-type
kinetic term,

SR = − 1

4κ2

∫
d10x

√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
,

and a Chern-Simons coupling

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3.

In these formulas Fn+1 = dCn, |Fp|2 = 1
p!Fµ1···µpF

µ1···µp , and

F̃3 = F3 − C0 ∧H3, F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3.

In type-IIB string theory, the five-form F̃5 is self dual, and the above action has to be sup-
plemented with the following condition that has to be imposed on the solutions:

? F̃5 = F̃5, (2.19)

where ? denotes the hodge dual; see Appendix A.

In the next section, a certain class of solutions to the equations of motion following from
this type-IIB supergravity action are given.

2.6 Black p-branes

The type-IIB supergravity action (2.17) gives rise to equations of motion which turn out
to be non-linear partial differential equations, and one can thus expect a large variety of
solutions [23]. Among them, there is a class of solutions that preserve the subgroup SO(1, p)
× SO(9− p) of the Poincaré group SO(1, 9) and half of the supersymmetries. These solutions
will be reviewed in this section. Details can be found in [14, 15], and a step-by-step derivation
of the results of this section can be found in [29].

R-R background coupling

In section 2.4, it was shown that the NS-NS sector fields become backgrounds in which
other strings propagate. Also it was mentioned that there are technical obstructions for the
coupling of R-R backgrounds to the string world sheet in the RNS formalism. However, there
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Chapter 2 AdS/CFT Correspondence

are objects which extend in p space dimensions, whose (p+1)-dimensional world volume Σp+1

couples electrically (cf. (2.10)) to a Ramond-Ramond (p+ 1)-form Cp+1 as [18]∫
Σp+1

Cp+1,

where Cp+1 is the pull-back onto the world volume, and p odd in case of type-IIB theory.
These objects are called p-branes.

In electromagnetism in four dimensions, the electric charge of a point-like configuration is
given by the integration of the electric field over a two sphere S2 that surrounds the particles

Qelectric =

∫
S2

E · dS =

∫
S2

?F2.

In an analog way, the electric R-R charge (or flux) N of a p-brane can be obtained by
integrating the field strength over an (8− p) sphere that completely surrounds the brane,

N =

∫
S8−p

?Fp+2, (2.20)

with the field strength given by Fp+2 = dCp+1. Here the assumption has been made that the
metric is spherically symmetric in 10− p dimensions.

2.6.1 p-Brane supergravity action and solution

On p-branes the NS-NS two-form vanishes, so the relevant part of the supergravity action is
given by

S =
1

2κ2
10

∫
d10x

√
−g
[
e−2Φ (R+ 4∂µΦ∂µΦ)− 1

2
|Fp+2|2

]
.

In the special case of p = 3, an extra factor 1/2 should be inserted in the F5 term, and the
condition (2.19) has to be imposed on the solutions.

By making an ansatz that possesses an SO(1, p)× SO(9− p) isometry and preserves half
of the supersymmetries, the solution to the equations of motion following from this action
can be shown to be of the form [30]

ds2 = Hp(r)
−1/2

(
− dt2 +

p∑
i=1

dxidxi
)

+Hp(r)
1/2
(
dr2 + r2dΩ2

8−p
)

(2.21)

where the harmonic function Hp is given by

Hp(r) = 1 +
(rp
r

)7−p
, r7−p

p = dpgsN`
7−p
s , (2.22)

with N given by (2.20) and dp some constant. The coordinates along the branes are denoted
by t, x1, . . . , xp, and dr2 + r2dΩ2

8−p is the Euclidean metric in the 9− p directions transverse
to the branes, with r denoting the radial coordinate.

This solution has a horizon for r → 0, so p-branes are higher-dimensional equivalents of
four-dimensional classical black hole solutions. Hence the name black p-branes. As seen from
the 9− p transverse directions, these p-branes look like point-like singularities which enjoy a
SO(9− p) symmetry. From this viewpoint, classical black holes can be regarded as 0-branes.
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2.6 Black p-branes

A p-brane carries electric charge with respect to the R-R form Cp+1, and in order for the
solution to have the SO(1, p) isometry, it must be extremal, what means that the mass M
of the solution must satisfy a lower bound with respect to the charge N of the solution [14].
The above solution thus describes an extremal charged black p-brane. The fact that these
solutions preserve half of the supersymmetries means that p-branes are BPS objects; see e.g.
[32].

Type-II p-branes were originally found as classical solutions to supergravity field equations,
however they are expected to extend to solutions of the full type-II string equations, in which
the metric and other fields will be subject to α′ corrections. The extremal solution is then
thought to correspond to the ground state of the black p-brane for a given charge N .

The solutions of the dilaton and (p+ 1)-form gauge field are given by

eΦ = gsH
(3−p)/4
p , Cp+1 =

(
Hp(r)

−1 − 1
)

dx0 ∧ · · · ∧ dxp.

In the above formulas gs is the string coupling constant at infinity, since when taking the
limit r →∞, Hp → 1 and the dilaton approaches a constant.

Since (2.21) gives a solution for any function Hp that is harmonic in the (9−p) dimensions
transverse to the brane, multiple p-brane solutions can be superimposed by using

Hp(~r) = 1 +

k∑
i=1

r7−p
(i)p

|~r − ~ri|7−p
, r7−p

(i)p = dpgsNi`
7−p
s , (2.23)

which is called a multicenter solution. Such a solution represents k parallel extremal p-branes,
each located at position ~ri in the space transverse to the branes, with Ni units of the R-R
charge.

Special case of p=3 and validity of solution

For the special case p = 3 the harmonic function Hp (2.22) becomes

H3(r) = 1 +
R4

r4
, R4 ≡ r4

3 = d3gsN`
4
s = 4πgsNα

′2, (2.24)

and the dilaton eΦ = gs becomes a constant regardless of the value of r. As will be shown in
section 2.6.3, for p = 3 the solution does not have a singularity.

The p-brane solution is a classical solution to supergravity, which is appropriate when
closed string loops can be neglected. As was shown in section 2.4, the string loop-expansion
parameter is gs, so this condition is met when gs � 1. Since for p = 3 the value of the dilaton
is constant, the string coupling can be made small everywhere in the geometry.

In addition, as was mentioned in section 2.5, application of perturbation theory is valid
when the world-sheet loop-expansion parameter is small, that is, when R� `s. In this context
R characterizes the curvature of the black p-brane solution, so this condition is fullfilled when
the p-brane curvature is small in comparison to the string scale.

By using the ten-dimensional Planck length lP = g
1/4
s `s, the condition for weak coupling

can be expressed as lP � `s. Then the conditions for the applicability of classical supergravity
can be combined to lP � `s � R, and by using R4 = 4πgsN`

4
s, this is equivalent to [14]

1� gsN � N. (2.25)
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2.6.2 Equivalence of p-branes and D-branes

In 1995, it has been shown by Polchinski, that when N Dp-branes are put on top of each
other, the (p + 1)-dimensional hyperplane carries N units of the R-R (p + 1)-form charge,
which coincides with the charge of the p-brane under this R-R form [31]. It is believed that
Dp-branes and extremal p-branes in supergravity are in fact two different descriptions of the
same object. The reasoning goes as follows.

In section 2.4, it was argued that the dilaton is related to the string coupling constant
by gs = eΦ0 . For weak coupling, i.e., for small gs, one can make a genus expansion in string
world sheets. Besides the low-energy supergravity description, the other well-understood
approximation in string theory is the weak-coupling limit, where gs → 0.

In this weak-coupling limit, the r(i)p in (2.23) go to zero, and Hp(~r) → 1, except for
|~r − ~ri| = 0, where the metric seems to be singular. Thus, in the weak-coupling limit, the
metric becomes flat everywhere, except on the p-branes itself, which become localized defects
in flat spacetime.

Strings that propagate in this background therefore move in flat spacetime, except where
the string touches a brane. This will give boundary conditions on the string dynamics, which
turn out to be Dirichlet boundary conditions in the directions transversal to the brane and
Neumann boundary conditions parallel to the brane. These boundary conditions precisely
match that of the Dp-branes described in section 2.2. Also, it turns out that the isometries,
supersymmetry and tension match, and hence they are believed to be different manifestations
of the same object.

Validity of D-brane description

In case of a stack of N coinciding D-branes, each open string boundary loop ending on the
D-branes has the Chan-Paton factor N together with the coupling constant gs, since for
every D-brane which is added to the theory, another boundary is added to the problem [32].
Therefore, the effective loop expansion parameter is gsN instead of gs. This means that the
D-brane description is valid when

gsN � 1.

Comparing this with (2.25), learns that p-branes and Dp-branes describe two complementary
regimes of the same object.

2.6.3 Geometry of a stack of D3-branes

As explained before, a stack of N coincident D3-branes can be described by the extremal
3-brane solution in supergravity, which is given by (2.21) and (2.22),

ds2 =

(
1 +

R4

r4

)−1/2

ηµνdx
µdxν +

(
1 +

R4

r4

)1/2 (
dr2 + r2dΩ2

5

)
, (2.26)

where ηµν = diag(−1, 1, 1, 1) and R4 = 4πgsNα
′2.

To study the metric close to the branes, i.e., for r → 0, a new coordinate z = R2/r can
be introduced, so that the metric takes the form

ds2 =

(
1 +

R4

z4

)−1/2
R2

z2
ηµνdx

µdxν +

(
1 +

R4

z4

)1/2

R2

(
dz2

z2
+ dΩ2

5

)
.
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2.7 D-brane dynamics

Taking the near-horizon limit, z →∞, the metric becomes

ds2 =
R2

z2

(
dz2 + ηµνdx

µdxν
)

+R2dΩ2
5. (2.27)

The first part of this metric is a five-dimensional anti-de-Sitter spacetime (AdS5) in Poincaré
coordinates with radius R, while the second part is S5, also with radius R. For a short
description of AdS spacetimes, see Appendix B. So, the geometry close to (the horizon of) a
stack of N coincident D3-branes is given by AdS5 × S5.

On the other hand, far away from the D3-branes, that is, for r →∞, the metric becomes
flat ten-dimensional Minkowski metric. It is shown in Appendix B, that, more generally,
the conformal boundary of an asymptotically AdSd+1 spacetime is equal to a conformally
compactified d-dimensional Minkowski spacetime.

Now that in the previous sections the coupling to backgrounds generated by closed string
modes, low-energy effective actions, and p-branes have been discussed, where the latter turned
out to be equivalent to Dp-branes, in the next section the dynamics of Dp-branes will be
considered. This is a continuation of the end of section 2.2.

2.7 D-brane dynamics

As noted in section 2.2, D-branes are objects which have dynamics of their own. They can
fluctuate and interact with strings and other branes. In this context massless excitations of
open strings correspond to fluctuations of D-branes, analogous to the regarding of massless
closed string modes as deformations of empty space. Most of the results in this section will
just be stated; details can be found in [16, 17, 18].

It was shown in the aforementioned section, that massless open string states of strings
ending on Dp-branes give rise to a gauge field Aa and (D − p− 2) massless scalar fields XI .
For the case of superstrings, it was shown in section 2.3.1, that the massless modes coming
from the NS sector give rise to a massless gauge field Aµ, which, after compactification of six
directions, becomes a massless gauge field Aa living on a D3-brane and six massless bosons
XI . These six bosons can be interpreted as coming from fluctuations of the brane in transverse
directions. The action describing these dynamics will be covered first.

2.7.1 Dirac action

The action describing the transverse fluctuations of D-branes is just a higher dimensional
extension of the Nambu-Goto action (2.1), called the Dirac action. The form of the Dirac
action is dictated by Lorentz and reparametrization invariance and is given by

SD = −Tp
∫
dp+1ξ

√
−det γab.

Here, ξa, a = 0, . . . , p, are the world-volume coordinates of the brane, γab is the pull-back of
the spacetime metric onto the world volume of the brane,

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
ηµν , (2.28)

and Tp is the D-brane tension,

Tp =
2π

gs(2π`s)p+1
. (2.29)
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2.7.2 Born-Infeld action

As mentioned, open strings ending on D-branes also give rise to a U(1) gauge field Aa living
on the D-brane. The low-energy effective action describing the dynamics of this gauge field
is the Born-Infeld action,

SBI = −Tp
∫
dp+1ξ

√
−det (ηab + 2πα′Fab),

where Tp is again the brane tension, ξa the world-volume coordinates of the brane, and
Fab is the field strength of the gauge potential Aa, F = dA. The gauge potential is to be
thought of as a function of the world-volume coordinates, Aa = Aa(ξ). This action is valid
for slowly-varying field strengths, so that terms involving derivatives of the field strength can
be neglected.

Expanding this action to quadratic order for small field strengths, Fab � 1/α′, gives

SBI ' −Tp
∫
dp+1ξ

(
1 +

(2πα′)2

4
FabF

ab + · · ·
)
,

which leading-order term is the Maxwell action. So, for small field strengths, the dynamics of
the gauge field on the D-brane are governed by Maxwell’s equations. As the field strengths
are increased, non-linear corrections to the dynamics become important and are captured by
the Born-Infeld action.

2.7.3 Dirac-Born-Infeld action

The combined action of the dynamics of the transverse fluctuations of the D-branes in flat
space and the gauge fields living on them, is described by a mixture of the Dirac action and
the Born-Infeld action. This is called the Dirac-Born-Infeld (DBI) action,

SDBI = −Tp
∫
dp+1ξ

√
−det (γab + 2πα′Fab),

where γab is again the pull-back of the spacetime metric onto the world-volume of the brane
(2.28), and the embedding coordinatesXµ(ξ), µ = 0, . . . , D−1, are considered to be dynamical
fields. The DBI action is valid for slowly-varying field strengths, so that corrections from
derivatives of the field strength can be neglected.

The DBI action has a reparametrization invariance, which removes the longitudinal de-
grees of freedom from Xµ, so that only the transversal ones remain. This reparametrization
invariance can be used to go to static gauge. For an infinite, flat D-brane, it is useful to set
Xa = ξa, a = 0, . . . , p, so that the pull-back of the metric only depends on the transverse
fluctuations XI ,

γab = ηab +
∂XI

∂ξa
∂XJ

∂ξb
δIJ .

Up to a constant term, to leading order, the expansion of the DBI action for small field
strengths Fab and small derivatives ∂aX

I is given by

SDBI ' −(2πα′)2Tp

∫
dp+1ξ

(
1

4
FabF

ab +
1

2
∂aφ

I∂aφI + · · ·
)
,
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where the transverse coordinates have been rewritten as

φI =
XI

2πα′
, (2.30)

to emphasize they are massless scalar fields. Note that for p = 3, the α′ in the factors in front
of this action precisely cancel. This action describes a free Maxwell theory coupled to free
massless scalar fields φI .

DBI action with background fields

The DBI action in a background generated by the closed string modes of section 2.3.2 is given
by

SDBI = −Tp
∫
dp+1ξ e−Φ̃

√
−det (γab + 2πα′Fab +Bab). (2.31)

The coupling to the background metric gµν appears in the pull-back metric γab,

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν .

The gauge field Bab is the pull-back of the two-form gauge field to the world-volume,

Bab =
∂Xµ

∂ξa
∂Xν

∂ξb
Bµν .

Its appearance in the DBI action is required by gauge invariance. The combination

Bab + 2πα′Fab,

is gauge invariant under the transformation

Aa → Aa −
1

2πα′
Ca, Bµν → Bµν + ∂µCν − ∂νCµ,

where Cµ is an one-form. The fact that the gauge-invariant field strength involves a combi-
nation of both Fab and Bab, is related to the fact that strings in spacetime are charged under
Bµν and the ends of open strings are charged under the gauge field Aa. This means that open
strings deposits B charge on the brane, where it is converted into A charge.

The dilaton can be decomposed in a constant piece and a varying piece, Φ = Φ0+Φ̃, where
the constant piece is given by the vacuum expectation value (VEV) of the dilaton, Φ0 = 〈Φ〉.
As mentioned in section 2.4, the constant part of the dilaton governs the asymptotic string
coupling, gs = eΦ0 . This constant part sits implicitly in front of the action via (2.29). The
varying part remains explicitly in the action. Physically this means that the effective string
coupling at a point X in spacetime depends on the local value of the dilaton field and is given
by geffs = eΦ(X) = gse

Φ̃(X).

By expanding the action (2.31) around a flat background, gµν = ηµν + κ10hµν , it can be

shown that Dp-branes couple to gravity with strength κ2
10Tp/`

7−p
s , where the gravitational

coupling constant was given in section 2.5.2, κ2
10 ∼ g2

s`
8
s, and Tp is given by (2.29), Tp ∼

g−1
s `
−(p+1)
s . This means that for p < 7 the interactions between the background coming from

the closed string modes and the D-branes vanish in the low-energy limit.
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Other fields and couplings

It was mentioned in section 2.6, that p-branes couple to (p+1)-form Ramond-Ramond poten-
tials Cp+1, and by the equivalence of extremal p-branes and D-branes, the latter also should
couple to them. The part of the action describing the coupling of D-branes to these potentials
is given by a Chern-Simons term [22],

SCS = Tp

∫
Σp+1

∑
n

Cne
(2πα′F+B).

As described in section 2.3.1, there are also fermionic degrees of freedom coming from
open strings ending on D-branes, which, like the bosonic ones, can be regarded as transverse
excitations of the D-brane. The inclusion of these degrees of freedom in a DBI-like action is
not discussed in this thesis, but a description can be found in chapter 6 of [22].

2.7.4 Action for N coincident D-branes

In section 2.2.2, it was shown that the massless fields on the D-brane could be written as
N ×N Hermitian matrices, with the element of the matrix corresponding to which brane the
end points terminate on (2.6). The massless excitations of N coincident branes are a U(N)
gauge field (Aa)ij , together with scalars (φI)ij (cf. (2.30)) which transform in the adjoint
representation of the U(N) gauge group. The action describing the interactions of these
fields, would be a non-Abelian generalization of the DBI action, but such an action is not
known.

However, the low-energy limit corresponding to small field strengths, is known. As men-
tioned above, in this limit, the interactions between the closed string modes and the brane
vanish, and as a consequence one can use a flat background space. It can be shown, by insist-
ing on gauge invariance and using supersymmetry, that the action describing the dynamics
of N coincident Dp-branes is up to a constant term [18],

S = −(2πα′)2Tp

∫
dp+1ξTr

(1

4
FabF

ab +
1

2
DaφIDaφI −

1

4

∑
I 6=J

[φI , φJ ]2 + · · ·
)
, (2.32)

where the trace is over the Chan-Paton matrix indices, which have been omitted, and the
dots denote fermionic terms. All higher-order α′ terms have been suppressed by the α → 0
limit. For an account including α′ corrections see [33]. The field strength is now non-Abelian
and is given by

Fab = ∂aAb − ∂bAa + i[Aa, Ab].

The derivatives in the kinetic term for φI ,

DaφI = ∂aφ
I + i[Aa, φ

I ],

reflect the fact that these fields transform in the adjoint representation of the gauge group.
The action (2.32) can be recognized as the bosonic part of the U(N) super Yang-Mills

action; see e.g. [15]. The coefficient in front of this Yang-Mills action, 1/2g2
YM, can be read

off from this action,

1

2g2
YM

=
1

4
(2πα′)2Tp =⇒ g2

YM = 2(2π)p−2`p−3
s gs,
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where for the second identity (2.29) has been used. This yields for p = 3 the relation

g2
YM = 4πgs.

It was mentioned in section 2.3.1, that the field content of massless open string excitations
in type-IIB superstring theory can be combined into anN = 1 super multiplet, which becomes
an N = 4 multiplet when the brane is a D3-brane and the six transverse directions have been
compactified. So, the theory describing the dynamics of a stack of N coinciding D3-branes
becomes U(N) N = 4 super Yang-Mills theory, which is a conformal field theory (CFT) in
3 + 1 dimensions. For a short overview of conformal field theories, see Appendix C.

A note on the U(N) group. This group is basically equivalent to U(1) × SU(N). In this
case the symmetry group U(1) corresponds to the center of mass of the D-branes and this
decouples from the theory in most circumstances [14]. So, the theory on the world volume of
the stack of D3-branes essentially SU(N) N = 4 super Yang-Mills in 3 + 1 dimensions.

At this point, all the ingredients of the AdS/CFT correspondence have been described.
In the next section, all the pieces will be assembled together in order to give a motivation for
the correspondence.

2.8 Maldacena conjecture

The starting point for giving a description of the AdS/CFT correspondence is a stack of
N coincident D3-branes embedded in flat, ten-dimensional Minkowski spacetime in type-
IIB superstring theory. As argued in section 2.6.2, Dp-branes and extremal p-branes are
descriptions of the same object pertaining to different regimes. In this section, the stack of
branes first will be described from both viewpoints, in order to identify the free supergravity
part of them and state the Maldacena conjecture [6]. Details of this section can be found in
[14].

There are two types of excitations, namely, open and closed strings. At low energies, only
the massless modes remain, which were described in sections 2.3.1 and 2.3.2 for open and
closed strings respectively. In addition, at low energies, the actions describing the dynamics
of these massless modes could be replaced by effective actions, which for closed strings turned
out to be type-IIB supergravity, and for open strings the DBI action.

2.8.1 Two equivalent viewpoints

D-brane viewpoint

From the D-brane perspective, the combined effective action describing the dynamics of the
massless modes of both open and closed strings schematically looks like,

S = Sbrane + Sbulk + Sint,

where Sbrane is the non-Abelian DBI action which describes the open string excitations (2.32),
Sbulk is the type-IIB supergravity action with α′ corrections describing the dynamics of the
closed string states as presented in section 2.5.2, and Sint describes the interaction between
the brane modes and the bulk modes.

As was touched upon in section 2.7.3, in the low-energy limit, the interactions between
the brane and bulk modes vanish. In an analogous way, it can be shown by expanding the
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action which describes the dynamics of the (bosonic) background fields (2.18) around a flat
metric gµν = ηµν + κ10hµν , that the interaction terms for the background fields vanish in
the α′ → 0 limit [14]. So, the dynamics of the background fields are described by free type-
IIB supergravity with the α′ corrections suppressed. Finally, in the low-energy limit and
compactification of the six transverse directions, the brane action becomes the SU(N) N = 4
super Yang-Mills action.

Concluding, from the point of view of the DBI-action, the stack of N D3-branes gives rise
to two decoupled systems: SU(N) N = 4 super Yang-Mills theory on the branes, and free
type-IIB supergravity in the bulk.

