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Abstract

The possible effects of extra spatial dimensions as described in the
ADD model might be detectable in future colliders such as the LHC at
CERN. This article reviews two detectable consequences of these extra
spatial dimensions at high energy collisions: black hole production and
missing energy. Also included is a theoretical background about both
compactified extra spatial dimensions and Kaluza Klein reduction in order
to give the reader some insight in the concept of extra spatial dimensions.
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1 Theory

1.1 Introduction

What are extra dimensions and why would we even need them?

Through the ages people have tried to understand and describe the world around
them. Physicists in particular try to describe nature in the simplest way possi-
ble. Describing forces plays a crucial role in describing nature.
In the late 17th century Isaac Newton was the first to create a model in which
he explained the attractive forces between massive objects, hence making a
model for the gravitational force1. Almost a century later Charles Augustin de
Coulomb studied the interacting forces of electrically charged objects, creating
what we now know as Coulomb’s law, describing the electrical force. As time
passed a few more forces of nature were discovered. Untill now, all the forces
that have been discovered are:
force: describes:
gravity objects with masses
electromagnetism charged objects
strong nuclear force how the nucleus is tied together
weak nuclear force responsible for e.g. beta-decay

It took the whit of James Clerk Maxwell to take several forces of nature2 and
put them together into one model: electromagnetism.
So if the forces of nature are all known, the dream of a physicist is to unify all
the existing forces into one model. There is only one problem, which is that
gravity is much weaker than all the other forces. This problem is known as the
hierarchy problem. In order to unify the forces of nature we must find a way
around the hierarchy problem. This is where extra dimensions come into play.
The first attempt to unify gravity with electromagnetism through extra dimen-
sions was proposed by Theodor Kaluza. His idea of introducing an additional
dimension to our four-dimensional world3 was a radically new one. It was later
refined and worked out explicitly by Oscar Klein.
To illustrate the idea of these extra spacial dimensions one can visualize the
following scenario: When walking on a tight rope one can only go back and
forth along the rope, hence having only one degree of freedom (1D). An ant
however is not restricted to only walk on the top of the rope, it can also go
around it, hence having 2 degrees of freedom (2D). In other words, how do we
know a line is not a cylinder with a very small radius? Or in general, how do
we know there are only four dimensions? The answer is: We don’t! This gives
a whole array of new possibilities to unify the forces of nature and creating one
big mother-theory, or at least explaining why gravity as so much weaker than
the other forces, in other words solving the hierarchy problem.

1Nowadays gravity is described by Albert Einstein’s general theory of relativity.
2In this case the forces were the electrical and magnetic (Lorentz) force.
3We think of our world to have three spacial dimensions and one dimension of time, adding

up to a four-dimensional world.
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1.2 Kaluza-Klein Reduction

So how does it work?
To get a feel of how we can use extra dimensions to solve some of our problems,
let’s look at a simple model first. We’re going to work out a way to unify the
Coulomb force and Newton’s gravity. The idea is to think of our world to have
one extra compactified spatial dimension.4 Einstein’s relativity gives us the
four-momentum of 4 dimensional particle5:

~p =
(E

c
, px, py, pz

)
with norm p ≡ ||~p ||

p2 = −E2

c2
+ p2

x + p2
y + p2

z

If we want to add an extra compactified dimension we get an extra component
pc in our four- or rather five-momentum. Now because the extra dimension is
compactified we can think of it as a circle with radius R. Quantum mechanics
tells us that the allowed values of the wavelength (∼ energy) along this circle
should be quantized.

nλ = 2πR , n ∈ Z

plugging in the de Broglie wavelength λ = h
p gives us:

pc =
n~
R

(1)

Let’s consider two massive 4D particles both sitting still,

~p1 =
(E1

c
, 0, 0, 0

)
and ~p2 =

(E2

c
, 0, 0, 0

)
with E1 = m1c

2 and E2 = m2c
2. Now we also write Newton’s gravity as

F (r) = GN
m1m2

r2
=

GN

c2

− ~p1 · ~p2

r2
(2)

If we assume that higher dimensional momenta remain Lorentz invariant we can
add the extra compactified dimension, so the the two five-momenta will be

~p1 =
(E1

c
, 0, 0, 0,

n1~
R

)
and ~p2 =

(E2

c
, 0, 0, 0,

n2~
R

)
(3)

The inner product of these two vectors is

− ~p1 · ~p2 = m1m2c
2 − n1n2

~2

R2

We obtain the following expression for the attractive force:

F (r) = GN
m1m2

r2
− GN~2

c2R2

n1n2

r2

4We call a dimension compactified if it is curled up like the dimension around the tight
rope. An infinite dimension would be the one along the tight rope.