Extremal 3-brane viewpoint

At the same time, as was claimed in section 2.6.2, the stack of N D3-branes could be described
by the extremal black 3-brane solution with R-R charge N , where one regard D-branes, being
massive and charged, as the sources for the various supergravity fields. It was shown in section
2.6.3, that this solution possesses a horizon at r = 0, and that the background becomes flat
Minkowski far away from the horizon, r → ∞, which is called the asymptotic region, while
close to the horizon the geometry is given by AdS5 × S5 (cf. (2.27)).

For an observer far away from the horizon, r → ∞, there are two types of low-energy
excitations in this geometry. Firstly, massless particles propagating in the bulk, which in the
low-energy limit becomes free type-IIB supergravity as was argued in the section about the
D-brane viewpoint. Secondly, any string excitations in the vicinity of the horizon due to a
large redshift.

This second type of low-energy excitations can be seen as follows. Suppose an observer
at infinite distance from the brane, where the geometry is flat, measures an energy E for an
excitation at a point r close to the brane. This observed energy is lower than the energy Ep
measured at the point r itself. This follows from

Ep = p0 = m
dx0

dτ
= m

1√
−g00

dx0

dt
=

1√
−g00

E =

(
1 +

R4

r4

)1/4

E, (2.33)

where in the third and last equality (2.26) has been used. For small r, one can write

E =

(
1 +

R4

r4

)−1/4

Ep ∼
r

α′
(Ep
√
α′) ≡ U(Ep

√
α′). (2.34)

Where Ep
√
α′ is the energy in string units, which is dimensionless. Therefore, U = r/α′ has

dimensions of energy. This scale will be interpreted in 2.8.3. When taking the α′ → 0 limit,
one can keep U fixed by letting r → 0. As a consequence, in the low-energy limit, α′ → 0,
the energy observed from infinity, E, goes to zero for any finite Ep close to the horizon. So,
as seen by an asymptotic observer, which is at infinite distance from the horizon, any string
excitation close to the horizon has low energy. In section 2.6.3, it was shown that the near-
horizon geometry is given by AdS5 × S5, so the low-energy excitations close to the horizon
are given by type-IIB superstring theory on AdS5 × S5.

In the low-energy limit, the two types of excitations again decouple, because in this limit,
the cross-section for a supergravity wave of frequency ω from the asymptotic region to be
absorbed by the near-horizon region is given by [34]

σAdS ∼ ω3R8,
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which goes to zero for ω → 0. This can be understood from the fact that the wavelength
of particles in this limit becomes much larger than the gravitational size of the brane. At
the same time, the very close to the horizon the gravitational potential is very steep, and
excitations cannot escape to the asymptotic region.

From the extremal 3-brane point of view, the theory consists again of two decoupled
systems: free type-IIB supergravity in the asymptotic region where the geometry is flat
Minkowski, and type-IIB superstring theory on AdS5 × S5.

2.8.2 The conjecture

In both viewpoints there are two decoupled systems of which one is type-IIB supergravity in
flat Minkowski space. It is very natural to identify these two supergravity systems.

This leads to the following conjecture due to Maldacena [6]:

Type-IIB superstring theory compactified on AdS5×S5, 1 where the radii of AdS5

and S5 are given by R4 = 4πgsNα
′, and the electric R-R flux through S5 is given

by N =
∫
S5 ?F5 (cf. (2.20)),

is dual to

N = 4 superconformal Yang-Mills theory in 3 + 1 dimensions with gauge group
U(N), and the Yang-Mills coupling g2

YM = 4πgs.

The conjecture is a duality, because the two different viewpoints pertain to different
regimes. As was shown in section 2.6.1, the extremal p-brane viewpoint is valid when
1 � gsN � N , while in section 2.6.2 it was argued that the D-brane viewpoint is valid
for gsN � 1. The viewpoints therefore are perfectly incompatible. The AdS/CFT correspon-
dence describes a duality in the sense that, when the Yang-Mills side is strongly coupled, the
supergravity side is weakly coupled and vice versa.

Both type-IIB superstring theory and N = 4 super Yang-Mills are invariant under an
SL(2,Z) symmetry, under which gs → 1/gs. This is called Montonen-Oliven in the context
of Yang-Mills theory, and strong-weak or S-duality in the context of super string theory. The
duality strong-weak of the AdS/CFT correspondence has some resemblance to these dualities.

The AdS/CFT correspondence is a conjecture, because the AdS5 geometry came from
a classical supergravity solution, which means that it did not contain gs or α′ corrections.
To prove the correspondence, one should study string theory on a curved background non-
perturbatively, which is at present not well understood.

Versions of the duality

There are several forms of the conjecture depending on what limits are taken, but in order to
describe them, it is convenient to introduce ’t Hooft parameter :

λ ≡ g2
YMN = 4πgsN.

With this parameter it is possible to re-express the condition for the validity of the super-
gravity description as λ� 1 (cf. (2.25)), which needs to be supplemented with the condition
of large N , since by using an S-duality transformation, gs can be mapped to 1/gs. With this
parameter the different forms of the conjecture are:

1Actually, the spacetime only needs to be asymptotic to AdS5 × S5 [14]. See Appendix B for a definition
of asymptotically AdS.
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Weakest: valid for large λ with N → ∞. Here α′ and gs corrections might not agree on
both sides. The gravity side is classical type-IIB supergravity on AdS5 × S5.

Less weak: called ’t Hooft limit, where λ is kept fixed and N → ∞. In this case α′ cor-
rections agree, but the gs corrections might not. The gravity side is classical type-IIB
string theory on AdS5 × S5.

Strong: valid for all λ and N . The two theories are exactly the same for all values of gs and
N . The gravity side is full type-IIB string theory on AdS5 × S5.

The weak version already is very useful, since large λ corresponds to large gYM, which
is the coupling constant of the Yang-Mills theory. So, the large-λ limit corresponds to the
strong-coupling limit on the gauge theory side, and as a consequence supergravity can be
used to study the properties of a strongly-coupled gauge theory. Stated slightly different: the
AdS/CFT correspondence can be used to study systems at strong coupling.

2.8.3 Basic dictionary of AdS/CFT

As mentioned before, the scale U(r) in (2.34) has dimensions of energy and was defined for
an asymptotic observer. Now the dual field theory has been defined to live at the boundary2

of AdS, this scale, or, actually (cf. (2.33)),

u(r) ≡ 1
√
α
′

(
1 +

R4

r4

)−1/4

,

can be interpreted as the energy scale in field theory, and, therefore, different regions of AdS
space correspond to physics at different energy scales in the field theory.

The ’t Hooft parameter can be related to the radius R of AdS5 and S5 by using (2.24),

λ = g2
YMN = 4πgsN =

R4

α′2
.

The mappings in the AdS/CFT correspondence which have been made hitherto are listed in
table 2.1.

Super Yang-Mills (CFT) side Supergravity (bulk) side

λ ’t Hooft coupling R radius of AdS5 and S5

gYM Yang-Mills coupling gs string coupling
N rank of gauge group (number of colors) N R-R flux through S5

u(r) energy scale r radial direction

Table 2.1: Mappings in the AdS/CFT correspondence.

Since a conformal field theory is scale invariant, and therefore does not have an S-matrix,
the natural objects to consider are operators and their correlation functions. In Euclidean

2Note that even though this terminology is common, it is dangerous. The field theory actually describes
all the physics that is going on inside AdS. From the AdS point of view, it is incorrect to consider the field
theory as an additional theory that lives at the same time at the boundary [14].
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formulation, the generating functional for an operator O∆ of conformal dimension ∆ is given
by

ZCFT[φ(0)] = 〈e
∫
d4xφ(0)(x)O∆(x)〉CFT,

so that an n-point function can be obtained by

〈O(x1)O(x2) · · · O(xn)〉 =
δ

δφ(0)(x1)

δ

δφ(0)(x2)
· · · δ

δφ(0)(xn)
WCFT[φ(0)]

∣∣
φ(0)=0

, (2.35)

where WCFT = − lnZCFT has been used to cancel the factor ZCFT[0].

A precise correspondence between correlators on the Yang-Mills side and the supergravity
side was proposed by Witten [35]. This was done for the Euclidean version of AdS5, with the
Yang-Mills living on R4. In the next chapter, some of the subtleties involving the Lorentzian
version will be discussed. The correlators are obtained by the prescription

Zstring[φ]
∣∣
φ(x,z)|z=0=φ(0)(x)

= ZCFT[φ(0)] = 〈e
∫
d4xφ(0)(x)O∆(x)〉CFT, (2.36)

where φ(0)(x) is the supergravity field φ which is restricted to the boundary of AdS, φ(0)(x) =
φ(x, z)|z=0 . In table 2.2, the duals for various fields are listed for easy reference.

In the classical supergravity limit, the partition function Zstring[φ] becomes

Zstring[φ] = e−SSUGRA[φ],

so that (2.36) gives

〈e
∫
d4xφ(0)(x)O∆(x)〉CFT = e−SSUGRA[φ]

∣∣
φ(x,z)|(z=0) =φ(0)(x)

. (2.37)

Here, SSUGRA[φ]
∣∣
φ(x,z)|(z=0) =φ(0)(x)

is the supergravity action evaluated on a solution to the

equations of motion subject to the boundary condition φ(x, z)|(z=0) = φ(0)(x). By differen-
tiating with respect to φ(0), as in (2.35), n-point functions can be obtained. The interactions
in the bulk can be calculated using Feynman diagrams whose external legs correspond to the
boundary values φ(0).

Super Yang-Mills (CFT) side Supergravity (bulk) side Section

Tµν energy momentum tensor gMN graviton 3.1.1
Jµ global current AM Maxwell field 3.3.2

global symmetry gauged symmetry 3.3.2
OB scalar operator φ scalar field 3.4.2
OF fermionic operator ψ fermionic field 3.4.7

Table 2.2: Basic dictionary of the AdS/CFT correspondence with section numbers where
the dualities are covered. Indices M,N , denote d+ 1 bulk spacetime indices.

The mass m of a scalar field φ living in the bulk is related to the conformal dimension ∆
of the operator OB on the boundary CFT by [35]

∆ =
d

2
+

√
d2

4
+R2m2.
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Similarly, the relation between the conformal dimension of a fermionic operator OF and the
mass m of a Dirac fermion ψ is given by

∆ =
d

2
+Rm.

Relations for various other fields can be found in section 3.3.1 of [14] and references therein.

2.8.4 Support for the conjecture

A strong piece of evidence for the duality comes from the fact that the symmetry groups
on both sides match. Both type-IIB superstring theory on AdS5 × S5 and N = 4 super
Yang-Mills theory have the following symmetries [14]:

1. The 32 supersymmetries of the superconformal group, which are left unbroken by the
AdS5 × S5 geometry;

2. The SO(2, 4) conformal group, corresponding to the isometries of AdS5;

3. The SU(4) R-symmetry group, corresponding to the isometries of S5, i.e., SO(6);

4. The SL(2,Z) Montonen-Oliven group, corresponding to the S-duality group of type-IIB
string theory.

In fact, the AdS/CFT correspondence is a precise implementation of what is called holog-
raphy, to which have been alluded to in the introduction of this chapter. As was mentioned
there, holography was useful for understanding the Bekenstein bound.

The Bekenstein bound can be understood as follows. The entropy of a black hole is
proportional to the area of its horizon, SBH = A

4GN
. Suppose now, that in a given volume V

with boundary A, there is a configuration with entropy S, which is larger than the entropy
of the largest possible black hole that fits into V , S > SBH. Suppose further that this
configuration has less energy than the black hole. Then, by throwing in an object with high
entropy, which necessarily carries energy, one can make a black hole. However, a black hole
carries less entropy, and therefore the second law of thermodynamics has been violated. This
means, that in a theory including gravity, a black hole is the most entropic configuration
possible within a given volume.

The entropy of a QFT on the same space is however much larger than the area of its
boundary. This is the issue which is resolved by holography. The number of degrees of
freedom for a theory including gravity must scale like that of a QFT in a smaller number of
dimensions.

Another piece of evidence for the conjecture is that a large-N gauge theory is equivalent
to a string theory, shown by ’t Hooft [36]. This will not be discussed in this thesis, but an
accessible discussion can be found in section 1.2 of [14]. Furthermore, additional evidence for
the duality is discussed in section 3.2 of that article.
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Applied AdS/CFT

After a somewhat technical and succinct introduction to the AdS/CFT correspondence, in
this chapter the duality of section 2.8 is going to be applied to various systems. The material
of this chapter has mainly been taken from the lecture notes on this subject of Hartnoll [37]
and McGreevy [38].

In section 2.8.3, it was stated that the AdS/CFT correspondence relates an operator O
in a conformal field theory to the boundary value of a dynamical field φ living in the bulk
gravitational theory, through the relation (2.36). Witten proposed this relation only for the
Euclidean version. However, under certain conditions it is possible to use the Lorentzian
version,

〈ei
∫
d4x
√
−g(0) φ(0)(x)O∆(x)〉CFT = Zstring[φ]

∣∣
φ(x,z)|z=0=φ(0)(x)

, (3.1)

where also a static background metric g(0)µν for the field theory has been introduced. The
conditions will be discussed in section 3.4.3. In the limit where the gravity theory becomes
classical, the path integral of the right hand side can be done by a saddle point approximation,
where the string partition function is expressed as the classical action, evaluated on a solution
of the equations of motion with boundary condition φ(x, z)|z=0 = φ(0)(x) (cf. (2.37)). The
CFT side of this equality can be interpreted as the perturbation of the scale-invariant field
theory action by adding an operator coupled to some source. This viewpoint will be elaborated
in section 3.4.4.

The notation used throughout this chapter is as follows. Bulk spacetime coordinates are
denoted with indices M,N , while the coordinates of the CFT on the boundary have indices
µ, ν. For the sake of flexibility, the field theory side lives in d dimensions, unless stated
otherwise.

As a warm-up, in the first section the dual of a simple system is considered, namely a
system where the bulk only includes the graviton field.

3.1 Simple system

The simplest possible action to consider in the bulk is the Einstein-Hilbert action with a
negative cosmological constant

SEH =
1

2κ2

∫
dd+1x

√
−g
(
R+

d(d− 1)

R2

)
, (3.2)

where R is the Ricci scalar, R a length scale, and κ the gravitational constant which was
mentioned in section 2.5.2, 2κ2 = g−2

s 16πGd+1. The equation of motion that describes the
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dynamics of the bulk field gMN can be obtained by varying this action with respect to the
metric,

RMN +
d

R2
gMN = 0. (3.3)

This equation of motion is just Einstein’s equation with negative cosmological constant and
zero energy-momentum tensor. The most symmetric solution to these equations of motion is
given by AdSd+1 spacetime,

ds2 =
R2

z2

(
−dt2 + dxidxi + dz2

)
. (3.4)

Here z is the additional coordinate the gravitational bulk has with respect to the boundary
CFT (cf. (2.27)), and i = 1, . . . , d− 1. From this solution, it is clear that the length scale R
corresponds to the radius of curvature of the AdS spacetime.

The full symmetry group of AdSd+1 is given by the group SO(2, d), which equals the
conformal group in d dimensions, as required for the validity of the AdS/CFT correspondence.
In particular, the scale invariance (or dilatation) symmetry of the CFT acts on the spacetime
as

{t, xi, z} → {λt, λxi, λz}, (3.5)

with i = 1, . . . , d− 1, under which (3.4) is obviously invariant.

3.1.1 Field theory dual of the metric

The linearized bulk field gMN should be dual to an operator O in the field theory. The metric
gMN is present in all classical theories of gravity, so one expect that the dual operator should
be present in all dual field theories. Furthermore, one expects that the dual operator has spin
two, like the graviton. The natural guess, then, for the dual operator is the energy-momentum
tensor Tµν of the field theory.

Another way to see this is as follows. When restricted to the boundary, the metric gMN (z)
of some asymptotically AdS space tends to a certain value g(0)µν ,

gµν(z) =
R2

z2
g(0)µν + · · · as z → 0, (3.6)

where the metric has been pulled back to the boundary to eliminate the gzz component. In
particular, for the metric (3.4)

ds2 =
R2

z2
g(0)µνdx

µdxν +R2dz
2

z2
,

where g(0)µν = ηµν . The metric g(0)µν can be regarded as the background metric of the
field theory, and since the z dependence has been factored out, this metric is non-dynamical.
Note that it is the combination R2

z2 that has been factored out, so that the boundary metric
is dimensionful. Furthermore, it is not problematic for the field theory to have a non-flat
metric, as long as it is not dynamical.

As suggested by the relation (3.1), the metric g(0)µν should be a source for an operator
in the field theory. The object that couples to the metric g(0)µν in the field theory is the
energy-momentum tensor Tµν , since in that context it is defined as

Tµν = − 2√
−g(0)

δS

δg(0)µν
. (3.7)
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So, the field theory dual of the bulk metric is given by the energy-momentum tensor, i.e.,

Tµν ←→ gMN ,

where ↔ means ‘dual to’. A possible point of confusion is that in a classical gravity system
one has

S = SEH + Smatter,

such that
1√
−g

δS

δgµν
=

1

2κ2

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSmatter

δgµν
.

If now −2 times the second term is identified with the energy-momentum tensor, analog to
(3.7), one obtains Einstein’s equation. In the field theory however, there is no Einstein-Hilbert
part in the action, and we can write (3.7) with the full action.

Note that the AdS solution (3.4) corresponds to the vacuum of a CFT. This can be seen
by differentiating relation (3.1) with respect to g(0)µν to obtain 〈Tµν〉 in the field theory, while
the ‘string-theory’ side vanishes on-shell.

3.1.2 Counter terms

A field φ is said to be normalizable, if the action in Euclidean spacetime is finite, S[φ] <∞,
since then it has a finite contribution to the partition function Z[φ] =

∑
φ e
−S[φ]. Modes with

boundary conditions which force S[φ] =∞ would not contribute.

To isolate possible divergences on the boundary z → 0, one can restrict the range of
integration of the variable z to z ≥ ε, and evaluate boundary terms at z = ε. This action is
called the regulated action Sreg. After subtracting terms which diverge as ε→ 0, one take the
limit ε→ 0:

Sren = lim
ε→0

Ssub ≡ lim
ε→0

(Sreg + Sct), (3.8)

where Ssub is the subtracted action, Sren is the renormalized action, and Sct are (minus) the
divergent terms of Sreg. See [39] for a more detailed description of this technique in the
context of AdS/CFT.

Because AdS spacetime has a boundary, actually two boundary terms must be added to
the action (3.2). The first counter term is a constant (intrinsic) boundary counter term, which
must be added to (3.2) in order to obtain a finite action [40],

Sct = − 1

2κ2

∫
z=ε

ddx
√
−γ 2(d− 1)

R
.

where γµν is the induced metric on the boundary z = ε:

ds2
∣∣
z=ε
≡ γµνdxµdxν =

R2

ε2
g(0)µνdx

µdxν , (3.9)

with g(0)µν = ηµν in case of AdS spacetime.

The second counter term is a so-called Gibbons-Hawking-York term,

SGHY = − 1

2κ2

∫
z=ε

ddx
√
−γ (2K) ,
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where K is the trace over the extrinsic curvature of the boundary, K = γµν∇µnν , with
nν an outward-pointing unit normal to the boundary. This term affects which boundary
conditions are imposed on the metric. Without this term, integration by parts of the Einstein-
Hilbert term to obtain the equations of motion, produces a boundary term proportional
to variations of derivations of the metric, which is incompatible with imposing a Dirichlet
boundary condition on the metric, i.e., specifying g(0)µν [41].

In the next section, it will be shown how a finite temperature in the field theory can be
obtained.

3.2 Nonzero temperature

Since any field theory can be placed at finite temperature, it should not be necessary to add
extra ingredients to the bulk in order to get a finite temperature. Therefore, the action (3.2)
should still be valid as a gravity dual for a system at finite temperature.

3.2.1 Breaking scale invariance

Placing the field theory at finite temperature, would break the scale invariance. As it was
mentioned in the previous section, the scale invariance symmetry of the field theory corre-
sponds to the scale invariance of AdS spacetime. It is possible to break the scale invariance
of the bulk spacetime, since the bulk spacetime only needs to be asymptotically AdS, as was
mentioned in section 2.8 and Appendix B.

If the scaling symmetry of the bulk solution (3.4) is relaxed, while invariance under spatial
rotations and spacetime translations is maintained, the metric will look like

ds2 =
R2

z2

(
−f(z)dt2 + g(z)dxidxi + h(z)dz2

)
, (3.10)

where the functions f(z), g(z) and h(z) are to be determined, and i = 1, . . . , d− 1. Note that
Lorentz invariance is also broken when f 6= g, which is to be expected for a system at finite
temperature.

There is a certain gauge freedom, which enables free choice of one of the functions by
a rescaling z → ẑ(z), and we can exploit this freedom to set g(ẑ) = 1. If we plug this
ansatz for the metric into the equation of motion (3.3), and solve for f and h, we find the
Schwarzschild-AdS black hole solution

ds2 =
R2

z2

(
−f(z)dt2 + dxidxi +

dz2

f(z)

)
, (3.11)

with

f(z) = 1−
(
z

zH

)d
,

which is sometimes called emblackening factor. This solution is called black hole, since there
is a horizon for z = zH , because gtt → 0 for z → zH . That means that light emitted
to an asymptotic observer becomes infinitely redshifted, as can be seen from the relation
E =

√
−gttEzH (cf. (2.33)), with E the energy measured by the asymptotic observer, and

EzH the energy at the horizon. Note that the horizon is planar, since it is of the form Rd−1.
On the boundary this solution reduces to AdS, since f(z) → 1 as z → 0. Hence the

solution is asymptotically AdS as required.
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3.2 Nonzero temperature

3.2.2 Analytic continuation of the solution

In its original form, the Witten prescription (2.36) relates the Euclidean version of AdS with
Yang Mills on a Euclidean spacetime. Using this relation, the field theory partition function
can be found by evaluating the partition function of the bulk theory on the (Euclidean) saddle
g?,

ZE = e−SE[g?]. (3.12)

By analytic continuation of the Schwarzschild-AdS black hole (3.11) to Euclidean signature,
i.e., by setting τ = it,

ds2
? =

R2

z2

(
f(z)dτ2 + dxidxi +

dz2

f(z)

)
, with f(z) = 1−

(
z

zH

)d
, (3.13)

such a saddle is obtained, as can be checked by substituting this solution into the equation
of motion (3.3).

Due to its Euclidean signature, the metric (3.13) does not make sense inside the horizon,
since f(z) is negative for z > zH , making its signature non-Euclidean. The near-horizon
(z ∼ zH) expansion of f(z) is given by

f(z) ' f(zH) + (z − zH)
df(z)

dz

∣∣∣
z=zH

+O(z − zH)2 = |f ′(zH)|(zH − z) +O(z − zH)2,

which is written in this way, because zH > z. Substituting this expansion into the metric
(3.13) yields

ds2
?,N.H. '

R2

z2
H

(
|f ′(zH)|(zH − z)dτ2 + dxidxi +

dz2

|f ′(zH)|(zH − z)

)
. (3.14)

By substituting further ρ2 = R2

z2
H
κ(zH − z), with κ ≡ 4

|f ′(zH)| = d
2zH

, and φ = 2
κτ = |f ′(zH)|

2 τ ,

the near-horizon metric becomes

ds2
?,N.H. ' dρ2 + ρ2dφ2 +

R2

z2
H

dxidxi, (3.15)

which looks like Rd−1 times a Euclidean plane in polar coordinates {ρ, φ}.
In order the metric (3.13) to be regular, φ must be periodic. However, for a general

period φ ∈ [0, 2π−∆], with ∆ 6= 0, the {ρ, φ} part of the metric (3.15) describes a cone with
a singularity at ρ = 0. This conical singularity is absent when φ has period 2π. So,

φ ∼ φ+ 2π ⇐⇒ τ ∼ τ +
4π

|f ′(zH)|
, (3.16)

with |f ′(zH)| = d
zH

. The necessity of the periodicity in φ can also be seen when one transforms
the {ρ, φ} part of the metric (3.15) into flat Euclidean spacetime by the substitution T =

ρ sinφ and X = ρ cosφ, so that ds2
? ' dT 2 + dX2 + R2

z2
H
dxidxi.
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3.2.3 Appearance of temperature

The periodic identification of the Euclidean time in the field theory corresponds to placing the
theory at a finite temperature. This can be understood as follows. In quantum mechanics,
the transition amplitude between two states |qi, ti〉 and |qf , tf 〉 is given by

〈qf , tf |qi, ti〉 = 〈qf |e−iH(tf−ti)|qi〉,

which also can be written as a path integral,

〈qf , tf |qi, ti〉 =

∫
q(tf )=qf
q(ti)=qi

[Dq(t)] eiS[q(t)].

After performing a Wick rotation by setting τ = it, and defining β = i(tf − ti) = τf − τi, the
combination of the two preceding formulas has the form

〈qf , τf |qi, τi〉 = 〈qf |e−βH |qi〉 =

∫
q(τf )=qf
q(τi)=qi

[Dq(τ)] e−SE [q(τ)].

In statistical mechanics, the partition function of a system at temperature T = 1/β is
given by

Z = Tre−βH ,

where the trace runs over a complete set of states. So, for a closed path qf = qi we have

Z = Tre−βH = 〈q|e−βH |q〉 =

∫
q(τf )=q(τi)=q

[Dq(τ)] e−SE [q(τ)],

and the generalization to quantum field theory is straightforward:

Z = Tre−βH =

∫
φ(x,τf )=φ(x,τi)=φ(x,τ)

[Dφ] e−SE [φ].

In the path integral the Euclidean time has period β, since φ(x, τf ) = φ(x, τi + β) = φ(x, τi)
are identified. Therefore, the Euclidean path integral with periodically identified time equals a
partition function at finite temperature T . From (3.16) the relation between the temperature
and the parameter zH can be read off,

T =
1

β
=
|f ′(zH)|

4π
=

d

4πzH
. (3.17)

Due to the scale invariance of the CFT, there are only two temperatures possible: zero
and nonzero. This is because the parameter zH can be eliminated from the metric (3.11) by
the scaling (3.5) with λ = zH . From the partition function (3.12) standard thermodynamic
quantities can be calculated, e.g. the free energy F = −T logZE = TSE [g?], and the entropy
S = −∂F/∂T . The results are listed in [37, 38].

In the coming two sections, structure is going to be added to the bulk theory.

3.3 Bulk Maxwell field and chemical potential

In the previous section, the most universal deformation away from scale invariance was dis-
cussed by placing the field theory at a finite temperature. Another important deformation
away from scale invariance is to place the system at a finite chemical potential. In this section,
it will be shown, that this is achieved by adding a Maxwell field to the bulk.
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3.3 Bulk Maxwell field and chemical potential

3.3.1 Adding a Maxwell field to the bulk

Adding a bulk Maxwell field to the Einstein-Hilbert action, gives the Einstein-Maxwell action:

SEM =

∫
dd+1x

√
−g
[

1

2κ2

(
R+

d(d− 1)

R2

)
− 1

4g2
F

F 2

]
,

where F = dA is the electromagnetic field strength, and gF the Maxwell coupling. The
equation of motion for the bulk field gMN is given by

RMN −
R

2
gMN −

d(d− 1)

2R2
gMN =

κ2

2g2
F

(
2FMPF

P
N − 1

2
gMNFPQF

PQ

)
,

and for the Maxwell field A it is given by

∇MFMN = 0,

where the covariant derivative appears due to the curvature of the background.
To solve these equations of motion, we make an ansatz for a Maxwell field with vanishing

magnetic field,
A = At(z)dt. (3.18)

It turns out that there is a unique solution to the above equations of motion of this form
and the form (3.10). This solution describes a black hole carrying an electric charge, called a
Reissner-Nordström-AdS black hole [42, 43],

ds2 =
R2

z2

(
−f(z)dt2 + dxidxi +

dz2

f(z)

)
.

It has the same form as the Schwarzschild-AdS black hole (3.11), but with a different em-
blackening factor,

f(z) = 1−
(

1 +
z2
Hµ

2

γ2

)(
z

zH

)d
+
z2
Hµ

2

γ2

(
z

zH

)2(d−1)

, (3.19)

where

γ2 =
(d− 1)g2

FR
2

(d− 2)κ2
,

which is a dimensionless measure of the relative strengths of the gravitational and Maxwell
forces. The nonzero Maxwell gauge potential in (3.18) is given by

At(z) = µ

[
1−

(
z

zH

)d−2
]
. (3.20)

The constant term is necessary, otherwise the one form A will not be well defined at the
horizon. As in the case of the Schwarzschild-AdS black hole, it is necessary to periodically
identify the Euclidean time. When an integral around a closed time loop of the one form will
be nonzero on the boundary, it will imply that A is singular, as the time circle shrinks to zero
on the boundary. Therefore, the time component At must vanish on the boundary.

Note that for d ≥ 3, it is not necessary to add a boundary term to the Einstein-Maxwell ac-
tion for the Maxwell field. For the above solution of the Maxwell potential (3.20), the only non-
vanishing components of the Maxwell field strength are Fzt = ∂zAt = −(d − 2)µz2−d

H zd−3 =
−Ftz, which for d ≥ 3 go to zero or a constant near the boundary z → 0.
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3.3.2 Field theory dual of a bulk Maxwell field

As with the metric in (3.6), a bulk Maxwell potential tends to a certain value A(0)µ when
restricted to the boundary,

Aµ(z) = A(0)µ + · · · as z → 0,

where the potential has been pulled back to the boundary to eliminate the Az component.
From (3.20), it is clear that A(0)t is given by µ, which is interpreted as the chemical potential;
this will be explained shortly. The other components are zero, because there is no magnetic
field in the ansatz (3.18).

The relation (3.1) suggests that the boundary value of the bulk Maxwell field should be a
source for an operator in the field theory. In [37], it is motivated that the gauged U(1) sym-
metry of the bulk corresponds to a global U(1) symmetry on the boundary. Associated with
this global symmetry there is a conserved current, which in this case is the electromagnetic
current Jµ. It is this current to which the boundary background field couples to. So, the bulk
U(1) gauge field AM is dual to a global current Jµ in the field theory,

Jµ ←→ AM .

From this relation, it is clear that the time component of the background field A(0)t, couples
to the time component of the current J0.

The correspondence between a local U(1) symmetry in the bulk and a global U(1) sym-
metry on the boundary, is part of a more general duality between a gauge group in the bulk
and a global group in the field theory. This is motivated by the fact that gauge symmetries
include the subgroup of so-called large gauge symmetries, which are symmetries which act
non-trivially as global symmetries on the boundary of spacetime. This global subgroup of the
bulk symmetry group, is in the AdS/CFT correspondence identified with the global symmetry
group of the field theory on the boundary.

3.3.3 Chemical potential

The interpretation of the time component of the boundary gauge potential A(0)t = µ as
chemical potential needs some explanation.

In the grand canonical ensemble, the partition function is given by

Z = Tre−β(H−µN),

where N is the number operator, which gives the total number of particles in the system, and
β = 1/T .

For a Lagrangian (density) of the form

L = − 1

4g2
F

F 2 +AµJ
µ,

the corresponding Hamiltonian with the potential (3.18) reads

H =
δL

δ(∂tAµ)
∂tAµ − L = Ftµ∂tAµ +

1

4g2
F

F 2 −AµJµ =
1

4g2
F

F 2 −AµJµ.
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3.4 Bulk scalar field

Therefore, the change in the Hamiltonian due to a variation of the potential, A→ A+ dΛ, is
given by

δH = −∂µΛJµ,

so that a shift A(0)t = µ, that is, Λ = µt, gives

δH = −
∫
ddx δA(0)tJ

t = −µ
∫
ddxJ t. (3.21)

3.3.4 Temperature

The temperature for the dual field theory can be determined in the same way as was done
for the Schwarzschild-AdS black hole in section 3.2.2. The periodicity of the Euclidean time
is again given by (3.16), but now f(z) is given by (3.19), so that

T =
1

4πzH

(
d−

(d− 2)z2
Hµ

2

γ2

)
.

There are two scales in this solution: the chemical potential µ and the radius of the horizon
zH . As was shown in section 3.2.3, it was possible to eliminate the zH dependence in the case
of zero chemical potential. Using the same scaling, together with a rescaling of µ→ zHµ, zH
can again be scaled out (cf. (3.19)). However, the scale µ remains. Since the field theory is
scale invariant, the only non-trivial dependence on chemical potential and temperature can
be in the dimensionless ratio T/µ. As opposed to the case of zero chemical potential, where
there was only zero or nonzero temperature, the ratio T/µ can be varied continuously.

For d = 3, it is also possible to consider the ansatz for the vector potential with a nonzero
magnetic field. In this case, the solution turns out to be a dyonic Reissner-Nordström-AdS4

solution [37].
In the next section, the case of a bulk scalar field is going to be considered.

3.4 Bulk scalar field

In the previous two sections, the scale invariance of the field theory was broken by placing the
theory at finite temperature and nonzero chemical potential. It was shown that in the bulk
this amounts to introduce a Schwarzschild-AdS black hole and a Maxwell field, respectively.
Scale invariance of the bulk spacetime can also be broken by adding a relevant operator to
the field theory, which will be shown in this section.

3.4.1 Adding a scalar field to the bulk

Adding a bulk scalar field to the Einstein-Hilbert action yields the Einstein-scalar action

S =

∫
dd+1x

√
−g
[

1

2κ2

(
R+

d(d− 1)

R2

)
− 1

2
(∇φ)2 − V (φ)

]
, (3.22)

where (∇φ)2 = gMN∂Mφ∂Nφ, and V (φ) a potential. The scalar field has to fall of sufficient
quick near the boundary, which means that it has to go to zero or a constant field. If not,
the metric on the boundary will backreact, what means that the metric will change due to the
matter term in this action, and the spacetime will no longer be asymptotically AdS.
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One can proceed as in the previous sections by determining the equations of motion from
this action and solve them. By adding a scalar field to the bulk, one expect that the solution
for the metric retains Lorentz invariance, while scale invariance is broken. In (3.10) Lorentz
invariance in d dimensions is retained for f = g. Moreover, one can use gauge invariance to
set h(ẑ) = 1, so that a suitable ansatz for the metric would be

ds2 =
R2

z2

(
f(z)

(
−dt2 + dxidxi

)
+ dz2

)
. (3.23)

As the metric should be asymptotically AdS, f(z) → 1 near the boundary z → 0. Solutions
for the graviton will not be shown in this thesis, but a calculation can be found in [45].

The equation of motion for the scalar field has the form of the Klein-Gordon equation,

�gφ−
∂V (φ)

∂φ
= 0, with �g ≡

1√
−g

∂M
(√
−ggMN∂N

)
. (3.24)

Near the boundary, where the scalar field falls off fast, the potential has the form

V (φ) =
1

2
m2φ2 + · · · as z → 0, (3.25)

with m the mass of the field. From (3.23) follows that near the boundary

gMN =
R2

z2
ηMN , and

√
−g =

(
R

z

)d+1

,

so that one gets after some manipulations (again, near the boundary)

�g =
1

R2

(
− (d− 1)z∂z + z2∂2

z + z2∂µ∂
µ
)
. (3.26)

The relation (3.1) again suggests that the boundary value of the scalar field should be a
source for an operator in the field theory. The bulk scalar field restricted to the boundary,
φ(0), couples naturally to a scalar operator. Therefore, the dual operator should be a Lorentz
scalar operator OB, i.e.,

OB ←→ φ .

Using the equation of motion (3.24), the conformal (or scaling) dimension of this dual operator
OB in the field theory can be determined.

3.4.2 Conformal dimension of the bosonic operator

Focussing on the z dependence of φ only, φ = φ(z), the equation of motion (3.24) becomes
with (3.26)

z2∂2
zφ− (d− 1)z∂zφ = (Rm)2φ.

When we insert the ansatz

φ(z) =
( z
R

)d−∆
φ(0) + · · · as z → 0, (3.27)

for the near-boundary behavior of the scalar field into this equation, then

(Rm)2 = ∆(∆− d).
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3.4 Bulk scalar field

This equation has two solutions:

∆+ =
d

2
+

√
d2

4
+R2m2 and ∆− =

d

2
−
√
d2

4
+R2m2 = d−∆+. (3.28)

Note that we equally well could have started with ∆ instead of d−∆ in the ansatz. Writing
∆ = ∆+, so that ∆− = d −∆, and restoring the x dependence of the scalar field, near the
boundary one has

φ(z, x) =
( z
R

)d−∆ (
φ(0)(x) +O(z2)

)
+
( z
R

)∆ (
φ(1)(x) +O(z2)

)
+ · · · . (3.29)

By writing the near-boundary behavior of the scalar field in this way, the first term is leading-
order, since for z → 0 it falls off slower than the second, because d−∆+ ≤ ∆+. The φ(0) is
called source for obvious reasons, and φ(1) is called response for reasons explained in section
3.4.6. Since ∆ = ∆+ in (3.29) is larger than zero for any value of the mass m, the second
term vanishes on the boundary of AdS.

Since the field φ(z, x) is a scalar field, it should be invariant under the scaling (3.5),
{t, xi, z} → λ{t, xi, z}. Therefore, under this scaling the boundary value of the bulk scalar
field should transform as φ(0)(x) → φ(0)(λx) = λ∆−dφ(0)(x). So the scaling dimension of

φ(0)(x) is d−∆. The combination
∫
ddx

√
−g(0) φ(0)(x)OB(x) in (3.1) should be dimensionless

in order to preserve Lorentz invariance, and as a result, the scaling dimension of OB should
be ∆:

dim[OB] = ∆.

In order for the boundary conformal field theory to retain unitary, the conformal dimension
∆ of the operator OB must obey a so-called unitarity bound [46], which in this case is

∆± ≥
d− 2

2
. (3.30)

3.4.3 Boundary conditions for the scalar field

AdS spacetimes often possess a horizon. It was shown explicitly in section 3.2, this is the case
when the field theory has a finite temperature. However, the gtt component also goes to zero
in case of the pure AdS spacetime (3.4) as z → ∞, which is the so-called Poincaré horizon,
because (3.4) only describes the Poincaré patch of global AdS spacetime. Note that the pure
AdS metric (3.4) can be regarded as the zero-temperature limit (i.e., zH → ∞ in (3.17)) of
the Schwarzschild-AdS metric (3.11), which is called an extremal Schwarzschild-AdS black
hole.

When the anti-de-Sitter spacetime is endowed with a horizon, in addition to the condition
φ(x, z)|z=0 = φ(0)(x) for the boundary behavior of the bulk field, there is another boundary
condition to be imposed: the bulk field should be regular on this horizon. In the Euclidean
formulation, these conditions are sufficient to uniquely determine the solution. However, in
the Lorentzian case one needs a more refined interior boundary condition, since there are two
(oscillatory) solutions which are both regular. This can be seen as follows.

For a potential of the form (3.25), V (φ) = 1
2m

2φ2, and a Schwarzschild-AdS black hole
metric (3.11), the scalar wave equation (3.24) looks like

1√
−g

∂z
(√
−ggzz∂zφ

)
+ gµν∂µ∂νφ−m2φ = 0,
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which has to be solved for a fixed boundary condition at z = ε. Using the Fourier represen-
tation, the solution can be written as

φ(z, x) =

∫
ddk

(2π)d
eik·xfk(z)φ(0)(k) with kµ ≡ (−ω, ki),

where φ(0)(k) is determined by the boundary condition

φ(z, x)|z=ε =

∫
ddk

(2π)d
eik·xφ(0)(k),

and fk is the solution to the scalar wave equation

1√
−g

∂z
(√
−ggzz∂zfk

)
− (gµνkµkν +m2)fk = 0, (3.31)

with boundary condition fk(ε) = 1.
By using the Lorentzian version of (3.14), the {t, z} part of the near-horizon metric of the

Schwarzschild-AdS black hole (3.11) can be written as

ds2
{t,z},NH = −a(zH − z)dt2 +

b

zH − z
dz2

= a(zH − z)
(
−dt2 + dz2

?

)
, (z ∼ zH)

where z? ≡
√
b/a log(zH − z), a = (R2/z2

H)|f ′(zH)|, and b = (R2/z2
H)|f ′(zH)|−1. Spacetimes

of this form are called Rindler spacetimes. With this metric, and setting the mass of the
scalar field φ to zero for the sake of simplicity, (3.31) becomes

0 = − 1√
ab
∂z

(√
a

b
(zH − z)∂z

)
fk −

1

a(zH − z)
ω2fk

= −∂2
z?fk − ω

2fk,

which has solutions of the form

fk ∼ e∓iωz? = e
∓iω

√
b
a

log(zH−z) = e∓
iω

4πT
log(zH−z),

where in the last equality
√
b/a = 1/|f ′(zH)| and (3.17) have been used. Incorporating the

time dependence gives
e−iωtfk ∼ e−iω(t±z?).

So, there are two linearly independent solutions. Depending on the sign in the exponent,
the wavefront moves towards the horizon (‘+’) or away from the horizon (‘−’) as time ad-
vances. For we do not want the black hole to radiate and disturb the system, we impose
ingoing boundary conditions (‘+’). Note that ingoing boundary conditions correspond to
setting boundary conditions on the future horizon, and breaks time-reversal symmetry. In
the presence of a future horizon, it is possible to have dissipation, since energy passing the
horizon is lost to an asymptotic observer.

One can proceed in an analogous way for the case of zero temperature, but now one has
to expand the emblackening factor f(z) to second order (cf. (3.14)). The {t, z} part of the
near-horizon metric looks like

ds2
{t,z},NH = −(zH − z)2

R2
2

dt2 +
R2

2

(zH − z)2
dz2 =

(zH − z)2

R2
2

(
−dt2 + dz2

?0

)
,
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3.4 Bulk scalar field

where z?0 ≡ R2
2(zH − z)−1, and R2 is the radius of the near-horizon region. Note that this

spacetime is AdS2. Note that global factors can be left out, since it is the ratio of metric
components that matters in the solution. The solution to (3.31) for this metric has the form

e−iωtfk ∼ e−iω(t±z?0 ) = e−iω(t±R2
2/(zH−z)),

where now the (‘−’) corresponds to the ingoing choice, since z?0 increases as z increases.
Although imposing ingoing boundary conditions at the horizon solves one of the problems

with working in spacetimes with Lorentzian signature, there remains another problem: the
retarded Green’s function becomes real. The details and a workaround for this problem is
discussed in [47].

3.4.4 Relevant or marginal deformation of the field theory

In section 2.8.3, it was shown that the energy scale U(r) of the field theory corresponds to
the extra dimension r = R2/z of the bulk AdS spacetime. This extra dimension can be
regarded as the renormalization group (RG) scale of the field theory, where the boundary
corresponds to the UV of the field theory, and the deep bulk (z → ∞) corresponds to the
IR. In this context, the scale invariance of the CFT is interpreted as an UV fixed point, and
the theory can be deformed away from scale invariance by adding a relevant operator. The
renormalization group then flows from the UV fixed point to an IR fixed point.

As mentioned in the introduction of this chapter, the CFT side of (3.1) can be interpreted
as the perturbation of the scale-invariant field theory by the addition of the term∫

ddx
√
−g(0) φ(0)(x)OB(x)

to the CFT action. When calculating n-point functions from (3.1), instead of setting φ(0) to
zero after performing the variation, now one puts φ(0) to a nonzero value. This perturbation
generates a renormalization group flow, where one can regard the source φ(0) as a coupling
constant for the operator OB.

Keeping the boundary z at a finite value ε before taking the limit ε → 0 for regulating
divergences of the action, amounts to keeping a finite UV cutoff Λ = 1/ε in the theory. Under
an RG transformation towards the IR, that is, Λ → Λ/b with b > 1, the ‘coupling constant’
will transform as

φ(0) → bd−∆φ(0).

Therefore, when ∆ < d, the deformation by the addition of the operator OB will be strong in
the IR and weak in the UV, a so-called relevant deformation. Hence, a relevant deformation
will not destroy the UV critical point. For ∆ = d, the deformation is called marginal, and
this does not break conformal invariance to leading order in the deformation.

The condition d−∆ ≥ 0 coincides with the condition for the scalar field to go to a constant
or zero on the boundary, as can be seen from (3.27). Therefore, a relevant or marginal operator
can be added to the field theory, without destroying the asymptotically AdS region of the
metric.

When ∆ > d, the effect becomes stronger as the energy increases, and this is called an
irrelevant deformation. Adding an irrelevant deformation to the theory will change the UV,
and therefore the theory would require a new description for this regime. However, it makes
more sense to start with a theory that has the correct UV description and then study the flow
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into the IR, as is commonly done. Furthermore, as can be seen from (3.29), the spacetime
would no longer be asymptotically AdS, since the field φ does not fall off near the boundary
inducing a backreaction of the metric.

Negative mass

As can be seen from (3.28), the condition for the operator OB to be relevant, ∆ < d, is only
possible for negative m2. As long as

m2 > −
(
d

2R

)2

≡ −|mBF|2,

the ∆+ and ∆− in (3.28) are real. Particles with mass that obey this bound are allowed in
AdS spacetimes. These particles are called Breitenlohner-Freedman tachyons [48].