5We use the so-called Minkowski metric with signature (−+ ++)
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The second term suspiciously resembles Coulomb’s law. If we want to make
this expression match Coulomb’s law we need to set the radius of the extra
dimension at R = ~

√
4πε0GN

ce ≈ 2 · 10−34 m, which is very very small.6 The
formula for the attractive force now reads

F (r) = GN
m1m2

r2
− 1

4πε0

q1q2

r2
= Fg + Fe (4)

with q1 = n1e and q2 = n2e. So there it is, we found a way to get two forces
into one ”model” via Kaluza-Klein reduction. If you think there’s something
fishy about the previous calculation I can only say you’re right. We used some
quasi-relativistic ways to keep things simple, but nonetheless it gives a good
qualitative notion of how powerful extra dimensions can be. In the next section
we will be doing some calculations using large extra dimensions, which might
be easier to ”see” or detect.

1.3 The Hierarchy Problem

What’s the problem?

To get a glance at how weak gravity is let us take a look at the following example.
If you hold a magnet close enough to an iron marble the magnet has no hard
time at all pulling it up. This indicates how much stronger electromagnetism
is: the tiny magnet beats a colossal object —the earth— in attracting the
marble. If we wish to unify gravity with the other forces there should not be
such a big discrepancy between the scales of the regions on which gravity and
electromagnetism work, but there is. As we just saw, this discrepancy is not
just huge, it’s astronomical. There are more (qualitative) problems, but this
esthetic problem is the one we are dealing with now.

1.3.1 Higher Dimensional Gravity

How would gravity behave in a higher dimensional space?

A way of explaining why gravity is so weak is to say that it propagates in more
than only three spatial dimensions. These extra dimensions should be so small
that we cannot ”see” them. But before we start talking about gravity in these
small compactified dimensions, we need to know how it behaves in general in
higher dimensional spaces.
Let’s see what we already know about gravity. We know that in 4D (3 spatial
+ 1 time) Newton’s law reads:

F (r) = GN
m1m2

r2
(5)

The gravitational field ~Φ of just one mass m1 is given by:

~Φ = GN
m1

r2
r̂ (6)

6In this case R is just about the same size as the Planck length.
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We can also invoke Gauss’ theorem:∮
~Φ · d~s = constant ·mencl.

= 4πGN m1

=
∫

sphere

Φr ds

= Φr

∫ 2π

0

dφ

∫ π

0

dθ r2sin θ

= Φr 4πr2

= ΦrS3(r)

where S3(r) is the surface area of a sphere with radius r in our 4 dimensional
world —the 3 in S3(r) stands for the number of spatial dimensions. With this
result we can obtain a more general expression for Newton’s gravity in 4D:

F4(r) = Φrm2 = 4πGN
m1m2

S3(r)
(7)

We see that in 4D the surface area is proportional to the radius as S3(r) ∝ r2.
In d spatial dimensions this relation becomes Sd(r) ∝ rd−1. What we want to
do now is find the proportionality constant Ωd in

Sd(r) = Ωdr
d−1 (8)

so we can work out the gravitational force for d spatial dimensions:

Fd+1(r) = 4πGN
m1m2

Sd(r)

To get Ωn we can use the following trick. We can integrate some function in
two ways, in cartesian coordinates and in polar coordinates. In both cases the
answer should be the same. The function we use is a Gaussian e−r2

. Ωn is the
part of the polar integral which is independent of r. We will first work out the
Cartesian integral.∫

all space

ddr e−r2
=

∫ ∞

−∞
dr1 e−r2

1 ...

∫ ∞

−∞
drd e−r2

d

= (
√

π )d

Now let’s see what the polar integral has to offer us.∫
all space

ddr e−r2
=

∫ ∞

0

dr e−r2
∫ 2π

0

dφ

∫ π

0

dθ ... · Jacobian
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but the Jacobian is proportional to rd−1 so the integral is

=
∫ ∞

0

dr rd−1e−r2
∫ 2π

0

dφ

∫ π

0

dθ ...

=
∫ ∞

0

dr rd−1e−r2
Ωd

=
Ωd

2

∫ ∞

0

dx x
d
2−1e−x (subst. x ≡ r2)

=
Ωd

2
Γ(d

2 )

Here Γ(d
2 ) is the Euler-gamma function. We obtain the following expression for

the proportionality constant:

Ωd =
2(
√

π )d

Γ(d
2 )

(9)

A more esthetic way of writing the d + 1 dimensional gravitational force is

Fd+1(r) = Gd+1
m1m2

rd−1
(10)

with

Gd+1 ≡
4πGN

Ωd
=

2 Γ(d
2 )

(
√

π)d−2
GN (11)

Let’s check if this is correct for d = 3:

G3+1 =
2 Γ( 3

2 )
(
√

π)3−2
GN =

2
√

π
2√
π

GN = GN X
So that’s it, we know how gravity behaves in a higher dimensional space. How-
ever, we know that gravity is proportional to 1

r2 so how can this result be right?
This result can only be right if the extra dimensions are small enough. So it’s
time to start using compactified extra dimensions.

How small do the extra dimensions have to be?

We will start off by adding only one extra compactified
dimension and try to generalize our strategy to n
compactified dimensions.
Again we can treat the extra dimension as if it were a
circle with radius R. The distance between two massive
particles in the regular spatial dimensions is given by ~r0.
We can choose our coordinate system along the direc-
tion of ~r0 so we get relatively simple system of a cylinder
with radius R. As we can see in the picture gravity can
also go around the cylinder. In general these contri-
butions cannot be neglected. If we would ”unroll” the
cylinder (see Figure 1) we get a clearer view on things.
We see that the gravitational force no longer just has a
component in the ~r0 direction, but also in ~ri with i ∈ Z.

m
1

m
2

R
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Figure 1: If we unroll the cylinder we get this band.

Every contribution to the attractive force along ~ri, for some i, can be written
as a superposition of a force in the R-direction and one in the S(R)-direction.7

The total force will be:

~F =
∑
i∈Z

〈
~Fri

, êR
〉
êR +

〈
~Fri , êS

〉
êS

=
∑
i∈Z

cos αi ||~Fi|| ||êR|| êR

=
∑
i∈Z

cos αi Fri êR

where
cos αi =

r

ri
=

r√
r2 + (i 2πR)2

(r ≡ r0)

and
Fri = G4+1

m1m2

r3
i

= G4+1
m1m2(

r2 + (i 2πR)2
) 3

2

The contributions in the S(R)-direction cancel, so the sum over the second inner
products had to be zero.
That’s it for one extra dimension. If we generalize this result to n extra dimen-
sions8 we get the following formula:

F (r) = G4+nm1m2

(∑
i1∈Z

...
∑
in∈Z

r(
r2 + (i12πR)2 + ... + (in2πR)2

)
3+n

2

)
(12)

Let’s check if this formula gives the good results in the limits r � R and r � R.
We’ll start with r � R. The denominator in F will be:(

r2 + (i12πR)2 + ... + (in2πR)2
)3+n

2 ≈ r3+n

⇒ F (r) = G4+n
m1m2

r2+n
(r � R) (13)

Working out the case where r � R is a bit more subtle. Because the steps in
the sums are relatively small we’ll pretend they are infinitesimal. In other words

7The unit-vectors in these directions are respectively êR and êS
8Previously we used d+1 for the total number of dimensions. Henceforth we will be working

with the number of extra dimensions n (just substitute: d = 3 + n).
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we convert the sums into integrals:

F (r) = m1m2G4+n

∫ ∞

−∞
di1 ...

∫ ∞

−∞
din

r(
r2 + (i12πR)2 + ... + (in2πR)2

)
3+n

2

How do we get our Newtonian gravity out of this? We will just have to evaluate
this integral. Let’s start with a nice substitution: xm ≡ 2πR

r im with m = 1, ... , n
and so the Jacobian is

(
r

2πR

)
n:

= m1m2G4+n

∫ ∞

−∞
di1 ...