Usually, imaginary mass means instability of the vacuum at φ = 0, where the field is
at a local maximum instead of a local minimum of its potential energy, where it causes a
normalizable mode to grow in time without a source. However, for m2 < 0 the field φ(z, x)
vanishes on the boundary, that is in the UV, since its leading-order behavior is zd−∆ (cf.
(3.29)). Thus, it is possible to have particles with negative mass squared in AdS spacetimes,
while in flat spacetimes this is impossible.

3.4.5 Counter terms

As was mentioned in section 3.1.2, a counter term is needed in order to obtain a finite on-shell
Einstein-Hilbert action, since AdS spacetime has a boundary. For the Einstein-scalar action
(3.22) this is also necessary. Supplementary to the counter terms rendering the Einstein-
Hilbert part finite, there are two cases for the scalar field part of the action.

By integrating by parts the scalar field part of the Einstein-scalar action (3.22), in addition
to the Klein-Gordon equation (3.24), one gets the boundary term

Sreg =
1

2

∫
z=ε

ddx
√
−γR

ε
gzzφ∂zφ, (3.32)

where γµν is the induced metric on the boundary, which is equal to (3.9), since the space
is asymptotically AdS. Further, an additional minus sign has been introduced, since the
boundary is at z = 0, which is the lower limit of integration. The term R/ε comes from√
−g|z=ε = R/ε

√
−γ|z=ε (cf. (3.9)).

When the scalar field has the form (3.27), i.e., ∆ = ∆+, which is valid for d−∆ < ∆ (cf.
(3.28)), i.e., ∆ > d/2, the counter term canceling the boundary term (3.32) is given by

Sct = −d−∆

2R

∫
z=ε

ddx
√
−γφ2. (3.33)

For masses in the range

− d2

4R2
< m2 < − d2

4R2
+ 1,

Klebanov and Witten have shown that by adding a boundary term to the action, the bound
∆ > d/2 can be relaxed, and the source φ(0) and response φ(1) in (3.29) can be interchanged
[49, 38], which is equivalent to setting ∆ = ∆−. Depending on the choice of the boundary
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condition, one has two different field theories in AdS, which correspond to two different CFTs.
The boundary term has the form

Sbdy = −
∫
z=ε

ddx
√
−γφnµ∂µφ

The addition of this term makes us to impose Neumann boundary conditions on φ, instead
of Dirichlet conditions. In this case, the counter term including the term canceling the
divergences of the action will be

Sct = −
∫
z=ε

ddx
√
−γ
(
φnµ∂µφ+

∆

2R
φ2

)
,

where n is the outward-pointing unit normal to the boundary. Demanding that φ is normal-
izable (see section 3.1.2), gives the bound [38]

∆ ≥ d− 2

2
,

which is lower than the bound ∆ > d/2 of the first case, and is precisely the unitarity bound
(3.30). For a systematic treatment including the range of masses which are allowed in both
cases, see [50].

If there are terms between the leading and sub-leading fall offs in the asymptotic expansion
(3.29), then one has to include other counter terms as well, see for example [39] for a systematic
treatment.

3.4.6 Expectation value for the scalar operator

Since φ(0) in (3.1) is a source, n-point functions of O∆ can be obtained by differentiating (3.1)
with respect to it. In particular, the expectation value of O∆ is given by (cf. (2.35)):

〈O∆(x)〉 =
1√
−g(0)

δWCFT[φ(0)]

δφ(0)(x)

∣∣∣
φ(0)=0

=
1√
−g(0)

δSren[φ(0)]

δφ(0)(x)

∣∣∣
φ(0)=0

, (3.34)

with WCFT = −i logZCFT. In the second equality, a saddle point approximation has been
made (cf. (2.37)), where Sren is the renormalized on-shell bulk action (3.8).

To actually calculate the expectation value of an operator O∆, pertaining to a bulk field
φ(z, x) that has an asymptotic expansion like (3.27), with d−∆ = ∆−, one has to evaluate

〈O∆(x)〉s = lim
ε→0

((
R

ε

)d−∆− 1√
−γ

δSsub

δφ(ε, x)

)
, (3.35)

where γµν is the induced metric on the boundary (3.9), and Ssub = Sreg + Sct (3.8). The
factor (R/ε)d−∆− comes from rewriting of the metric and the functional derivative. The
subscript s denotes the presence of sources, which afterwards can be removed by setting
φ(0) = 0. Now, the functional derivative of the subtracted action Ssub can be rewritten using
a Hamilton-Jacobi like method.
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Hamilton method

Consider the dynamics of a classical particle in one dimension that is described by the action

S[q] =

∫ tf

ti

dtL (q(t), q̇(t)) .

Variation of one of the end-points of the solution to the equation of motion q, e.g. the
endpoint, q(tf )→ q(tf ) + δq(tf ), will change the action by an amount

δS[q] =

∫ tf

ti

dt δq

(
∂L
∂q
− ∂

∂t

∂L
∂q̇

)
+ δq

∂L
∂q̇

∣∣∣∣tf
ti

= δq(tf )Π(tf ) (3.36)

where the canonical momentum is defined as

Π(t) ≡ ∂L
∂q̇

(t),

and the term between parentheses disappeared because q is on-shell. Using (3.36), the canon-
ical momentum can be written as

Π(t) =
δSon-shell

δq(t)
.

It has been argued in [51] that the above can be generalized to

Π(z, x) ≡ ∂L
∂(∂zφ)

= −
δSreg, on-shell

δφ(z, x)
,

where Π(z, x) is the bulk-field momentum with z regarded as time, and again a minus sign
has been introduced, because the boundary is at z = 0 (cf. (3.36)). Then (3.35) becomes

〈O∆(x)〉s = lim
ε→0

[(
R

ε

)d−∆− 1√
−γ

(
−Π(ε, x) +

δSct

δφ(ε, x)

)]
. (3.37)

For the scalar field considered in this section (with action (3.22)), that has near-boundary
behavior (3.29) and counter term (3.33), we find

1√
−γ

(
−Π(ε, x) +

δSct

δφ(ε, x)

)
=

ε

R
∂εφ(ε, x)− d−∆

R
φ(ε, x),

so that,

〈O∆(x)〉s =
2∆− d
R

φ(1). (3.38)

Here, we see that the sub-leading fall off of the field φ encodes the expectation value of the
dual operator, which justifies naming φ(1) the response. This formula can be applied to other
types of fields as well, as long as the kinetic term in the action is brought in the same form
as the kinetic term for φ in (3.22).
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3.4.7 Bulk fermionic field

For a discussion of the addition of a Dirac fermionic field to the bulk, we refer to [52]. A
detailed sample calculation can be found in Appendix A of [53]. Finally, boundary terms for
spinor fields are discussed in [54].

In the coming section, the response of the boundary system to a small spacetime dependent
perturbation of a bulk field is going to be considered.

3.5 Linear response theory

In the previous sections, it was shown how a system responds to the addition of a black hole
in the bulk, a bulk Maxwell field, and a bulk scalar field, giving rise to a finite temperature,
chemical potential, and vacuum expectation value for the operator in the field theory, respec-
tively. All these backgrounds in the field theory were time-independent and homogeneous.

In this section, the equilibrium of the boundary field theory will be disturbed by a small
space and time dependent perturbation. Because the perturbation is small, it is reasonable
to assume that the response of the system is linear. This is what linear response theory deals
with. First, an succinct overview of averaging over ensembles will be given; for details, see
for example [55] or [56].

3.5.1 Averaging over ensembles

In quantum mechanics, the time evolution of the state vector is governed by the Schrödinger
equation,

i∂t|ψ(t)〉 = H(t)|ψ(t)〉. (3.39)

Solutions to this equation, may be represented in terms of a unitary time-evolution operator
U(t, t0), which transforms the state |ψ(t0)〉 at some initial time t0, to the state |ψ(t)〉 at time
t,

|ψ(t)〉 = U(t, t0)|ψ(t0)〉. (3.40)

Substituting this expression into the Schrödinger equation gives an operator equation for U .
This equation has the solution

U(t, t0) = T e−i
∫ t
t0
dt′H(t′)

,

where T denotes time ordering, which is necessary because H depends on time.
The ensemble average of an operator OA for a system in a mixed state in equilibrium is

given by
〈OA〉p(t) = Tr (ρ(t)OA) , (3.41)

where ρ(t) is the density operator of the system. The density operator has a spectral decom-
position in terms of a complete set of states {|ψn(t)〉} which form an orthonormal basis of the
Hilbert space,

ρ(t) =
∑
n

pn|ψn(t)〉〈ψn(t)| =
∑
n

pnU(t, t0)|ψn(t0)〉〈ψn(t0)|U−1(t, t0), (3.42)

where pi is the probability for the system to be in state |ψi(t)〉, and in the last equality (3.40)
has been used. Therefore, the time-dependent density matrix can be written as

ρ(t) = U(t, t0)ρ0 U
−1(t, t0),
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with ρ0 ≡ ρ(t0) is the equilibrium density matrix. By differentiating this equation with
respect to time, one obtains the so-called von Neumann equation, which is an equation of
motion for ρ(t):

i∂tρ(t) = [H(t), ρ(t)]. (3.43)

Interaction picture

In the Schrödinger picture, states evolve with time as in (3.40), while operators are time-
independent, and in the Heisenberg picture it is the other way around. The interaction
picture is an intermediate between those two pictures.

Suppose the Hamiltonian consists of a time-independent part and a small time-dependent
part, H(t) = H0 + δH(t). In the interaction representation, the time-evolution operator is
written as

U(t, t0) = U0(t, t0)U ′(t, t0), (3.44)

where U0 and U ′ are the time-evolution operators pertaining to H0 and δH,

U0(t, t0) = e−iH0(t−t0) and U ′(t, t0) = T e−i
∫ t
t0
dt′δHI(t′)

,

with
δHI(t) ≡ U−1

0 (t)δH(t)U0(t),

which follows from substituting (3.44) and U0 into the Schrödinger equitation (3.39). Note
that the time dependence due to H0 has been absorbed into the operator δHI(t).

Linear response

Introducing an x dependence, the expectation value (3.41) can with (3.44) be rewritten in
the interaction representation

〈OA〉p(t, x) = Tr (ρ(t)OA(x))

= Tr
(
U0(t, t0)U ′(t, t0)ρ0 U

′−1(t, t0)U−1
0 (t, t0)OA(x)

)
= Tr

(
ρ0 U

′−1(t, t0)OIA(t, x)U ′(t, t0)
)
,

where again the time dependence due to H0 has been absorbed into the operator,

OIA(t, x) ≡ U−1
0 (t, t0)OA(x)U0(t, t0). (3.45)

In the last equality, the cyclic invariance of the trace has been exploited. Expanding U ′(t) to
linear order in δH(t) gives

〈OA〉p(t, x) ' Tr

(
ρ0

(
1 + i

∫ t

t0

dt′δHI(t′)

)
OIA(t, x)

(
1− i

∫ t

t0

dt′δHI(t′)

))
' Tr

(
ρ0OIA(t, x)

)
− iTr

(
ρ0

∫ t

t0

dt′ [OIA(t, x), δHI(t′)]

)
, (3.46)

which is of the form 〈OA〉p(t, x) = 〈OIA〉0(t, x) + δ〈OA〉(t, x). The second term represents the
linear response of the system to the addition of the time-dependent perturbation δH(t) to
the Hamiltonian H0. When the time-independent equilibrium density matrix ρ0 has the form
(3.42), the first term is independent of time due to the cyclicity of the trace:

〈OIA〉0(t, x) = Tr (ρ0OA(x)) ≡ 〈OA〉(x). (3.47)
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3.5.2 Response and retarded Green’s function

Consider a time-dependent perturbation of the Hamiltonian of the form

δH(t) =

∫
dd−1x δφB(0)(t, x)OB(x). (3.48)

Writing Tr (ρ0A) = 〈A〉 throughout and setting t0 = −∞, the change in expectation value for
OA due to this perturbation is given by (3.46):

δ〈OA〉(t, x) = −i
∫ t

−∞
dt′ 〈[OIA(t, x), δHI(t′)]〉

= −i
∫ t

−∞
dt′
∫
dd−1x′ 〈[OIA(t, x),OIB(t′, x′)]〉δφB(0)(t

′, x′). (3.49)

Taking a Fourier transformation of this change in average gives

δ〈OA〉(ω, k) =

∫ ∞
−∞

dtdd−1x eiωt−ik·xδ〈OA〉(t, x) (3.50)

= −i
∫ ∞
−∞

dtdd−1x eiωt−ik·x
∫ ∞
−∞

dt′dd−1x′ θ(t− t′)×

× 〈[OIA(t, x),OIB(t′, x′)]〉δφB(0)(t
′, x′),

where the Heaviside step function θ(t− t′) has been introduced to extend the upper limit of
the t′ integral.

The retarded Green’s function (RGF) is defined as

GROAOB (t− t′, x− x′) ≡ −i θ(t− t′)〈[OIA(t, x),OIB(t′, x′)]〉, (3.51)

which depends only on the difference of the coordinates, since the system is spacetime transla-
tional invariant.1 Exploiting this, and subsequently using the convolution theorem, the linear
response (3.50) becomes

δ〈OA〉(ω, k) =

(∫ ∞
−∞

dtdd−1x eiωt−ik·xGROAOB (t, x)

)
δφB(0)(ω, k)

= GROAOB (ω, k) δφB(0)(ω, k). (3.52)

As a result, we can conclude that the linear relation between the perturbation by a source
δφB(0)(ω, k) and the response of the system δ〈OA〉(ω, k), is given by the retarded Green’s

function GROAOB (ω, k). For that reason, the retarded Green’s function can be considered as a
kind of susceptibility.

Using (3.38), the retarded Green’s function in terms of bulk fields becomes

GROAOB (ω, k) =
δ〈OA〉s(ω, k)

δφB(0)(ω, k)

∣∣∣
φA(0)=0

=
2∆A − d

R

δφA(1)(ω, k)

δφB(0)(ω, k)
. (3.53)

For 〈OA〉s also (the Fourier transform of) (3.37) can be substituted. Note that this result
matches nicely with a two-point function obtained from (3.1) by functional differentiating
with respect to φA(0) and subsequently to φB(0) (cf. (3.34)).

1Note that the retarded Green’s function for fermions is defined with an anti-commutation relation.
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Boundary conditions for the field φB

In order to have a perturbation of the form (3.48), the entire bulk field needs to be perturbed,
φB → φB + δφB, and this perturbed bulk field has to obey the equations of motion, as well
as the boundary conditions. The boundary conditions for a bulk scalar field were discussed
in section 3.4.3.

In the above calculation we have set t0 = −∞ in (3.46), which yielded the retarded
Green’s function in (3.50). Setting t0 = +∞ in (3.46) would yield the advanced Green’s
function (AGF),

GAOAOB (t− t′, x− x′) ≡ i θ(t′ − t)〈[OIA(t, x),OIB(t′, x′)]〉.

This is closely related to which kind of boundary conditions we impose in the interior for φB;
see, e.g. [57]. For the ingoing boundary condition, we obtain the retarded Green’s function,
whereas for the outgoing, the advanced. The retarded Green’s function and ingoing boundary
conditions both describe things that happen, rather than unhappen.

Retarded Green’s functions play an important role in calculations in AdS/CFT contexts,
and therefore, in the next section some properties of retarded Green’s functions are listed.

3.6 Properties of retarded Green’s functions

Retarded Green’s functions enjoy several important properties, which are considered in this
section. First of all, the RGF is causal. This follows directly from the step function in (3.51).
Further, from the momentum space representation of the RGF (cf. (3.52)), it is clear that
the RGF has the following symmetry property:

GR ∗OAOB (ω, k) = GROAOB (−ω,−k). (3.54)

3.6.1 Analyticity and Cauchy representation

Causality implies the following property for the RGF:

GROAOB (ω, k) is analytic in ω for Imω > 0.

This can be seen by considering the inverse frequency Fourier transformation of the retarded
Green’s function

GROAOB (t, k) =

∫
dω

2π
e−iωtGROAOB (ω, k),

which for t < 0 can be evaluated by closing the ω contour in the upper half plane of complex
frequencies. At the same time, the causality property implies that for t < 0 this integral
equals zero (cf. (3.51) with t′ = 0), so the RGF is analytic in ω for Imω > 0.

Suppose on the contrary, that the RGF has, say, a simple pole at ω = ω? in the upper
half plane. Then, for t < 0 this leads to an exponentially growing mode,

GROAOB (t, k) ∼ e−iω?t ∼ eIm |ω?|t,

which indicates that the vacuum in which the Green’s function has been calculated is unstable.
Therefore, whenever a pole in the retarded Green’s function appears, we should be careful.
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Analyticity in the upper half plane of complex frequencies implies that the RGF can be
represented using Cauchy’s integral formula

GR(z) =

∮
γ

dω′

2πi

GR(ω′)

ω′ − z
, (3.55)

where the contour γ runs along the real axis and closes in the upper half plane, and the k
dependence has been ignored.

3.6.2 Kramer-Kronig relation

From the Cauchy representation one can obtain the Kramers-Kronig relation, which relates
the real and imaginary parts of a function. Substituting into (3.55) an ω that is slightly
shifted above the real axis, z = ω + i0, gives

GR(ω + i0) = P
∫ ∞
−∞

dω′

2πi

GR(ω′)

ω′ − ω
+ iπ Res

ω′=ω

1

2πi

GR(ω′)

ω′ − ω

= P
∫ ∞
−∞

dω′

2πi

GR(ω′)

ω′ − ω
+

1

2
GR(ω),

where P denotes the Cauchy principal value, which, roughly speaking, excludes the point
from the interval where the integrand becomes infinite. The second term is the contribution
from the integral over an infinitesimal semi-circle under the pole. So, we obtain the relation

GR(ω) = P
∫ ∞
−∞

dω′

πi

GR(ω′)

ω′ − ω
.

Substituting GR(ω) = ReGR(ω) + ImGR(ω) into this expression, gives the Kramers-Kronig
relation

ReGR(ω) = P
∫ ∞
−∞

dω′

π

ImGR(ω′)

ω′ − ω
,

ImGR(ω) = −P
∫ ∞
−∞

dω′

π

ReGR(ω′)

ω′ − ω
.

3.6.3 Spectral representation

It is useful to express the retarded Green’s function in its spectral representation. Let {|n〉}
be a complete set of eigenstates of the Hamiltonian H0 and momentum operator P , with
eigenvalues En and kn, respectively. This is possible when the momentum is conserved,
i.e., when [H0, P ] = 0. Assume that ρ0 is diagonal in this basis, with matrix elements
〈m|ρ0|n〉 = ρ0,nδmn (cf. (3.42)). Then the spectral decomposition of the retarded Green’s
function is given by

GROAOB (ω + i0, k) =
∑
m,n

ρ0,n

(
AnmBmn(2π)d−1δ(d−1)(knm − k)

En − Em + ω + i0
− (n↔ m)

)

=
∑
m,n

(ρ0,n − ρ0,m)
AnmBmn(2π)d−1δ(d−1)(knm − k)

En − Em + ω + i0
(3.56)
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where Amn ≡ 〈m|OA(0, 0)|n〉, Bmn ≡ 〈m|OB(0, 0)|n〉, kmn ≡ km−kn, and ω has been shifted
slightly into the upper half plane, ω → ω + i0, in order to get a finite result. The derivation
of this expression is given in Appendix D.1.

The spectral decomposition of the retarded Green’s function consists of a series of delta-
function spikes, weighted by the density matrix ρ0, and matrix elements Anm and Bmn. The
delta functions of momenta indicate values of momenta corresponding to particle excitations.
Furthermore, all the singularities are simple poles, and each pole corresponds to a definite
excitation energy.

Quasi-normal modes

The spectral decomposition of the retarded Green’s function (3.56) is roughly of the form

GROAOB (ω, k) ∼
∑
ω?

c?
ω − ω?

,

where ω? are simple poles. These poles are called the quasi-normal frequencies or resonance
frequencies of the retarded Green’s function. In the case of a bulk scalar field, the retarded
Green’s function (3.53) has clearly a pole for

φB(0)(ω?, k) = 0. (3.57)

From the bulk point of view, quasi-normal modes are solutions to the equations of motion
satisfying ingoing boundary conditions at the horizon, together with boundary condition
(3.57). They describe the decay of small perturbations for black holes at equilibrium in
asymptotically AdS spacetimes.

It was shown in [58], that for a BTZ black hole2, the quasi-normal modes of this black
hole are precisely the poles of the retarded Green’s function. This idea was in [47] extended
to general black holes in asymptotically AdS spacetimes.

3.6.4 Spectral function

The anti-Hermitian part of the retarded Green’s function is called the spectral function or
spectral density, and is given by

AOAOB (ω, k) ≡ i
(
GROAOB (ω, k)−GR †OAOB (ω, k)

)
, (3.58)

with GR †OAOB (ω, k) = GR ∗OBOA(ω, k). It is shown in Appendix D.2, that by using the spectral
representation of the retarded Green’s function (3.56), this spectral function can be brought
in the form

AOAOB (ω, k) = (2π)d
∑
m,n

(ρ0,n − ρ0,m)δ(En − Em + ω)δ(d−1)(knm − k)AnmBmn. (3.59)

By inserting the identity
∫
dω′δ(En − Em + ω′) into the second equality of (3.56), the

retarded Green’s function can be written as

GROAOB (ω + i0, k) =

∫
dω′

2π

AOAOB (ω′, k)

ω − ω′ + i0
, (3.60)

2BTZ black holes are solutions of Einstein equations of the form (3.2) in 2 + 1 dimensions. They possess
an inner and outer horizon and have angular momentum.
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which is called the (Källén-)Lehmann spectral representation of the retarded Green’s function;
see e.g. [59]. From this representation, it is clear that the retarded Green’s function is a
superposition of free particle propagators with different frequencies ω′. The weight of each
contribution is given by the spectral density. It is also clear from this representation, that a
pole in the RGF corresponds to a delta function in the spectral density.

From this representation of the RGF, it is clear that the spectral density can be considered
as a generalization of the density of states, which is the case when there is only one source:

A(ω, k) = −2 ImGROAOA(ω, k), (3.61)

so that the retarded Green’s function has the form

GROAOA(ω + i0, k) =

∫
dω′

π

ImGROAOA(ω, k)

ω′ − ω − i0
.

The spectral density can be interpreted as the probability for the operator OA to have energy
ω and momentum k. For a non-interacting operator, there is only one ω for each k and vice
versa, so that the spectral density is a delta function. By taking the limit ω → 0 in this
expression for the RGF, we obtain the so-called thermodynamic sum rule,

χ ≡ lim
ω→0

GROAOA(ω + i0, k) =

∫ ∞
−∞

dω′

π

ImGR(ω′)

ω′ − i0
,

which is called a sum rule, since it relates a static (i.e., ω → 0) quantity to an integral over
frequencies. With (3.53), χ is the response function for an external perturbation with zero
frequency, therefore it is the static susceptibility.

For the case that the equilibrium density matrix is given by the canonical ensemble, i.e.,
ρ0 = Z−1e−βH0 , it is shown in Appendix D.2.1 that the spectral function (3.59) can be written
as

AOAOB (ω, k) = 2Z−1 sinh
( ω

2T

)∑
m,n

e−(En+Em)/2T 2πδ(En − Em + ω)×

× (2π)d−1δ(d−1)(knm − k)AnmBmn.

From this relation, it follows that the diagonal components of the spectral function multiplied
by ω, are nonnegative, since AnmAmn = |〈n|OA|m〉|2.

3.6.5 Dissipation

The time-varying external source δφB(0)(t, x) in (3.48) does work on the system. It will now
be shown that the time-averaged rate of change of the the total energy, is, to leading order
in the external source, measured by the spectral function.

The rate dW/dt at which the external source does work on the system, or the dissipated
power, is equal to the rate of change of the total energy of the system:

dW

dt
=

d

dt
Tr
(
ρH
)

= Tr
(
∂tρH

)
+ Tr

(
ρ ∂tH

)
,

where in the first equality (3.41) has been used. Assume that the density matrix is of the
form (3.42). By using the Schrödinger equation for ρ(t), (3.43), the first term of the second
equality vanishes:

Tr
(dρ
dt
H
)

=
1

i
Tr
(
[H, ρ]H

)
=

1

i
Tr
(
ρ[H,H]

)
= 0.

53



Chapter 3 Applied AdS/CFT

With H = H0 + δH(t), so that ∂tH = ∂tδH(t), and with δH(t) given by (3.48) with B → A,
the second term becomes

Tr
(
ρ ∂tH

)
=

∫
dd−1x Tr

(
ρ(t)OA(x)

)
∂tδφA(0)(t, x).

Using (3.46), the rate of change of the total energy to linear order in δH(t), or to linear order
in δφA(0) by (3.48), has the form

dW

dt
=

∫
dd−1x

(
〈OIA〉0(t, x) + δ〈OA〉(t, x)

)
∂tδφA(0)(t, x). (3.62)

The power dissipated averaged over one cycle of the external field, is defined as

dW

dt
≡ ω

2π

∫ 2π/ω

0
dt
dW

dt
.

It is shown in Appendix D.3, that for an external field oscillating at a single frequency ω,

δφA(0)(t, x) = Re
(
φA(0)(x)e−iωt

)
=

1

2

(
φA(0)(x)e−iωt + φ∗A(0)(x)eiωt

)
,

the averaged dissipated power is given by

dW

dt
=
ω

4

∫
dd−1xdd−1x′φ∗A(0)(x) i

(
GROAOB (ω, x− x′)−GR ∗OBOA(ω, x− x′)

)
φB(0)(x

′)

=
1

4

∫
dd−1xdd−1x′φ∗A(0)(x)ωAOAOB (ω, x− x′)φB(0)(x

′).

Therefore, the dissipation of the system is captured by ω times the spectral function, which
was (minus) the anti-Hermitian part of the retarded Green’s function, and is nonnegative
when there is only one source.
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4
Superconductors and electron-phonon interaction

Superconductivity was discovered in 1911 by Onnes, when he noted that the (DC) electrical
resistivity of Mercury suddenly drops to zero as the temperature is lowered below a critical
temperature Tc [1]. During the years after its discovery, many metals were found to exhibit
this phenomenon. Furthermore, at temperatures lower than the critical temperature, these
materials exhibit the Meissner effect : external magnetic fields are completely expelled. This
perfect diamagnetism does not follow from the perfect conductivity, and is an independent
property.

In 1935, a phenomenological description of both of these properties was given by the
London brothers [60]. Years later, in 1950, Landau and Ginzburg described superconductivity
in terms of a second-order phase transition, whose order parameter is a complex scalar field
[61]. Finally, a microscopic theory of superconductivity was given by Bardeen, Cooper and
Schrieffer in 1957 [2]. This theory is known as BCS theory.

BCS theory describes the pairing of two electrons —or, actually, quasiparticles derived
from electrons— with opposite spin into a charged boson caused by interactions with phonons,
which are quasiparticles associated with the lattice vibrations of a crystalline solid. These
electron pairs are called Cooper pairs. When the temperature is lower than the critical
temperature Tc, these bosons condense and the DC electrical resistivity drops to zero. The
Cooper pairs are not very tightly bound and have a size which is typically much larger than
the lattice spacing.

In 1986, a new class of superconductors was discovered [3]: the so-called high Tc super-
conductors (HTSC), or, simply, high-temperature superconductors. Conventional theories
have failed to describe these systems. This class of materials consists of two-dimensional
layers of CuO2, and, therefore, they are called cuprates. These two-dimensional layers are
sandwiched between so-called block layers. At the time of writing, the highest Tc for this
class of superconductors is about 135 K at atmospheric pressure [4]. There is evidence that
superconductivity in these high-Tc superconductors is still caused by the forming of electron
pairs, but the pairing mechanism is not well understood, since the coupling is believed to be
strong. For an up-to-date review, see e.g. [5].

In this chapter, an expression for the self-energy of an electron that interacts with phonons
in a system at finite temperature will be studied. It will be shown, that this self-energy can
be written as an integral over a product of a term that contains all the information about the
phonons, and a term that contains the electronic and thermal information. At the end of this
chapter, we will consider options for translating a generalized expression for the electron self-
energy using the AdS/CFT correspondence. But first a model that describes the interactions
between electrons and phonons will be reviewed.
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4.1 Electron-phonon interaction

The interaction between electrons and lattice degrees of freedom plays an important role in
understanding the properties of many materials. An electron that is coupled to phonons
is called a polaron, introduced by Landau in 1933. In a more general context, a polaron
describes a charged quantum particle interacting with a bosonic environment. The particle
gets dressed by the bosonic modes, changing its properties like the energy and effective mass.
Besides dressing charge carriers, phonons also induce an effective attraction between them.
Even a weak attraction is enough to make electrons form pairs in momentum space, close to
the Fermi level. These are the aforementioned Cooper pairs.

In this section, we will consider a model that describes the interaction of electrons with
a vibrating lattice of ions. After quantization, the vibrating lattice gives rise to phonons,
which are considered as harmonic oscillators. So, the model in this section describes the
electron-phonon interaction, which is commonly abbreviated to EPI. Most of the material of
this section can be found in [62] and [63].

4.1.1 EPI model

The Hamiltonian describing electrons coupled to phonons is assumed to have the form

H = Hel +Hph +Hel-ion +Hel-el, (4.1)

where the first term describes the kinetic energy of the electrons,

Hel =
∑
p,σ

p2

2m
c†p,σcp,σ,

with c†p,σ (cp,σ) the creation (annihilation) operator of an electron state with momentum p
and spin σ. The second term describes the lattice, which is considered as a set of linear,
independent oscillators with frequency ωq,λ

Hph =
∑
q,λ

ωq,λ

(
a†q,λaq,λ +

1

2

)

where a†q,λ (aq,λ) is the creation (annihilation) operator of a phonon with momentum q and
branch index λ, which labels the polarization of the phonon. If the solid is d dimensional and
has N unit cells that contain L ions, then the ions can vibrate in dL ways; see figure 4.1a.
Of these modes, there are d acoustical modes, which correspond to displacing all the ions in a
unit cell by nearly the same amount in the same direction, which costs arbitrarily low energy.
The d(L− 1) remaining modes are called optical modes. An example is shown in figure 4.1b.
Due to their low energies, acoustical modes are dominant at low temperatures. Phonons are
bosons, since their creation and annihilation operators obey bosonic commutation relations.

Additionally, the electron-ion interaction term has in position space the form

Hel-ion =

Ne∑
i=1

Ṽ (ri), with Ṽ (ri) =
∑
j

V (ri −Rj),

where Ne is the total number of electrons, and V (ri − Rj) describes the potential of the
crystal with Rj the position of the j-th ion. Assume that the actual position of the j-th ion
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4.1 Electron-phonon interaction

(a) (b)

Figure 4.1: Phonon modes for a unit cell containing three ions. (a) Three examples of
polarization in phonon modes. (b) Phonon spectrum with three acoustical modes, and six
optical modes. Figures taken from [62].

is given by Rj = R0
j + Qj , where the latter is the deviation from the equilibrium position

R0
j , which is taken to be small. Expansion of the crystal potential gives

V (ri −Rj) ' V (ri −R0
j ) + Qj · ∇RV (ri −R0

j ). (4.2)

The first term gives rise to the interaction of electrons with a periodic potential. Together
with the electronic kinetic term in (4.1), this term will produce non-interacting Bloch states,
which in second-quantization formalism can be written as

Hel =
∑
p,σ

εp,σ c
†
p,σcp,σ,

where εp,σ is the Bloch energy, with εpF ,σ = µ, and c†p,σ (cp,σ) creates (annihilates) an electron
in a Bloch state of crystal momentum p and spin σ.

Electron-phonon interaction term

The second term in (4.2) results in the electron-phonon interaction term. After taking the
Fourier transformation, the electron-phonon interaction term assumes the form [62]

Hel-ph =
1

V
1
2

∑
q,λ

gq,λ (aq,λ + a†−q,λ)
∑
p,σ

c†p+q,σcp,σ,

where V is a normalization constant related to the system’s size,
∫
dreip·r = Vδp,0. The

electron-phonon interaction can be interpreted as the scattering of an electron from an initial
state |p, σ〉el to the final state |p+q, σ〉el, either by absorbing a phonon of state |q, λ〉ph or by
emitting a phonon of state |−q, λ〉ph. The electron-phonon coupling is given by gq,λ, which is
temperature independent.

The electron-phonon interaction term can be rewritten slightly in the form

Hel-ph =
1

V
1
2

∑
p,σ

∑
q,λ

gq,λAq,λc
†
p+q,σcp,σ, with Aq,λ ≡ aq,λ + a†−q,λ. (4.3)
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Chapter 4 Superconductors and electron-phonon interaction

Here, the phonon operator Aq can be interpreted as removing momentum q from the phonon
system, either by annihilating a phonon with momentum q, or by creating a phonon with
momentum −q.

Since the ion lattice is periodic, there is also a lattice in momentum space (MS). This
lattice is called the reciprocal lattice (RL), and is defined as RL =

{
G ∈ MS

∣∣eiG·Rj = 1
}

,
where Rj are the equilibrium positions of the ions. A closely related concept is the first
Brillouin zone (FBZ), which is defined as FBZ =

{
q ∈ MS

∣∣ |q| < |q−G|, ∀G 6= 0
}

. Any
phonon wave vector k can be decomposed into k = q + G, where q ∈ FBZ and G ∈ RL.
Processes involving phonons with wave vectors restricted to the first Brillouin zone (G = 0),
are called normal processes. Umklapp processes, on the other hand, are processes with G 6= 0.

It was mentioned before that acoustical modes are dominant. Therefore, only normal
processes in the electron-phonon interaction (4.3) are considered. So, we restrict the phonon
wave vectors to the first Brillouin zone, q ∈ FBZ.

Remaining terms

The electron-electron term in (4.1) is usually taken to be the Coulomb interaction. The effect
of this term is to renormalize the electron-phonon coupling constant, g → ḡ, and the phonon
frequencies ωλ(q) [63]. Finally, ion-ion interactions are ignored, for we assume the ions to be
sufficiently far apart.

Altogether, the full Hamiltonian of the system is given by

H =
∑
p,σ

εp,σ c
†
p,σcp,σ +

∑
q,λ

ωq,λ

(
a†q,λaq,λ +

1

2

)
+

1

V
1
2

∑
p,σ

∑
q,λ

ḡq,λAq,λc
†
p+q,σcp,σ, (4.4)

where ḡ is the renormalized electron-phonon coupling constant due to screening, which is
not discussed further here, since only the structure of the Hamiltonian is important for our
purposes.

Because lattice vibrations occur at finite temperature, in order to describe the Green’s
functions for this system, it necessary to review first some properties of Green’s functions at
finite temperature.

4.2 Green’s functions at finite temperature

In this section, Green’s functions at finite temperature are reviewed, first for electrons, and
then for phonons. The connection between the periodicity in imaginary time and temperature
was already discussed in section 3.2.3. It is convenient to describe Green’s functions at finite
temperature in imaginary time, where t→ τ = it, since, as will be shown, the imaginary time
evolution operator and the Boltzmann factor can be treated on an equal footing and a single
perturbative expansion suffices.

We will work in the grand canonical ensemble, where the number of particles is variable,
and the total Hamiltonian is given by

K = K0 + V = H0 − µN + V, and H = H0 + V, (4.5)

with H0 the Hamiltonian of the unperturbed system, µ the chemical potential, N the par-
ticle number operator, and V describes the interactions. We assume that the unperturbed
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4.2 Green’s functions at finite temperature

Hamiltonian does not commute with the interactions, [H0, V ] 6= 0. Furthermore, we assume
that the number operator commutes with the Hamiltonian,

[H,N ] = 0, [H0, N ] = 0,

so that we can define simultaneous eigenstates of H and N , and of H0 and N .

4.2.1 Electron Matsubara Green’s function

The electron Green’s function in imaginary time, or electron Matsubara Green’s function
(MGF), is given by

Gσ(τ − τ ′,p) = −〈Tτ cp,σ(τ)c†p,σ(τ ′)〉, with −β ≤ τ − τ ′ ≤ β,

where Tτ denotes ordering in imaginary time, which arranges operators with smallest τ to
the right. We will represent Matsubara Green’s functions with a script capital, e.g. G for the
electron MGF, while real-time Green’s functions are denoted with a normal capital, e.g. G.
The bracket 〈·〉 means taking the thermodynamic average:

〈O〉 = Tr (ρO) =
1

Z
Tr
(
e−βKO

)
, with Z = Tr

(
e−βK

)
.

For the bracket with a subscript 〈·〉0, we take the thermodynamic average over the unper-
turbed system, i.e., with K = K0.

Interaction picture

In the interaction picture, which was introduced in section 3.5.1, the imaginary-time depen-
dence due to the free Hamiltonian H0 can be absorbed into the operators, so that (cf. (3.45))

cp(τ) = U−1(τ, 0)cp(0)U(τ, 0) = U ′−1(τ, 0)cIp(τ)U ′(τ, 0),

where operators in the imaginary time interaction representation are denoted by

cIp(τ) = U−1
0 (τ, 0)cp(0)U0(τ, 0). (4.6)

The imaginary-time evolution operator U(τ, 0) is defined as (cf. (3.44))

U(τ, 0) = U ′(τ, 0)U0(τ, 0), with U0(τ, 0) = e−K0τ ,

and U ′(τ, 0) is the imaginary-time evolution operator pertaining to V ,

U ′(τ, 0) ≡ Tτe−
∫ τ
0 dτ ′V I(τ ′), with V I(τ) ≡ U−1

0 (τ, 0)V (0)U0(τ, 0), (4.7)

which has this form because H and V do not commute, and can be obtained in an analogous
way as the real-time-evolution operator described in section 3.5.1. For convenience, we define
the S-matrix for the scattering of a state at ‘time’ τ1 to a state at ‘time’ τ2,

S(τ1, τ2) ≡ Tτe
−

∫ τ2
τ1

dτ ′V I(τ ′)
= U ′(τ1, 0)U ′−1(τ2, 0).
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Chapter 4 Superconductors and electron-phonon interaction

Electron MGF in interaction picture

Since the electron Green’s function in imaginary time only depends on the difference in
imaginary time, one can shift τ − τ ′ → τ , and, together with the above definitions, the
Green’s function becomes

Gσ(τ,p) = − 1

Z
Tr
(
e−βKTτ

(
U ′−1(τ, 0)cIp,σ(τ)U ′(τ, 0)

)
cI†p,σ(0)

)
.

In the imaginary-time formalism, the ‘time’ evolution of the density operator ρ can be written
in terms of the time-evolution operator U ′, since the operator e−βK can be rewritten as

e−βK = e−βK0eβK0e−βK = e−βK0U−1
0 (β, 0)U(β, 0) = e−βK0U ′(β, 0), (4.8)

where in the last equality (4.7) has been used. Using further the identities U ′(τ, 0) = S(τ, 0)
and U ′(β, 0)U ′−1(τ, 0) = S(β, τ), the electron MGF becomes

Gσ(τ,p) = − 1

Z
Tr
(
e−βK0TτS(β, τ)cIp,σ(τ)S(τ, 0)cI†p,σ(0)

)
= − 1

Z
Tr
(
e−βK0TτS(β, 0)cIp,σ(τ)cI†p,σ(0)

)
= −
〈TτS(β, 0)cIp,σ(τ)cI†p,σ(0)〉0

〈S(β, 0)〉0
,

where for the last equality the operator S(τ, 0) could be moved to the left due to the presence
of the imaginary-time ordering operator, and Z was rewritten by using (4.8). Also, the
identity Z0/Z0 has been inserted.

4.2.2 Dyson’s equation for the electron MGF

The expression for the electron MGF can be evaluated by expanding the S-matrices

Gσ(τ,p) = −

∞∑
n=0

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτn 〈Tτ cIp,σ(τ)V I(τ1) · · ·V I(τn)cI†p,σ(0)〉0

∞∑
n=0

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτn 〈TτV I(τ1) · · ·V I(τn)〉0

.

By applying Wick’s theorem in imaginary time, the n-point functions in the numerator can
be written as a sum over connected diagrams and disconnected diagram, where the latter are
of the form

〈TτV I(τ1) · · ·V I(τj)c
I
p(τ)cI†p (0)〉0〈TτV I(τj) · · ·V I(τn)〉0

The denominator gives just the vacuum polarization terms, which cancel the disconnected
parts from the numerator, so that

Gσ(τ,p) = −
∞∑
n=0

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτn 〈Tτ cIp,σ(τ)V I(τ1) · · ·V I(τn)cI†p,σ(0)〉0,connected.

One can get rid of the 1/n! factor by summing over different connected diagrams. This is
because the expansion by Wick’s theorem gives n! diagrams that have the same topology, i.e.,

60



4.2 Green’s functions at finite temperature

diagrams that can be brought in the same form by permuting their internal time arguments.
So,

Gσ(τ,p) = −
∞∑
n=0

(−1)n
∫ β

0
dτ1 · · ·

∫ β

0
dτn 〈Tτ cIp,σ(τ)V I(τ1) · · ·V I(τn)cI†p,σ(0)〉0,diff-conn. (4.9)

The Fourier transform of the electron Matsubara Green’s function reads [62]:

Gσ(ipn,p) =

∫ β

0
dτ eipnτGσ(τ,p), with pn ≡

(2n+ 1)π

β
, (4.10)

where pn are called fermion Matsubara frequencies, which follows from the anti-periodicity
of the electron MGF with respect to its ‘time’ argument, Gσ(τ,p) = −Gσ(τ + β,p), for
−β < τ < 0.

After taking the Fourier transform, one obtains a series with self-energy diagrams that
can be collected into a Dyson’s equation

Gσ(ipn,p) = G(0)
σ (ipn,p) + G(0)

σ (ipn,p)Σσ(ipn,p)Gσ(ipn,p)

=
G(0)
σ (ipn,p)

1− G(0)
σ (ipn,p)Σσ(ipn,p)

,

with G(0)(ipn,p) the unperturbed electron Matsubara Green’s function. Further, Σ(ipn,p)
is the electron self-energy, which a sum over one-particle irreducible diagrams1, as shown in
figure 4.2. In section 4.3, an example for the electron-phonon interaction is given.

= + + + + · · ·

Figure 4.2: Electron self-energy diagrams. The dots at the vertices represent the electron-
ically screened electron-phonon coupling.

4.2.3 Phonon Matsubara Green’s function

The above also holds for the phonon Matsubara Green’s function, which is defined as

Dλ(τ − τ ′,q) = −〈TτAq,λ(τ)A−q,λ(τ ′)〉, with −β ≤ τ − τ ′ ≤ β,

where

Aq,λ(τ) = eHτAq,λ(0)e−Hτ and 〈O〉 = Tr
(
e−βH

)−1
Tr
(
e−βHO

)
,

because phonons have no chemical potential, since one can make an arbitrary number of them.

1Diagrams involving tadpoles have been ignored, since in the context of EPI, described in the next section,
they would require phonons with zero wave vector. Phonons with zero wave vector do not exist in our model,
since they correspond to a translation of the crystal.
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Chapter 4 Superconductors and electron-phonon interaction

The Fourier transform of the phonon MGF has the form [62]:

Dλ(iωn,q) =

∫ β

0
dτ eiωnτDλ(τ,q), with ωn ≡

2nπ

β
, (4.11)

where ωn are called boson Matsubara frequencies, which follows from the periodicity of the
phonon Matsubara Green’s function, Dλ(τ,q) = Dλ(τ + β,q), for −β < τ < 0. The Dyson’s
equation for the phonon Matsubara Green’s function has the form

Dλ(iωn,q) =
D(0)
λ (iωn,q)

1−D(0)
λ (iωn,q)Πλ(iωn,q)

,

where Π(iωn,q) is the phonon self-energy, and D(0)(iωn,q) is the unperturbed phonon MGF.
In the next section, the finite-temperature Green’s functions are going to be considered

in the context of the electron-phonon interaction model.

4.3 Electron Matsubara Green’s function for EPI

By combining the two preceding sections, the Matsubara Green’s function for an electron
interacting with phonons can be determined. In this section, this will be done for a weakly
coupled system, that is, for small values of ḡq,λ in (4.4).

In case of the electron-phonon interaction described in section 4.1.1, the interaction V in
(4.5) is given by the electron-phonon interaction term (4.3). For this interaction, only the
terms with n even in the sum over different connected diagrams (4.9) remain. This can be
seen as follows. In an unperturbed system the electronic and phononic degrees of freedom
decouple, and since the thermal average in (4.9) is taken with respect to the free system, the
thermal average splits into a product of a phononic and an electronic thermal average. The
terms with n odd contain factors with 〈TτAq(τ1) · · ·Aq(τn)〉0, and these vanish since they

contain an odd number of aq or a†−q (cf. (4.3)).
The electron MGF can then schematically be written as

Gσ(τ,p) = G(0)
σ (τ,p) + G(2)

σ (τ,p) + G(4)
σ (τ,p) + · · · ,

where the first term is the free-electron Green’s function. By using Wick’s theorem, the term
for n = 2 in (4.9) gives six terms, but there is only one different connected term of the form

G(2)
σ (τ,p) = − 1

V
∑
p,σ

∑
q,λ

ḡ2
q,λ

∫ β

0
dτ1

∫ β

0
dτ2D(0)

λ (τ1 − τ2,q)G(0)
σ (τ − τ1,p)×

× G(0)
σ (τ1 − τ2,p− q)G(0)

σ (τ,p).