∫ ∞

−∞
din

r

r3+n
(
1 + x2

1 + ... + x2
n

)
3+n

2

( r

2πR

)n

=
m1m2

r2

G4+n

Rn
· {some integral only dependent on n}

This looks almost like Newton’s gravity. If we call the n-dependent integral In

and evaluate it we get

In =
1

2n+1 (
√

π)n−1 Γ( 3+n
2 )

and so the gravitational force will be

F (r) =
m1m2

r2

G4+nIn

Rn
(r � R) (14)

If this is correct it means that Newton’s constant must be

GN =
G4+nIn

Rn

⇒ Rn =
(

G4+nIn

GN

)1/n

(15)

Thus, in the two limits Equation 12 gives the correct results. That’s nice, but
the interesting part is the case in which r ≈ R. We would want to use Equa-
tion 14, however we made an approximation which is only valid if r � R. To
work around this problem we need to apply a correction which follows from
the Euler-Maclaurin Integration Formulas.9 We worked out the case of one ex-
tra dimension, n = 1 (see Figure 2). We can see that as r approaches R the
higher-dimensional gravity grows stronger than the classical one quite rapidly.

It’s nice to see that gravity grows stronger at short distances, but we cannot yet
see it grows astronomically stronger as required in order to solve the hierarchy
problem. Maybe one extra dimension (with a small radius) is not enough. In
the next section we will compute the size and number of the extra dimensions
required for solving the hierarchy problem.

9We will not to work this out explicitly, because it involves a very long calculation with a
lot of derivatives and stuff. In stead we’ll just look at the results in Figure 2.
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Figure 2: The difference between Newton’s gravity and Equation 12.

1.3.2 The ADD Model

What are the Planck and electroweak scales?

A more precise way of saying gravity is weaker than the other forces is to say
that their scales differ. The fundamental scale for the forces in the Standard
Model is the scale of electroweak (EW) symmetry breaking:10

MEW ∼ 1 TeV

Gravity’s fundamental scale is the so-called Planck mass (or Planck scale):

MPl =
1√
GN

∼ 1016 TeV

Gravity needs about 1016 more ”stuff” to work than electromagnetism does.

What does the ADD model stand for?

The following scenario to explain (or alter) the hierarchy problem was first
proposed by Nima Arkani-Hamed, Savas Dimopoulos and Georgi Dvali, ADD for
short. In this model the assumption is that the EW scale is the only fundamental
scale at (very) short distances. If we would invoke compactified extra dimensions
we see that the Planck mass depends on the number n and size R of these extra
dimensions. The idea is to set

M4+n ∼ MEW ∼ 1 TeV

where M4+n is the Planck mass at n extra dimensions. But what is M4+n? We
shall have to do some dimensional (unit) analysis to calculate this. Let’s start
with the simple case of the regular Planck mass MPl in 4D. The units of our
fundamental constants are:

10Here we use natural units, which means we set c=~=1.
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[c] = m s−1

[~] = m2kg s−1

[GN] = m3kg−1s−2

The unit of the the Planck mass should be kilograms. Using only c, ~ and GN

we get:

[MPl] =

[√
c ~
GN

]
= kg

Thus we set

MPl =
√

c ~
GN

≈ 10−8 kg ∼ 1016 TeV (16)

Now let’s calculate M4+n. The unit of Newton’s constant in 4+n dimensions is
[G4+n] = m3+nkg−1s−2. To get M4+n we must solve the following equation:

[ci ~j G4+n
k] = kg

⇔ (m s−1)i (m2kg s−1)j (m3+nkg−1s−2)k = kg

By using some algebra we get i, j and k as functions of n which yield:

M4+n =
(

c1−n ~1+n

G4+n

) 1
2+n

(17)

but Equation 15 already told us that

Rn =
(

G4+nIn

GN

)1/n

If we combine this equation with Equations 16 and 17 (and again apply some
algebra) we get an expression for the radius Rn of the compactified dimensions:11

Rn =

(
M2

Pl

M4+n
n+2

( c

~

)n 1
2n+1 (

√
π)n−1 Γ

(
3+n

2

))1/n

(18)

or in orders of magnitude (and in natural units):

Rn ∼
(

M2
Pl

M4+n
n+2

)1/n

TeV−1 (19)

This is great! Now we know how large the extra dimension have to be, given the
number of extra dimensions n and the higher dimensional Planck scale M4+n.