By taking the Fourier transform of the imaginary time (cf. (4.10)), this can be cast in the
form

G(2)
σ (ipn,p) = G(0)

σ (ipn,p)2 Σ(1)
σ (ipn,p), (4.12)

where

Σ(1)
σ (ipn,p) = − 1

βV
∑
q,λ

∑
iωn

ḡ2
q,λD

(0)
λ (iωn,q)G(0)

σ (ipn − iωn,p− q), (4.13)
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which is the contribution to the electron self-energy from one phonon, and is sometimes
called the lowest-order polaron self-energy. The Feynman diagram of this interaction is the
first diagram on the right hand side in figure 4.2.

Since we are in the weak-coupling regime, higher order terms in the self-energy can be
neglected, because all higher-order diagrams contain higher powers of the coupling constant.
Thus,

Σ ' Σ(1).

Unperturbed Matsubara Green’s functions

It is shown in Appendix E.1 that the unperturbed electron Matsubara Green’s function for
the Hamiltonian (4.1) is given by

G(0)
σ (ipn,p) =

1

ipn − ξp,σ
, with ξp,σ ≡ εp,σ − µ.

Here, the energy of the electron ξp,σ is measured with respect to the Fermi surface2, i.e.,
ξpF ,σ = εpF ,σ − µ = 0. It is also shown in Appendix E.1, that for the unperturbed phonon
MGF one has

D(0)
λ (iωn,q) =

2ωq,λ

(iωn)2 − ω2
q,λ

.

4.3.1 The electron self-energy for weak coupling

Substituting the free Green’s functions into the expression for the self-energy (4.13) gives

Σ(1)
σ (ipn,p) = − 1

βV
∑
q,λ

ḡ2
q,λ

∑
iωn

2ωq,λ

(iωn)2 − ω2
q,λ

1

ipn − iωn − ξp−q,σ
. (4.14)

In Appendix E.2, it is shown that evaluating the sum over the phonon Matsubara frequencies
by using contour integration, gives

Σσ(ipn,p) =
1

V
∑
q,λ

ḡ2
q,λ

(
nB(ωq,λ) + nF (ξp−q,σ)

ipn + ωq,λ − ξp−q,σ
+
nB(ωq,λ) + 1− nF (ξp−q,σ)

ipn − ωq,λ − ξp−q,σ

)
,

where nB and nF are the bosonic and fermionic distributions,

nB(ω) =
1

eβω − 1
and nF (ξ) =

1

eβξ + 1
, (4.15)

which are the Bose-Einstein distribution and the Fermi-Dirac distribution, respectively. As
a remark, at zero temperature the Bose-Einstein distribution vanishes and the Fermi-Dirac
distribution becomes a unit step function,

nB(ω)
T→0−−−→ 0, and nF (ξ)

T→0−−−→ θ(µ− ξ).

Furthermore, as mentioned in section 4.1.1, the electron-phonon coupling function is temper-
ature independent.

2Note that for not too high temperatures, the chemical potential µ and the Fermi energy εF are more or
less equal.
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Taking the system’s size to infinity, V → ∞, so that

lim
V→∞

1

V
∑
q

f(q) =

∫
dq

(2π)3
f(q),

the expression for the one-phonon self-energy of the electron assumes the form

Σσ(ipn,p) =
∑
λ

∫
d3q

(2π)3
ḡλ(q)2

(
nB(ωλ) + nF (ξσ)

ipn + ωλ(q)− ξσ
+
nB(ωλ) + 1− nF (ξσ)

ipn − ωλ(q)− ξσ

)
, (4.16)

where ξσ is a shorthand for ξσ(p− q).
This concludes the section of weakly-coupled theory. In the next section, the theory for

strong coupling is considered.

4.4 Strong-coupling theory

In the previous section, the electron self-energy for weak coupling was discussed. Because of
the weak coupling, it was possible to ignore higher-order corrections to the electron self-energy.
In this section, the electron self-energy in a strongly-coupled regime will be considered. When
the coupling between electrons and phonons is strong, it is not possible to ignore higher order
terms.

The electron self-energy contains diagrams of the form given in figure 4.2. Diagrams like
the second one on the right hand side of this figure, contain phonon corrections to the electron-
phonon vertex like the left diagram in figure 4.3. However, for metals in the normal state,
that is, the non-superconducting state, Migdal argued in 1958, that the renormalization due
to phonons of the electron-phonon vertex, is suppressed at least by a factor

√
m/M ∼ 10−2,

where m and M are the masses of the electron and ion [64]; see figure 4.3. Since corrections
in the electron-phonon vertex are suppressed, one only has to consider diagrams of the form
displayed in figure 4.4 to calculate the electron self-energy.

The proof builds on the assumption of the presence of a regular Fermi surface, and the
renormalization of high-frequency phonons to low-frequency acoustical phonons by electron
screening processes.3 This agrees with experiments, where only the latter were observed. For
an explicit calculation showing this renormalization, see Chapter 17 of [62].

The generalization of Migdal’s argument to superconducting metals was given by Eliash-
berg in 1960 [66], who presented an improvement of the BCS theory, because he took into
account the retardation of the electron-phonon interaction. A further generalization by in-
cluding Coulomb interactions was given in [67], from which the theory of this section was
mainly taken.4 A slightly modified form of this version can be found in [63].

4.4.1 The electron self-energy

Instead of using the unperturbed matsubara Green’s functions in the electron self-energy
(4.13), one needs to include the fully dressed Green’s functions in strong-coupling theory, as

3In [65], it has been shown that Migdal’s argument also holds when the limiting energy of the phonons is
much larger than the Fermi energy instead. Here, also a compact reformulation of Migdal’s original discussion
is presented.

4In case one has doubts about the validity of Migdal’s argument in the strong-coupling limit: it has been
shown in [70], that in a large-N approach, where N is the number of fermionic flavors, vertex corrections are
of order 1/N .
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'
√

m
M

Figure 4.3: Migdal’s argument for electron-phonon vertex corrections.

' + + + · · · =

Figure 4.4: Reduced electron self-energy due to ignoring vertex corrections. The double
lines in the diagram on the right denote the fully dressed electron and phonon propagators.

can be seen from the rightmost diagram in figure 4.4. This diagram has the expression

Σσ(ipn,p) = − 1

β

∑
λ

∫
d3q

(2π)3
ḡλ(q)2

∑
iωn

Dλ(iωn,q)Gσ(ipn − iωn,p− q). (4.17)

By performing a calculation as in Appendix D.1, one obtains the spectral decomposition, and
by using the electron spectral density Aσ(ω,p) = −2 ImGRσ (ω,p) (cf. (3.59)), the electron
Matsubara Green’s function can be written in its Lehmann representation (cf, (3.60)),

Gσ(ipn − iωn,p− q) =

∫ ∞
−∞

dε′

2π

Aσ(ε′,p− q)

ipn − iωn − ε′
. (4.18)

Likewise, using the phonon spectral density Bλ(ω,q) = −2 ImDR
λ (ω,q), the phonon Matsub-

ara Green’s function has the Lehmann representation

Dλ(iωn,q) =

∫ ∞
−∞

dω′

2π

Bλ(ω′,q)

iωn − ω′
=

∫ ∞
0

dω′

2π
Bλ(ω′,q)

(
1

iωn − ω′
− 1

iωn + ω′

)
,

where in the second equality the antisymmetry of the spectral function with respect to ω′ has
been exploited, which follows from (D.3).

By comparing the Lehmann representations of the Matsubara Green’s function (4.18) and
the retarded Green’s function (3.60), it is clear that the retarded Green’s functions can be
obtained from the Matsubara Green’s functions by an analytic continuation,

Gσ(ipn → ξ + i0,p) = GRσ (ξ,p), and Dλ(iωn → ω + i0,q) = DR
λ (ω,q). (4.19)

With the Lehmann representations of the Matsubara Green’s functions, the self-energy
has the form

Σσ(ipn,p) =
∑
λ

∫
d3q

(2π)3
ḡλ(q)2

∫ ∞
0

dω′

2π
Bλ(ω′,q)

∫ ∞
−∞

dε′

2π
Aσ(ε′,p− q)×

×
(
S0(ω′, ε′, ipn)− S0(−ω′, ε′, ipn)

)
,
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where

S0(ω′, ε′, ipn) ≡ − 1

β

∑
iωn

1

iωn − ω′
1

ipn − iωn − ε′
=
nB(ω′) + nF (ε′)

ipn + ω′ − ε′

is the sum over the product of the non-interacting Green’s functions. This sum over Matsubara
frequencies has been evaluated by employing (E.1).

4.4.2 Eliashberg spectral function

By using nB(−ω′) = −(1 + nB(ω′)), the expression for the self-energy becomes

Σσ(ipn,p) =

∫ ∞
0
dω′

∫
d3q

(2π)3
α2F (ω′,q)Kσ(ipn,p− q, ω′, T ), (4.20)

where the kernel is defined as

Kσ(ipn,p
′, ω′, T ) ≡

∫ ∞
−∞

dε′

2π
Aσ(ε′,p′)

(
nB(ω′) + nF (ε′)

ipn + ω′ − ε′
+
nB(ω′) + 1− nF (ε′)

ipn − ω′ − ε′

)
, (4.21)

which describes the thermal excitations of the bosons and electrons. In addition, the electron-
phonon spectral function is defined as

α2F (ω′,q) ≡ 1

2π

∑
λ

ḡλ(q)2 Bλ(ω′,q). (4.22)

This electron-phonon spectral function is also called the Eliashberg spectral function, and it is
a measure for the effectiveness of scattering electrons from a state p on the Fermi surface to a
state p−q on the Fermi surface. Explicit temperature dependence of this spectral function has
been dropped, since the temperature dependence of the boson spectral density is very weak
[68]. Note that all the information about the phonons is contained in this electron-phonon
spectral function.

It is worthwhile to mention that the only approximations that have been made up to this
point, are the disregarding of vertex corrections by Migdal’s argument, and ignoring short-
range screened Coulomb repulsions. The latter will not be discussed here, but for a treatment
see [67]. The reason is that, besides giving a renormalization, they will only play a role in the
anomalous Green’s functions, which are defined at the end of this section.

In the literature, the Eliashberg spectral function is frequently found averaged over the
Fermi surface

α2F (ω) = 〈α2F (ω,q)〉FS =

∫
FS

d2q

vF
α2F (ω,q)

/∫
FS

d2q

vF
.

This function can be interpreted as a measure for the effectiveness of scattering electrons from
any state on the Fermi surface to any other state on the Fermi surface. An example of such
an averaged spectral function is given shortly.

The self-energy in the weak-coupling regime (4.16) can be obtained by substituting the

unperturbed spectral functions A(0)
σ (ε′,p) = 2πδ(ε′−ξσ(p)) and B(0)

λ (ω′,q) = 2πδ(ω′−ωλ(q))
into (4.20).
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4.4 Strong-coupling theory

4.4.3 Reduction to a single variable

It is possible to reduce the integrals in (4.20) to an integral over a single variable. The
following description is adapted from [63] and [67]. We drop spin indices throughout this
section.

We assume that the Fermi sphere is spherical, which is the case for an isotropic system.
Since we have assumed that only acoustical phonons are present, the phonon frequencies
will be lower than the Debye frequency ωD, which is the maximum frequency phonons in
a simplified model can have. This Debye frequency is much smaller than the Fermi energy
εF . Therefore, only electrons with momenta close to the Fermi surface will be susceptible to
scattering by phonons. In addition, since we have assumed that the Fermi surface is spherical,
the p dependence of the self-energy is unimportant. Hence, it will have arguments (ipn, pF ),
where pF is the Fermi momentum.

The first step is to rewrite the phonon wave vector integral:∫
d3q→

∫ ∞
0
dq q2

∫ 1

−1
dθ′
∫ 2π

0
dφ, with θ′ = cos θ,

where q =
√

q · q, and θ is the angle between p and q; see figure 4.5. Note that q would
normally run over the first Brillouin zone, however by including Umklapp processes, the
integral has been extended to infinity.

θ

φ

p’

p

q

Figure 4.5: Coordinate system for carrying out the wave vector integral.

Next, define p′ ≡ q−p, which is the wave vector for the electron in the intermediate state
in figure 4.4. Then, for p′ =

√
p′ · p′, we find p′dp′ = pq dθ′, and we can write∫
d3q→ 1

p

∫ ∞
0
dq q

∫ p+q

|p−q|
dp′ p′

∫ 2π

0
dφ.

The second step is to define

mdξp′ ≡ p′ dp′.

so that the phonon wave-vector integral can be written as

∫
d3q→ m

p

∫ ∞
0
dq q

∫ (p+q)2

2m
−εF

(p−q)2
2m

−εF
dξp′

∫ 2π

0
dφ,
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where εF is the Fermi energy. Since everything happens around the Fermi surface, we can
replace p by pF , and m/p→ m/pF = 1/vF , where vF is the Fermi velocity.

The last step is to decouple the limits of integration over ξp′ . Employing the above
argument, the dominant contribution to this integral comes from the region |ξp′ | ≤ ωD. As a
result, the limits of the ξp′ integral can be extended:∫

d3q→ 1

vF

∫ 2pF

0
dq q

∫ 2π

0
dφ

∫ ∞
−∞

dξp′ . (4.23)

In addition, the upper limit of the q integral has been reduced, since the wave vectors p and
p′ are restricted to lie close to the Fermi surface, which limits q ≤ 2pF for a spherical Fermi
surface. The maximum momentum transfer 2pF happens when an electron with momentum
pF scatters to a state with momentum −pF . The integrals over q dq and dφ are understood
to be over the spherical Fermi surface, from a point pF on the Fermi surface to all other
points p− q on the Fermi surface.

Substituting (4.23) for the phonon wave vector integral, the electron self-energy becomes

Σ(ipn, pF ) =

∫ ∞
0
dω′ α2F (ω′, pF )K(ipn, ω

′, T ), (4.24)

where the kernel is now given by

K(ipn, ω
′, T ) =

∫ ∞
−∞

dξp′

∫ ∞
−∞

dε′

2π
A(ε′, ξp′)

(
nB(ω′) + nF (ε′)

ipn + ω′ − ε′
+
nB(ω′) + 1− nF (ε′)

ipn − ω′ − ε′

)
,

and the Eliashberg spectral function has the form

α2F (ω′, pF ) =
1

vF (2π)4

∫ 2pF

0
dq q

∫ 2π

0
dφ
∑
λ

ḡλ(q)2 Bλ(ω′,q), (4.25)

which is an integral over the Fermi surface. The dependence on the Fermi momentum pF will
not be written henceforth. A slightly more formal separation of the ‘energy’ and ‘angular’
parts of the phonon wave vector integration is given in [69].

Further reduction for the normal state

For metals in the normal state, Migdal argued further that one is allowed to replace the
electron Green’s function by the non-interacting Green’s function. This is called Migdal’s
theorem [64]. This theorem is not (known to be) valid in the superconducting state. Moreover,
vertex corrections are vital for superconductivity in the BCS theory [63].

Using Migdal’s theorem, we are allowed to replace the electron spectral density by its
unperturbed one, A(ε′, ξp′) = A(0)(ε′, ξp′) = 2πδ(ε′ − ξp′) [64]. In that case, the kernel of
(4.24) is given by

K(ipn, ω
′, T ) =

∫ ∞
−∞

dε

(
nB(ω′) + nF (ε)

ipn + ω′ − ε
+
nB(ω′) + 1− nF (ε)

ipn − ω′ − ε

)
, (4.26)

where we have changed the integration variable to ε.
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4.5 Glue function

From (4.17) and (4.19), it is clear that the retarded self-energy can be obtained by making
the substitution ipn → ξ + iδ:

ΣR(ξ) =

∫ ∞
0
dω′ α2F (ω′)KR(ξ, ω′, T ), (4.27)

where KR(ξ, ω′, T ) ≡ K(ipn → ξ + i0, ω′, T ).

The integral over ε in the kernel (4.26) can be performed analytically. In Appendix B of
[69], it is shown that this gives the result

KR(ξ, ω′, T ) = −iπ coth

(
ξ

2T

)
+ Ψ

(
1

2
+ i

ξ − ω′

2πT

)
−Ψ

(
1

2
− iξ + ω′

2πT

)
, (4.28)

where Ψ(x) is the digamma function, Ψ(x) = d ln Γ(x)/dx.

Superconductivity state

It is worthwhile to mention that for metals in the superconducting state one also has to
include

F(τ − τ ′,p) = 〈Tτ c−p,↓(τ)cp,↑(τ
′)〉, with −β ≤ τ − τ ′ ≤ β,

and its complex conjugate in the theory; see e.g. [63]. These are the so-called anomalous
Green’s functions, and they appear because in the superconducting state, the ground state
is a superposition of electronic states containing a different number of electrons, so that it is
possible to have two annihilation or creation operators between a ground-state bra and ket.
Details can be found in [67] and [63].

In this section we have found an expression for the electronic self-energy and showed two
reduced forms. Next, we will generalize the Eliashberg spectral function to a glue function
and discuss some outcomes from experiments.

4.5 Glue function

The description of the electron-phonon interaction in the previous section included retarded
effects due to electron-phonon interactions. Effects due to the Coulomb interaction, which are
non-retarded, or, instantaneous, were ignored or absorbed into the electron-phonon coupling.

In the pursuit of understanding the pairing mechanism between conducting electrons in
high-Tc superconductors, various sources for the pairing have been studied. These include
the phonons studied in the previous sections, but also other virtual bosons, such as magnons,
which are quantized spin waves, and plasmons, which are quantized collective electronic
charge-density waves.

Since the Eliashberg spectral function (4.22) or (4.25) contains all the information about
the phonons in the system, and the kernel contains the electronic information and thermal
occupation factors, to describe pairing induced by other bosons, one just has to replace the
Eliashberg spectral function in the theory. For example, in case of magnons the electron-
magnon spectral function is denoted by I2χ(ω).

As the pairing mechanism in high-Tc superconductors is unknown, the electrons are com-
monly thought to be held together by some ‘pairing glue’ with unknown (boson-induced)
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Chapter 4 Superconductors and electron-phonon interaction

constituents. In that case, one generalizes the Eliashberg spectral function to a glue function
Π̃(ω), in which the contributions from various bosonic sources are lumped. The expression
for the retarded electron self-energy (4.27) is then changed to

ΣR(ξ) =

∫ ∞
0
dω Π̃(ω)KR(ξ, ω, T ). (4.29)

Because the electron-phonon coupling in the Eliashberg spectral functions (4.22) and (4.25)
was renormalized due to Coulomb interactions, non-retarded effects due to these interactions
are also present in the glue function.

4.5.1 Measurements of the glue function

Using modern experimental techniques, such as angle-resolved photo emission (ARPES), the
glue function can be measured. See, e.g., [71] for an introduction to ARPES. Additionally,
the glue function can be obtained by means of optical spectroscopy from which the optical
conductivity σ(ω) can be determined. The optical conductivity is the frequency-dependent
conductivity in a metal, which is measured by the absorption, transport and emission of
photons by electrons. From this optical conductivity, one is able to determine the single-
particle electron self-energy by using a relation given by Allen [72, 73],

σ(ω) =
ine2

mω

∫ ∞
−∞

dξ
nF (ξ)− nF (ξ + ω)

ω − ΣR(ξ + ω) + ΣR∗(ξ)
. (4.30)

Here, ΣR is the electron self-energy averaged over the Fermi surface (4.27), and e, m and n are
the electron charge, mass and density, respectively. This expression is valid when anisotropies
of the Fermi surface can be ignored.

In deriving the expression for the electron self-energy (4.27), and the above relation with
the optical conductivity, the following assumptions have been made: (i) isotropy of the sys-
tem, so that the Fermi sphere is spherical, (ii) the frequency of the bosons is of order of the
Debye frequency, and (iii) vertex corrections can be ignored. These assumptions are reason-
able for conventional superconductors in the normal state. However, vertex corrections may
play a role, as they do in the BCS theory that describes superconductivity in conventional su-
perconductors.5 For that reason, the glue function Π̃(ω) is sometimes defined as the effective
quantity that returns the exact value of σ(ω) for each frequency [74].

The glue function has been measured for various high-Tc superconducting materials by
several groups. For a comparison of these measurements of the glue function, see [5]. Recently,
Heumen et al. have measured the glue functions of two high-Tc cuprates at three temperatures
and four doping levels [74]. They have observed a peak in the glue function in the 50–60 meV
range. A remarkable thing about these peaks is, that the energies at which the peaks appear
seem to be independent of temperature and doping level. In addition, the position of the
peak does not seem to vary for different compounds. Finally, there is a doping-dependent
continuum extending to 300–400 meV for the samples with the highest Tc. The results are
displayed in figure 4.6

Although the position of the peaks with respect to the energy does not vary with temper-
ature, the form of the peaks does. The temperature dependence of the glue functions that
are displayed in figure 4.6, is discussed by Heumen et al. in [68]. Although the Eliashberg

5Vertex corrections give rise to the Cooper instability [63].
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4.6 Gravity dual for the electron self-energy

Figure 4.6: Electron-boson glue function for various doping levels and temperatures (de-
noted by the colors). The doping level increases from top to bottom, where UD means under
doped, OD over doped, and OpD means optimally doped. The numbers in, e.g., OpD88,
denote the critical temperature Tc. Note the peak in the 50–60 meV range. Figure taken
from [74].

spectral function (4.25) (or (4.22)) was said to be temperature independent —which is true
for phonons— there can enter some dependence through the boson spectral function B, when
the Eliashberg spectral function is generalized to a glue function to account for some unknown
bosonic source. It has been argued in [70], that the temperature dependence can be relevant
if the bosons derive from electronic degrees of freedom. The temperature dependence of the
measured glue functions, suggest there is at least some contribution from these kind of bosons.

Now, that the electron-phonon spectral function has been generalized to a generic electron-
boson spectral function, that is, the glue function Π̃(ω), we will consider options for translating
the electron self-energy of the form (4.29) using the AdS/CFT correspondence in the next
section.

4.6 Gravity dual for the electron self-energy

In this section, we will give suggestions for finding a dual description of the electron self-energy
(4.29). To construct a gravity dual for this self-energy, one is immediately confronted with
the question how to model phonons in the dual AdS spacetime. We will start with proposing
some options for this. The ideas that are presented in this section are sketchy and have to be
worked out further.
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4.6.1 Ideas for calculating the electron self-energy in AdS/CFT

The phonons discussed in this chapter are quasiparticles associated with lattice vibrations.
For this reason, a suggestion for modeling phonons in the gravity dual could be a lattice
in AdS spacetime, and study its vibrations. Lattices in the AdS/CFT correspondence are
discussed in [75]. However, we would probably not gain much information from this approach,
since the dual model will somehow be an engineered copy of the original one, albeit at weak
coupling.

A totally other approach would be to study the optical conductivity in AdS/CFT, since
the electron self-energy in the aforementioned experiments is obtained by measuring this
quantity. The optical conductivity for a fermionic system is given by the Kubo formula,

σ(ω) =
1

iω
〈Jx(ω)Jx(−ω)〉ret,

where Jx is a current density at zero spatial momentum. For example, this optical conductivity
is calculated in a 2+1-dimensional AdS spacetime in the presence of a charged extremal black
hole in [53]. However, a generalization to a non-extremal black hole is necessary, in order to
have a nonzero temperature. One could then try to relate this optical self-energy to (4.30).

The most natural approach seems to be a model where phonons correspond to a bosonic
field in the bulk. The bulk action that describes a bosonic field that is coupled to a Dirac
fermionic field, has roughly the form

Sbulk = S[φ] + S[ψ] + gel-ph

∫
dd+1x

√
−g φψ̄ψ, (4.31)

where S[φ] is the action of a free boson (see section 3.4), S[ψ] the action describing a free Dirac
fermion, and gel-ph is the fermion-boson coupling. In addition, there should be a Einstein-
Hilbert term to account for the gravitons, and in order to have a finite temperature in the
CFT, the metric should describe a black hole.

Because of the background’s curvature, solving the equations of motions for the electron
that follow from this action is not a trivial task. By imposing ingoing boundary conditions
at the horizon and using an expression like (3.53), the retarded Green’s for the electron can
be calculated.

As the coupling constant g in the bulk is small, one can make a perturbative expansion
of the retarded Green’s function of the form (cf. (4.12))

GR(ω, k) = G
(0)
R (ω, k) +G

(0)
R (ω, k)2 Σ(1)(ω, k) +O(g4).

If it is possible to get a structure as in (4.29) for the electron self-energy, then by stripping off
the kernel, information about the glue function can be obtained, and one can try to reproduce
the observed peak. At first sight, finding a dual for the kernel seems to be a daunting task,
but in the next subsection we will consider a possible candidate for it.

Another possibility would be regarding phonons as density waves, since the phonons are
related to lattice vibrations. In section 3.1.1, it was shown that the energy density T00 is
related to g00. Therefore, the dual system to consider will be a model like (4.31) with the
bosonic field φ replaced by g00. Finally, a possibility would be to replace the bosonic field φ
by a gauge field Aµ.
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4.6.2 Gravity dual for the kernel

Son and Starinets [47], have calculated the retarded Green’s function for a massive scalar field
in a non-extremal BTZ black hole background, which is a solution of the Einstein equation
with a negative cosmological constant (3.2) in 2 + 1-dimensions.

As explained in section 3.4.2, there are two branches for the scalar field in the bulk. By
choosing a branch, one determines whether φ(0) or φ(1) in (3.29) is the source for the dual
operator in the CFT. Son and Starinets have calculated the Green’s function for the ‘+’
branch, which corresponds to the form (3.29) for the near-boundary behavior of the scalar
field, with ∆ = ∆+. Here, ∆ is the conformal dimension of the corresponding operator in the
two-dimensional CFT.

For ∆+ = 1/2,6 they have obtained an expression of the form

GR(p+, p−) = C

[
Ψ

(
1

2
− ip+

2πTL

)
+ Ψ

(
1

2
− ip−

2πTR

)]
,

where C is some normalization constant, and Ψ(x) are digamma functions. Further, the
momenta p± are defined as

p+ =
ω − k

2
and p− =

ω + k

2
,

and the temperatures are given by

TL,R =
ρ+ ∓ ρ−

2π
,

where ρ± are the locations of the outer (+) and inner (−) horizons of the BTZ black hole.
By substituting the momenta p±, the Green’s function can be rewritten as

GR(k, ω) = C

[
Ψ

(
1

2
+ i

k − ω
2πT̃L

)
+ Ψ

(
1

2
− ik + ω

2πT̃R

)]
, (4.32)

with T̃L,R = 2TL,R.
The value ∆+ = 1/2 for the conformal dimension of the dual operator, satisfies the

unitarity bound (3.30). From the relation (3.28), which expresses ∆+ in terms of the scalar
mass and AdS radius, we see that (4.32) is the Green’s function for a tachyonic scalar field;
see section 3.4.4.

For T̃L = T̃R this retarded Green’s function has a striking resemblance to the kernel (4.28).
However, there are a few differences. Firstly, there is an extra term in (4.28). Nevertheless,
this term does not depend on ω′, and can be taken out of the integral in (4.29). Secondly,
there is a minus sign between the digamma functions in (4.28). In spite of that, the similarity
between this Green’s function and the kernel (4.28), leads to the belief that it is possible to
find a separation of the electron self-energy into something like the kernel and glue function
in the bulk spacetime.

6We have made a slight modification in notation: ∆+ here, corresponds to β+ = ∆+/2 of [47].
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5
Conclusion

The search for a bulk dual of a glue function is far from complete. One of the first problems
one encounters in this endeavor, is the question what a useful dual description for phonons
is. The most appropriate candidate for such a description of phonons is probably a bosonic
bulk field. In the bulk, one can then couple a Dirac fermion field to this bosonic field. If
one is able to solve the field equations for this fermionic field, the retarded Green’s function
of it can be calculated. The next step would be stripping off the temperature-dependent
kernel that is present in the electron self-energy, so that one is left with the glue function.
This may seem challenging, but the similarity between this kernel and the expression for the
retarded Green’s function for a bosonic field in a BTZ black hole background, suggests that
it is not too hard to find a description for the kernel in the bulk. This raises the hope, that in
this way it is possible to gain insight in the pairing mechanism between electrons in high-Tc

superconductors.
In this thesis, we have reviewed how the AdS/CFT correspondence follows from type-

IIB superstring theory. The AdS/CFT correspondence provides an important tool to study
strongly-coupled systems at the field-theory side, since the correspondence asserts that this
system is dual to a weakly-coupled theory in the AdS spacetime, and vice versa. Further, it
was shown, that adding a black hole to the bulk, corresponds to placing the field theory at
a finite temperature. Likewise, for adding a Maxwell field to the bulk, and obtaining a finite
chemical potential at the field theory side. The effect and subtleties of adding a scalar field
to the AdS spacetime have been discussed subsequently. A relation for the Green’s function
of a scalar operator in the CFT was given in terms of boundary values of this bulk field.

Properties of retarded Green’s functions and spectral functions have been reviewed quite
extensively. On top of that, Green’s functions at finite temperature have been studied. These
Green’s functions were analysed for a model that describes the electron-phonon interaction.
An expression for the electron self-energy was obtained for strong electron-phonon coupling.
It was possible to rewrite this expression as an integral over a temperature-independent part
that contains the phononic information, and a temperature-dependent part containing the
electronic information. These are the Eliashberg (or, electron-phonon) spectral function and
the kernel, respectively. The former has been generalized to a glue function, to account for
an unknown bosonic source.

In the concluding chapter, we have tried to translate the expression for the electron self-
energy involving the glue function in the AdS/CFT correspondence. Thus far, only prepara-
tory work has been done. A first step for further research, would probably be solving the
equations of motion for an electron that is coupled to a boson in the bulk. If one, in addition,
is able to find an exact expression for the kernel, one can isolate the glue function, and try
to reproduce the observed peaks.
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A
Differential forms

p-Form fields

A p-form field is given by

Ap ≡
1

p!
Aµ1µ2···µpdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp ,

where Aµ1µ2···µp denotes the components with respect to a coordinate basis, and the wedge
product of p basis 1-forms dxµ is given by

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp ≡
∑
π

sgn(π)dxµπ(1) ⊗ dxµπ(2) ⊗ · · · ⊗ dxµπ(p) ,

with sgn(π) = +1,−1 for even or odd permutations respectively. Note that by the way it is
defined, Aµ1µ2···µp is antisymmetric in its indices.

A p-form field naturally couples to geometrical objects Σp with spacetime dimension p via

S = Tp

∫
Σp

Ap.

This action is invariant under reparametrizations, and is invariant under the gauge transfor-
mation

Ap → Ap + dΛp−1, (A.1)

under which S changes by a total derivative.
A p-form field Ap has a field strength Fp+1 associated to it,

Fp+1 = dAp

which is gauge invariant under (A.1).

Wedge product of two forms

The wedge product of a p-form Ap and a q-form Bq is defined as

A ∧B ≡ 1

p!q!
Aµ1µ2···µpBν1ν2···νqdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp ∧ dxν1 ∧ dxν2 ∧ · · · ∧ dxνq ,

so that

(A ∧B)µ1···µp+q =
(p+ q)!

p!q!
A[µ1···µpBµp+1···µp+q ],

where A[···B··· ] denotes antisymmetrization.
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Exterior derivative

The exterior derivative allows to differentiate a p-form field to obtain an (p + 1)-form field.
It is defined as

dAp ≡
1

p!
∂νAµ1µ2···µpdx

ν ∧ dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp ,

so that for the components one has

(dAp)µ1µ2···µp+1 = (p+ 1)∂[µ1
Aµ2···µp+1].

Note that in particular d(dAp) = 0 for any p, which is often written as d2 = 0.

Levi-Civita tensor

The Levi-Civita symbol ε̃µ1µ2···µn equals +1 for even permutations of µ1µ2 · · ·µn, −1 for
odd permutations, and 0 otherwise. It does not transform as a tensor under coordinate
transformations. The Levi-Civita tensor, defined as

εµ1µ2···µn =
1√
|g|
ε̃µ1µ2···µn ,

does transform as a tensor. Note that by acting with the (inverse) metric gµν indices can be
raised.

Hodge dual

The Hodge duality operator maps p-forms into q-forms, where q = n−p with n the dimensions
of the coordinate system. It is defined as

?(dxµ1 ∧ · · · ∧ dxµp) ≡ 1

q!
ε

µ1···µp
ν1···νq dxν1 ∧ · · · ∧ dxνq ,

so that

(?Ap)µ1···µq =
1

p!
ε
ν1···νp

µ1···µqAν1···νp .

Applying the Hodge star twice returns plus or minus the original form,

? ? Ap = (−1)s+pqAp,

where s is the number of minus signs in the eigenvalues of the metric.
Each p-form field Ap has a magnetic dual Amagn

n−p−2 which is a form field of rank n− p− 2,
whose field strength is given by

dAmagn
n−p−2 ≡ ?dAp.
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B
Anti-de-Sitter spacetime

In this appendix, a short overview of Anti-de-Sitter spacetimes is given. It is by no means
intended to be complete. For more details, see e.g. [25], and in the context of the AdS/CFT
correspondence, e.g. [14] or [81].

The Einstein-Hilbert action in d+ 1 dimensions with a cosmological term is given by

SEH =
1

16πGd+1

∫
dd+1x

√
−g (R− 2Λ) .

Its equation of motion is the vacuum Einstein equation with cosmological constant,

Rµν −
1

2
Rgµν + Λgµν = 0, (B.1)

with Ricci scalar and tensor

R = 2
d+ 1

d− 1
Λ and Rµν =

2Λ

d− 1
gµν .

Spacetimes with maximal symmetry additionally obey

Rµνρσ =
R

d(d+ 1)
(gµρgνσ − gµσgνρ).

Maximally symmetric spacetimes with R = 0 are simply flat Minkowski spacetimes. For
positive constant curvature, R > 0, these spaces are called de-Sitter spacetimes, and with
negative constant curvature, R < 0, anti-de-Sitter (AdS) spacetimes. AdS spacetimes thus
have a negative cosmological constant Λ.

B.1 Representation by embedding

The (d+ 1)-dimensional Anti-de-Sitter (AdS) spacetime can be represented as a hyperboloid

−X2
0 −X2

d+1 +
d∑
i=1

X2
i = −R2, (B.2)

embedded in a flat (d+ 2)-dimensional spacetime with metric

ds2 = −dX2
0 − dX2

d+1 +
d∑
i=1

dX2
i . (B.3)
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Chapter B Anti-de-Sitter spacetime

Equation (B.2) can be solved by introducing the coordinates

X0 = R cosh ρ cos τ, Xd+1 = R cosh ρ sin τ,

Xi = R sinh ρ Ωi, i = 1, . . . , d,
d∑
i=1

Ω2
i = 1.

For 0 ≤ ρ and 0 ≤ τ < 2π, these coordinates cover the hyperboloid exactly once, and for this
reason they are called global coordinates. By substituting these coordinates into (B.3), one
obtains the metric on AdSd+1

ds2 = R2(− cosh2ρ dτ2 + dρ2 + sinh2ρ dΩ2), (B.4)

with dΩ2 is the metric on a unit (d−1)-sphere, because of the restriction on the d coordinates
Ωi.

For small ρ, the metric on AdSd+1 has the form

ds2 = R2(−dτ2 + dρ2 + ρ2dΩ2),

which is topologically S1×Rd+1, where S1 represents closed timelike curves in the τ direction.
The closed timelike curves can be removed by considering the universal cover, where one
unwraps the circle S1, i.e., one takes −∞ < τ <∞.

From the representation (B.2), it is clear that the isometry group of AdSd+1 is SO(2, d),
and that it is homogeneous and isotropic. The group SO(2, d) has a maximal compact sub-
group SO(2)×SO(d), where the SO(2) subgroup corresponds to translations in the τ direction,
and SO(d) gives rotations of the sphere Sd−1.

B.2 Conformal compactification

Under a series of coordinate changes, the Minkowski spacetime R1,d−1, with metric

ds2 = −dt2 + dr2 + r2dΩ2
d−2,

can be transformed into the form [14]:

ds̃2 = −dτ2 + dθ2 + sin2θ dΩ2
d−2, with 0 ≤ θ < π, |τ |+ θ < π, (B.5)

where ds̃2 is equal to ds2 up to a conformal transformation, ds̃2 = ω2(τ, θ, . . .)ds2. The metric
of R1,d−1 is therefore conformally mapped into the interior of a triangle that is the right half
of a square which has its corners at ±π at the τ and θ axes. Each point in this triangle
corresponds to a (d − 2)-dimensional sphere. The boundary of this triangle corresponds
to infinity of the original coordinates, and is called the conformal infinity. By adding the
conformal infinity to the spacetime, one obtains a bounded spacetime which is called the
conformal compactification of spacetime.

If one spatially compactifies the Minkowski metric by including the boundary at θ = π,
and extends the range of the timelike component to −∞ < τ <∞, one obtains the (spatial)
conformal compactification of d-dimensional Minkowski spacetime, which has the geometry
of R× Sd−1, the Einstein static universe. The north pole of Sd−1 corresponds to θ = 0, and
the south pole to θ = π.
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B.3 Asymptotic flatness and asymptotically AdS

B.3 Asymptotic flatness and asymptotically AdS

The coordinates (τ, θ) in the metric (B.5) are well-defined at the asymptotical regions of the
flat Minkowski spacetime. Therefore, conformal compactification is useful to define the notion
of asymptotic flatness of spacetime: a spacetime is called asymptotically flat if it has the same
boundary structure as flat space after conformal compactification [14].

For the case of Anti-de-Sitter spacetimes, by introducing the coordinate

tan θ = sinh ρ, with 0 ≤ θ < π

2
,

the metric on AdSd+1 (B.4) can be rewritten as

ds2 =
R2

cos2 θ
(−dτ2 + dθ2 + sin2θdΩ2

d−1).

This metric is conformally equivalent to R × Sd. However, the coordinate θ ranges up to
π/2, rather than to π, which means that only half of the Sd is covered. Therefore, AdSd+1 is
conformally equivalent to one half of the Einstein static universe.

By adding the boundary θ = π/2 (which has the topology Sd−1), and extending the
range of τ to −∞ < τ < ∞, one obtains the conformally compactified AdSd+1 spacetime.
As with asymptotic flatness, one uses conformal compactification to define what is called
asymptotically AdS: a spacetime is called asymptotically AdS, when it can be conformally
compactified into a region which has the same boundary structure as one half of the Einstein
static universe.

For purposes concerning the AdS/CFT correspondence, it is very important to note that
the boundary of AdSd+1 spacetime is topologically equivalent to R× Sd−1. This is precisely
identical to the conformal compactification of d dimensional Minkowski spacetime.

B.4 Poincaré coordinates

Equation (B.2) can also be solved by introducing the coordinates [14]

X0 =
z

2

(
1 +

1

z2
(R2 +

d−1∑
i=1

xixi − t2)

)
, Xi =

R

z
xi, i = 1, . . . , d− 1,

Xd =
z

2

(
1− 1

z2
(R2 −

d−1∑
i=1

xixi − t2)

)
, Xd+1 =

R

z
t.

These coordinates cover half of the hyperboloid defined in (B.2). By substituting these
coordinates into the metric (B.3), one obtains

ds2 =
R2

z2

(
−dt2 + dxidxi + dz2

)
.

These coordinates are called Poincaré coordinates, and they have the property that constant
z slices are just copies of Minkowski space. This metric is a solution to the Einstein equation
(B.1) with a cosmological constant Λ = −d(d−1)

2R2 .
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C
Conformal field theory

In this appendix an introduction to conformal field theory is given. Only the parts relevant
for the AdS/CFT correspondence are presented, and much of the material is taken from [6].
For an extended introduction to this subject, see for example [76] or [77].

Since symmetry principles, and in particular Poincaré invariance, play a major role in un-
derstanding quantum field theory, it is natural to look for possible generalizations of Poincaré
invariance. One such generalization is the addition of a scale invariance (or dilatation) sym-
metry, linking physics at different scales. Scale-invariant quantum field theories are important
as possible endpoints of renormalization group flows. Many interesting field theories are scale
invariant, such as Yang-Mills theory in four dimensions, which is a non-Abelian gauge theory
based on the group SU(N). The conformal group is a simple group that includes Poincaré
invariance, scale invariance, and inversion.

The space we consider in this section is Rd with flat metric gµν = ηµν , which has the form
diag(−1, . . . ,−1, 1, . . . , 1), with signature (p, q), where p and q are the number of eigenvalues
−1 and +1 respectively, and µ, ν = 0, · · · , d− 1 correspond to the space-time coordinates. In
particular we focus on Minkowski space, which has signature (1, d−1), where d is the number
of spacetime dimensions.

C.1 The conformal group and algebra

Under a change of coordinates, xµ → x′µ, the metric gµν changes as

gµν(x)→ g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (C.1)

By definition, the conformal group is the subgroup of coordinate transformations which pre-
serve the form of the metric up to an arbitrary scale change,

gµν(x)→ g′µν(x′) = Ω2(x)gµν(x). (C.2)

Note that, since the Poincaré group leaves the metric invariant, g′µν(x′) = gµν(x), or Ω2(x) =
1, the Poincaré group is a subgroup of the conformal group.

The generators of the group can be determined by considering the infinitesimal transfor-
mation xµ → xµ + εµ(x). Using this in (C.1) and comparing with (C.2) yields the condition
[76]

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν ,

which for d > 2 has the solution

εµ(x) = aµ + ωµνx
ν + λxµ + (bµx2 − 2xµb · x), (C.3)
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Chapter C Conformal field theory

with ωµν = −ωνµ being antisymmetric The parameters of conformal transformations are
thus aµ, ωµν , λ, and bµ, corresponding respectively to translations, Lorentz rotations, scale
transformations, and a new type of transformations, called special conformal transformations.
In the special case of d = 2 the conformal group is infinite dimensional, and thus has infinite
many parameters.

To determine the generators, one can study the action of these infinitesimal conformal
transformations on a space of functions of x [78]. For each transformation xµ → xµ + εµ(x),
we can define a differential operator Oa such that

f(x)→ f(x)− iδaOaf(x), (C.4)

where δa is a parameter characterizing the transformation. A scalar function transforms
simply as f ′(x′) = f(x), so that f ′(x′) = f(x′ − ε) = f(x′) − εµ∂µf(x′). By comparing with
(C.4) and using (C.3), the conformal generators are obtained,

Translations: Pµ = −i∂µ
Lorentz transformations: Mµν = −i(xν∂µ − xµ∂ν)

Scaling transformations: D = −ixµ∂µ

Special conformal transformations: Kµ = −i(x2∂µ − 2xµxν∂
ν).

Each of these operators are to be contracted with its corresponding parameter of the conformal
transformation, aµ, ωµν , λ, and bµ.

By letting the commutators act on a test function f(x), it is straightforward to show that
the conformal algebra is given by

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ); [Mµν ,Kρ] = −i(ηµρKν − ηνρKµ);

[Mµν ,Mρσ] = −iηµρMνσ ± perm.; [Mµν , D] = 0;

[D,Kµ] = iKµ; [D,Pµ] = −iPµ;

[Pµ,Kν ] = 2iMµν − 2iηµνD, (C.5)

with all other commutators vanishing.
The number of components for the parameters of conformal transformations are respec-

tively d, d(d−1)/2, 1, d, which add up to (d+1)(d+2)/2. By constructing the anti-symmetric
(d+ 2)× (d+ 2) matrix,

Jab =

 Mµν
1
2(Kµ − Pµ) 1

2(Kµ + Pµ)
−1

2(Kµ − Pµ) 0 −D
−1

2(Kµ + Pµ) D 0

 ,

where a, b = 0, · · · , d+1, the conformal generators form a group. In case of Minkowski space,
(p, q) = (1, d− 1), this group has a Lie algebra which has the standard form of the SO(2, d)
algebra,

[Jab, Jcd] = i (ηbcJad + ηadJbc − ηacJbd − ηbdJac)

with associated metric of signature (−,+,+, · · · ,+,−). Note that, strictly speaking, SO(2, d)
is a group that only contains elements continuously connected to the identity, however the
conformal group also contains the inversion xµ → xµ

x2 , for which Ω2(x) = x2. Apart from
such subtleties, conformal invariance in flat (1, d− 1) dimensions (d > 2) corresponds to the
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C.2 Primary fields

symmetry group SO(2, d). Since the AdS/CFT correspondence will be defined in Euclidean
space, we note that conformal theory in Euclidean space has the conformal group SO(1, d+1).

Beside translations and Lorentz transformations, the global versions of the conformal
transformations are the scale transformations,

xµ → λxµ, (C.6)

and the special conformal transformations,

xµ → xµ + aµx2

1 + 2xνaν + a2x2
.

C.2 Primary fields

We will be interested in fields (or operators in case of a quantum theory) with a definite
conformal dimension ∆, which under the scaling transformation (C.6) transform as

φ(x)→ φ′(x′) = λ∆φ(λx).

Infinitesimally, with λ = 1 + δ and φ′ = (1− iδD)φ (C.4),

φ(x)→ φ′(x′) = (1− iδD)φ(x′) = λ∆φ(λx) = (1 + δ∆)φ(x′),

so that these fields are eigenfunctions of the scaling operator D, with eigenvalue −i∆, where
∆ is called the scaling (or conformal) dimension of the field.

The commutation relations (C.5) imply that Pµ raises the dimension of the field,

[D,Pµ]φ(x) = (DPµ − PµD)φ(x) = D(Pµφ(x)) + i∆Pµφ(x)

= −iPµφ(x),

so that

D(Pµφ(x)) = −i(∆ + 1)φ(x).

In the same way follows that Kµ lowers it. For any type of field there is a lower bound on
its dimension which follows from unitarity. For scalar fields this is ∆ ≥ (d − 2)/2, where
equality can occur only for a free scalar field [80]. Therefore, in each representation there will
be a field Φ0 of lowest dimension, which must be annihilated by Kµ (at x = 0). These fields
are called primary fields (or operators). Representations of the conformal group are obtained
from these primaries by acting successively with the ‘raising operator’ Pµ.

The generator of dilatations commutes with the generators of Lorentz transformations,
so we should be able to assign a conformal dimension to fields that carry a representation
of the Lorentz algebra. This dependence can be made explicit by writing Φ∆ for fields with
conformal dimension ∆. Since fields in this representation are eigenfunctions of D, it follows
from (C.5) that they cannot in general be eigenfunctions of the Hamiltonian P0 or of the mass
operator M2 = PµP

µ, which is a Casimir of the Lorentz group, but not of the full conformal
group.
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Chapter C Conformal field theory

C.3 Correlation functions

Being a conformal theory, correlation functions of primary fields must be invariant under
conformal transformations. Since the conformal group is much larger than the Poincaré
group, it severely restricts the correlation functions of primary fields. By using the conformal
algebra, it can be shown that 2-point functions of different dimension vanish [76], while for a
single scalar field of scaling dimension ∆,

〈φ(x1)φ(x2)〉 =
c12

r2∆
12

,

where r12 ≡ |x1 − x2| and c12 is some constant. In the same way are 3-point functions
restricted to be of the form

〈φi(x1)φj(x2)φk(x3)〉 =
cijk

r∆1+∆2−∆3
12 r∆2+∆3−∆1

23 r∆3+∆1−∆2
31

.

Similar expressions arise for non-scalar fields.

C.4 Operator product expansions

In quantum field theories, there exists an operator product expansion (OPE), which is an
expansion of the product of two operators. When two operators O1(x) and O2(y) are brought
to the same point, their product creates a local disturbance at that point, which may be
expressed as a sum of local operators acting at that point. This can generally be expressed
as

O1(x)O2(y)→
∑
n

Cn12(x− y)On(y),

where this expression should be understood as appearing inside correlation functions. The
coefficient functions Cn12 are independent of the other operators in the correlation function.
The above expression is useful when the distance to all other operators is much larger than
|x − y|. In a conformal field theory, the form of the coefficient functions is determined by
conformal invariance to be

Cn12(x− y) =
cn12

|x− y|∆1+∆2−∆n
.
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D
Calculations of Chapter 3

D.1 Spectral decomposition of the retarded Green’s function

Let {|n〉} be a complete set of eigenstates of the Hamiltonian H0 and momentum operator
P , with eigenvalues En and kn, respectively. Assume that ρ0 is diagonal in this basis, with
matrix elements 〈m|ρ0|n〉 = ρ0,nδmn.

The retarded Green’s function in position space is given by (3.51)

GROAOB (t, x) = −i θ(t)〈[OIA(t, x),OIB(0, 0)]〉. (D.1)

Inserting identity operators into 〈[OIA(t, x),OIB(0, 0)]〉, and ignoring t0, gives

〈[OIA(t, x),OIB(0, 0)]〉 = Tr
(
ρ0

[
U−1

0 (t)OA(x)U0(t),OB(0)
])

= Tr ρ0

(∑
k

|k〉〈k|U−1
0 (t)OA(x)

∑
m

|m〉〈m|U0(t)OB(0)
∑
n

|n〉〈n|−

−
∑
k

|k〉〈k|OB(0)U−1
0 (t)

∑
m

|m〉〈m|OA(x)U0(t)
∑
n

|n〉〈n|
)
.

Using the cyclic property of the trace, and the identity U0(t)|n〉 = e−iEnt|n〉, yields

〈[OIA(t, x),OIB(0, 0)]〉 =
∑
k,m,n

〈n|ρ0|k〉〈k|eiEktOA(x)|m〉〈m|e−iEmtOB(0)|n〉−

− 〈n|ρ0|k〉〈k|OB(0)eiEmt|m〉〈m|OA(x)e−iEnt|n〉

=
∑
m,n

ρ0,ne
i(En−Em)t〈n|OA(x)|m〉〈m|OB(0)|n〉−

− ρ0,ne
i(Em−En)t〈n|OB(0)|m〉〈m|OA(x)|n〉.

Using the identity

〈m|OA(x)|n〉 = 〈m|eix·POA(0)e−ix·P |n〉 = eix·(km−kn)〈m|OA(0)|n〉,

and define Amn ≡ 〈m|OA(0)|n〉, Bmn ≡ 〈m|OB(0)|n〉, and kmn ≡ km−kn, this can be written
as

〈[OIA(t, x),OIB(0, 0)]〉 =
∑
m,n

ρ0,n

(
ei(En−Em)teix·knmAnmBmn − ei(Em−En)teix·kmnBnmAmn

)
.
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We want to calculate the Fourier transform of −iθ(t) times this expression, which is the
Fourier transform of (D.1), i.e., GROAOB (ω, k). The Fourier transform of exp(ix ·knm) is given
by ∫

dd−1x e−ik·xeix·knm =

∫
dd−1x e−i(k−(kn−km))·x = (2π)d−1δd−1(knm − k).

Further, the Fourier transform of the time-dependent part is

−i
∫ ∞
−∞

dt eizt θ(t)ei(En−Em)t = −i
∫ ∞

0
dt eizt ei(En−Em)t

= −i

(
ei(z+En−Em)t

i(z + En − Em)

)∣∣∣∣∣
t=∞

t=0

=
1

En − Em + z
for Im z > 0.

Altogether, the spectral decomposition of the retarded Green’s function becomes

GROAOB (ω + i0, k) =
∑
m,n

ρ0,n

(
AnmBmn(2π)d−1δ(d−1)(knm − k)

En − Em + ω + i0
− (n↔ m)

)
.

D.2 Spectral function

From the spectral representation of the retarded Green’s function (3.56) follows

GR ∗OBOA(ω + i0, k) =
∑
m,n

ρ0,n

(
BmnAnm(2π)d−1δ(d−1)(knm − k)

En − Em + ω − i0
− (n↔ m)

)
,

where the identity A∗nm = Amn has been used. Then, the spectral density (3.58) becomes

AOAOB (ω, k) = i
(
GROAOB (ω, k)−GR †OAOB (ω, k)

)
= i(2π)d−1

∑
m,n

ρ0,n

(
AnmBmnδ

(d−1)(knm − k)

En − Em + ω + i0
− BmnAnmδ

(d−1)(knm − k)

En − Em + ω − i0
∓ (n↔ m)

)
.

(D.2)

The Sokhotsky-Weierstrass theorem states that (see e.g. [82]):

lim
ε→0+

1

x± iε
= P 1

x
∓ iπδ(x),

where P denotes the Cauchy principal value. This expression is to be understood as a gener-
alized function, like the Dirac function, i.e., it makes sense only under an integral,

lim
ε→0+

∫
dx

f(x)

x± iε
= P

∫
dx

f(x)

x
∓ iπf(0).

By using this identity, the spectral density (D.2) can be written as

AOAOB (ω, k) = (2π)d
∑
m,n

ρ0,n

(
δ(En − Em + ω)δ(d−1)(knm − k)AnmBmn − (n↔ m)

)
= (2π)d

∑
m,n

(ρ0,n − ρ0,m) δ(En − Em + ω)δ(d−1)(knm − k)AnmBmn. (D.3)
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D.3 Averaged dissipated power

The terms involving the Cauchy principal value have cancelled each other due to the relative
minus sign in (D.2).

D.2.1 Spectral function for canonical ensemble

Assume that we are in the canonical ensemble, so that ρ0 = Z−1e−βH0 , then∑
m,n

(ρ0,n − ρ0,m)δ(En − Em + ω) = Z−1
∑
m,n

(
e−βEn − e−βEm

)
δ(En − Em + ω)

= Z−1
∑
m,n

(
e−β(En+Em−ω)/2 − e−β(Em+Em+ω)/2

)
δ(En − Em + ω)

= 2Z−1 sinh
ω

2T

∑
m,n

e−(En+Em)/2T δ(En − Em + ω).

With this the spectral density becomes

AOAOB (ω, k) = 2Z−1 sinh
( ω

2T

)∑
m,n

e−(En+Em)/2T 2πδ(En − Em + ω)×

× (2π)d−1δ(d−1)(knm − k)AnmBmn.

D.3 Averaged dissipated power

As mentioned in section 3.6.5, the averaged dissipated power is given by the expression

dW

dt
=

ω

2π

∫ 2π/ω

0
dt
dW

dt

=
ω

2π

∫ 2π/ω

0
dt

∫
dd−1x

(
〈OIA〉0(t, x) + δ〈OA〉(t, x)

)
∂tδφA(0)(t, x).

where in the second equality, (3.62) has been used. The first term is given by (3.47),
〈OIA〉0(t, x) = 〈OA〉0(x), and this vanishes when averaging over a single cycle of the external
field δφA(0)(t, x), since 〈OA〉0(x) is independent of time.

Substituting an external field oscillating at a single frequency ω,

δφA(0)(t, x) = Re
(
φA(0)(x)e−iωt

)
=

1

2

(
φA(0)(x)e−iωt + φ∗A(0)(x)eiωt

)
, (D.4)

into the above expression for the average dissipated power, yields

dW

dt
=

ω

2π

∫ 2π/ω

0
dt

∫
dd−1x δ〈OA〉(t, x)

iω

2

(
φ∗A(0)(x)eiωt − φA(0)(x)e−iωt

)
.

By substituting (3.49), (3.51) and (D.4), this becomes

dW

dt
=

ω

2π

iω

4

∫ 2π/ω

0
dt

∫
dd−1x

∫
dt′dd−1x′GROAOB (t− t′, x− x′)×

×
(
φ∗A(0)(x)eiωt − φA(0)(x)e−iωt

)(
φB(0)(x

′)e−iωt
′
+ φ∗B(0)(x

′)eiωt
′
)
.
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For the term with φ∗A(0)(x)φB(0)(x
′)eiω(t−t′) one has∫ ∞

−∞
dt′ φ∗A(0)(x)GROAOB (t− t′, x− x′)φB(0)(x

′)eiω(t−t′) = φ∗A(0)(x)GROAOB (ω, x− x′)φB(0)(x
′),

and for the term involving φ∗B(0)(x)φA(0)(x
′)e−iω(t−t′) we find

−
∫ ∞
−∞

dt′ φA(0)(x)GROAOB (t− t′, x− x′)φ∗B(0)(x
′)e−iω(t−t′) =

= −
∫ ∞
−∞

dt′ φ∗A(0)(x)GROBOA(t− t′, x′ − x)φB(0)(x
′)e−iω(t−t′)

= −φ∗A(0)(x)GROBOA(−ω, x′ − x)φB(0)(x
′)

= −φ∗A(0)(x)GR ∗OBOA(ω, x− x′)φB(0)(x
′),

where in the first step the labels A and B has been interchanged, and likewise for the
integration variables, x ↔ x′. In the last equality, the symmetry property (3.54) has
been exploited. When averaging over a full cycle of the external field, the terms involving
φA(0)(x)φB(0)(x

′)e−iω(t+t′) and φ∗A(0)(x)φ∗B(0)(x
′)eiω(t+t′) vanish .

After collecting the terms and performing the t integral, one gets

dW

dt
=
iω

4

∫
dd−1xdd−1x′ φ∗A(0)(x)

(
GROAOB (ω, x− x′)−GR ∗OBOA(ω, x− x′)

)
φB(0)(x

′)

=
1

4

∫
dd−1xdd−1x′ φ∗A(0)(x)ωAOAOB (ω, x− x′)φB(0)(x

′).
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E
Calculations of Chapter 4

In this Appendix, some calculation involving Matsubara Green’s functions are given. These
calculations are more or less standard, and can for example be found in [62] and [63].

E.1 Free electron and phonon Matsubara Green’s functions

In this section, the Matsubara Green’s functions for fermions and bosons for non-interacting
systems are given.

Free electron MGF

For a non-interacting system in the grand canonical ensemble (cf. (4.5)), the part of the
Hamiltonian (4.4) describing the free electrons reads

K0 = H0 − µN =
∑
p,σ

(εp,σ − µ)c†p,σcp,σ =
∑
p,σ

ξp,σc
†
p,σcp,σ, with ξp,σ ≡ εp,σ − µ.

The ‘time’ dependence of the annihilation operators can be written as (cf. (4.6))

cp,σ(τ) = eK0τ cp,σe
−K0τ = e−ξp,στ cp,σ,

where ξp,σ ≡ εp,σ − µ, and in the last equality the Baker-Hausdorff formula,

eA c e−A = c+ [A, c] +
1

2!
[A, [A, c]] +

1

3!
[A, [A, [A, c]]] + · · · ,

has been been used.
Ignoring spin indices, the electron Matsubara Green’s function for the non-interacting

system is given by

G(0)(τ,p) = −〈Tτ cp(τ)c†p(0)〉0
= −θ(τ)e−ξpτ 〈cpc†p〉0 + θ(−τ)e−ξpτ 〈c†pcp〉0

= −e−ξpτ
(
θ(τ)

(
1− nF (ξp)

)
− θ(−τ)nF (ξp)

)
= −e−ξpτ

(
θ(τ)− nF (ξp)

)
,

where nF = 〈c†pcp〉0 is the free-electron occupation number. In the second equality, a minus
term in front of the second term has been introduced due to the anti-commutativity of the
fermionic operators.
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By taking the Fourier transform (4.10), we obtain the free fermionic Green’s function in
frequency representation

G(0)(ipn,p) =

∫ β

0
dτ eipnτG(0)(τ,p), pn =

(2n+ 1)π

β

= −
∫ β

0
dτ eipnτe−ξpτ

(
θ(τ)− nF (ξp)

)
= −

(
1− nF (ξp)

) ∫ β

0
dτ eτ(ipn−ξp)

= −
(
1− nF (ξp)

)eβ(ipn−ξp) − 1

ipn − ξp
.

By using the fact that the occupation of free electrons is given by the Fermi-Dirac equation,
i.e.,

〈c†pcp〉0 = nF (ξp) =
1

eβξp + 1
,

and using eβipn = 1 for βipn = i(2n+ 1)π, we obtain

G(0)
σ (ipn,p) =

1

ipn − ξp,σ
.

Free boson MGF

The unperturbed phonon Matsubara Green’s function is given by

D(0)
λ (τ,q) = −〈TτAq,λ(τ)A−q,λ(0)〉0.

The ‘time’ dependence of the phonon creation and annihilation operators can be written as

aq,λ(τ) = eHphτaq,λe
−Hphτ = e−ωqτaq,λ, and a†q,λ(τ) = eωqτa†q,λ,

where again the Baker-Haussdorf formula has been used.

Ignoring branch indices, the unperturbed phonon MGF can then be written as

D(0)
λ (τ,q) = −θ(τ)〈(e−ωqτaq + eωqτa†−q)(a−q + a†q)〉0−

− θ(−τ)〈(a−q + a†q)(e−ωqτaq + eωqτa†−q)〉0.

Terms like 〈aqa−q〉0 and 〈a†qa
†
−q〉0 vanish. The remaining terms can be recast by writing

〈a†qaq〉0 = nB(ωq) and 〈aqa†q〉0 = 1 + nB(ωq), so that

D(0)
λ (τ,q) = −θ(τ)

((
1 + nB(ωq)

)
e−ωqτ + nB(ωq)eωqτ

)
−

− θ(−τ)
(
nB(ωq)e−ωqτ +

(
1 + nB(ωq)

)
eωqτ

)
= −

(
θ(τ) + nB(ωq)

)
e−ωqτ −

(
θ(−τ) + nB(ωq)

)
eωqτ .
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E.2 Summation over bosonic Matsubara frequencies

Finally, by taking the Fourier transform we obtain

D(0)(iωn,q) =

∫ β

0
dτ eiωnτD(0)(τ,q), ωn =

2nπ

β

= −
(
1 + nB(ωq)

) ∫ β

0
dτ eτ(iωn−ωq) − nB(ωq)

∫ β

0
dτ eτ(iωn+ωq)

= −
(
1 + nB(ωq)

)eβ(iωn−ωq) − 1

iωn − ωq
− nB(ωq)

eβ(iωn+ωq) − 1

iωn + ωq
.

By using the fact that the occupation number of phonons in an unperturbed system is
given by the Bose-Einstein distribution,

〈a†qaq〉0 = nB(ωq) =
1

eβωq − 1
,

and using further eβiωn = 1 for βiωn = i2nπ, we obtain

D(0)
λ (iωn,q) =

1

iωn − ωq,λ
− 1

iωn + ωq,λ
=

2ωq,λ

(iωn)2 − ω2
q,λ

.

Note that in this last expression, the phonon branch index was restored.

E.2 Summation over bosonic Matsubara frequencies

In this section, we will perform the summation over the bosonic Matsubara frequencies in
(4.14),

Σ(1)
σ (ipn,p) = − 1

βV
∑
q,λ

ḡ2
q,λ

∑
iωn

2ωq,λ

(iωn)2 − ω2
q,λ

1

ipn − iωn − ξp−q,σ
.

To evaluate the summation, consider

S ≡ − 1

β

∑
iωn

f(iωn), with f(iωn) ≡ 2ωq

(iωn)2 − ω2
q

1

ipn − iωn − ξp′
,

where electron spin and phonon branch indices have been ignored, and p′ ≡ p − q. This
summation is going to be performed by using contour integration. Consider therefore the
integral

I ≡
∮
C∞

dz

2πi
f(z)nB(z) =

∑
Res

f(z)nB(z),

where the Bose-Einstein distribution has been inserted to generate poles at z = iωn, with n
even, and the contour C∞ encloses all the poles, C∞ = limR→∞Re

iθ; see figure E.1.
The poles of f(z)nB(z) and their corresponding residues R are given by

• due to nB(z):

zn = iωn, Rn = Res
z=iωn

f(z)nB(z) =
1

β
f(iωn),

which follows from

Res
z=iωn

nB(z) = lim
z→iωn

z − iωn
eβz − 1

= lim
ε→0

ε

eβiωneβε − 1
=

1

β
.
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Figure E.1: Contour C∞ for performing the Matsubara sum. The poles are indicated with a cross.

• due to f(z):

z1 = ωq, R1 =
nB(ωq)

ipn − ωq − ξp′
;

z2 = −ωq, R2 =
−nB(−ωq)

ipn + ωq − ξp′
=

1 + nB(ωq)

ipn + ωq − ξp′
;

z3 = ipn − ξp′ , R3 = nB(ipn − ξp′)
2ωq

(ipn − ξp′)2 − ω2
q

= (1− nF (ξp′))
2ωq

(ipn − ξp′)2 − ω2
q

=
nF (ξp′)− 1

ipn + ωq − ξp′
−

nF (ξp′)− 1

ipn − ωq − ξp′
,

where in the second to last equality of R3, the identity nB(ipn − ξp′) = 1− nF (ξp′) has
been used, which follows from the definitions of nB and nF .

Altogether, the summation over the residues in the integral I becomes

I =
1

β

∑
iωn

f(iωn) +
nB(ωq) + nF (ξp′)

ipn + ωq − ξp′
+
nB(ωq) + 1− nF (ξp′)

ipn − ωq − ξp′
.

In the limit as R→∞, the integral over the contour vanishes, I = 0, so that

− 1

β

∑
iωn

f(iωn) = − 1

β

∑
iωn

2ωq

(iωn)2 − ω2
q

1

ipn − iωn − ξp′

=
nB(ωq) + nF (ξp′)

ipn + ωq − ξp′
+
nB(ωq) + 1− nF (ξp′)

ipn − ωq − ξp′
. (E.1)

Finally, the electron self-energy becomes

Σ(1)
σ (ipn,p) = − 1

βV
∑
q,λ

ḡ2
q,λ

∑
iωn

2ωq,λ

(iωn)2 − ω2
q,λ

1

ipn − iωn − ξp−q,σ

=
1

V
∑
q,λ

ḡ2
q,λ

(
nB(ωq) + nF (ξp′)

ipn + ωq − ξp′
+
nB(ωq) + 1− nF (ξp′)

ipn − ωq − ξp′

)
.
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F
Nederlandstalige samenvatting

Supergeleiders zijn een belangrijk onderzoeksterrein binnen de natuurkunde. Dit zijn mate-
rialen die elektrische stroom kunnen geleiden zonder weerstand, maar de temperatuur moet
daarvoor wel onder een bepaalde kritische waarde zitten. Er zijn sinds eind jaren tachtig
materialen ontdekt die supergeleidend zijn bij relatief hoge temperaturen. Dit zijn de zo-
genaamde hoge-temperatuur supergeleiders. De theorie achter de tot dan toe waargenomen
supergeleiders was sinds lange tijd bekend. Daar vormen elektronen paren ten gevolge van
wisselwerkingen met trillingen van het metaalrooster waar ze in bewegen. Deze roostertrillin-
gen worden fononen genoemd.

Hoe de paring van elektronen bij hoge-temperatuur supergeleiders werkt, is niet bekend.
Er wordt vermoed, dat deze paring door soortgelijke deeltjes als fononen wordt veroorzaakt.
Een belangrijk verschil is echter dat de sterkte van de wisselwerking, de zogenaamde kop-
peling, groot is. Maar het is lastig om sterk wisselwerkende systemen te bestuderen, omdat
daarvoor weinig middelen zijn. Echter, sinds een paar jaar bestaat de zogenaamde AdS/CFT
correspondentie. Dit is een nieuw stuk gereedschap dat ons in staat stelt sterk gekoppelde
systemen te bestuderen, en is een resultaat uit de snarentheorie. In deze thesis proberen
we deze AdS/CFT correspondentie toe te passen op een systeem van elektronen die sterk
wisselwerken met bosonen, om zo meer inzicht te krijgen in het koppelingsmechanisme tussen
elektronen in hoge temperatuur supergeleiders.
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