So how large do these extra dimension have to be?

Now we can actually set M4+n ∼ MEW ∼ 1 TeV so the compactification radius
Rn will be of order:

Rn ∼ 10
32
n TeV−1 or in SI units : Rn ∼ 10

32
n −19 m (20)

11We assume that all the extra dimensions have the same size and are compactified on a
torus.
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number of extra dim. n 1 2 3 4 5 6
size of extra dim. Rn (TeV−1) 1032 1016 1010 108 106 105

Rn in standard units (meters) 1013 10−3 10−9 10−11 10−13 10−14

The case of one extra dimension cannot be correct for it implies deviations
in Newton’s gravity over distances as big as our solar system. We can safely
say that is excluded. However, for the cases where n ≥ 2 everything is still
possible.[7]

Look Ahead

In the following sections we will discuss some of the possible effects that extra
spatial dimensions have on particle physics. Two of those possible effects, mea-
surable at high energy particle collision, namely: missing energy due to escaping
gravitons and mini black hole creation, will be discussed in detail.

2 Missing Energy

2.1 Interdimensional gravitons

In the ADD model all particles except gravitons are confined to the four dimen-
sional brane. The gravitons on the other hand, are allowed to propagate into
the extra spatial dimensions. Thus, it is possible that a graviton created at a
particle collision carries energy away from the brane into the extra dimensions.
This will result in a nett loss of total energy, because the total energy before
the collision is bigger than the total energy after the collision. The energy lost
in this process is known as ”missing energy”.
The detection of missing energy will confirm the existence of extra spatial di-
mensions. Detecting this missing energy can be done in several ways. One of
them is to simply measuring all the energy before the collision, and then sub-
tract the total energy measured after the collision. An other way of detecting
missing energy is by detecting the graviton that escaped off the brane. In the
ADD model, all the extra dimensions are compactified. Therefore, the escaped
graviton will repeatedly pass through the brane, where it, or rather the jet cre-
ated by the graviton, will be observable. The jet is created because gravitons
alone are unstable particles that decay into other particles. The observable
particles within the jet are referred to as final state particles.

2.2 Kaluza Klein states

A graviton propagating outside the brane will acquire Kaluza Klein modes. The
energy spacing between the Kaluza Klein modes is proportional to 1/R where
R is the radius of the extra dimensions. For extra dimensions with a radius R
of between 10−3m and 10−15m the energy spacing between the Kaluza Klein
modes varies from 1 MeV to 100 MeV. Because the energy spacing is very small
compared to the energy of the escaping gravitons12, the spectrum of the Kaluza

12The energies of the colliding particles at LHC are ∼ 1 TeV. It is therefore likely to expect
that the gravitons created at such collisions carry energies of the same order of magnitude, or
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Figure 3: An example of an escaping graviton due to proton antiproton
collision.[1]

Klein gravitons will appear continous. This spectrum breaks down at a certain
ultraviolet cutoff above which yet unknown quantum gravity effects will take
place. Since the higher dimensional planck scale in the ADD model M4+n is
∼ 1 TeV, it’s natural to expect this cutoff, MS , to be of the same order of
magnitude: MS ∼ M4+n.
In a particle collision with an energy of ∼ 1 TeV for example, there are as
many as 104 Kaluza Klein modes available for each extra dimension. Should
we consider the case where the energy spacing between adjacent Kaluza Klein
modes is maximized, then the radius R ∼ 1fm of the extra dimensions is min-
imized. Because the given size of the extra dimensions corresponds to a total
number of 7 extra dimensions, the total number of exitable Kaluza Klein modes
is 107×4 = 1028. Because of the huge number of Kaluza Klein modes available
for each extra dimension, the gravitational interaction in the extra dimensions
is enhanced tremendously, despite the fact that gravity is weak compared to
other interactions.[21]

2.3 Measuring missing energy

Unfortunately, not all the missing energy is due to escaping gravitons from the
brane. For example, experimental conditions like holes in the detector, result
in more than a third of the events in CDF13 having large missing energy. In
order to distinguish missing energy caused by escaping gravitons from missing
energy caused by other processes, we simulate the experiment. The constraints
imposed by the simulation upon the obtained data will allow us to separate
the possible events that mimic the process of missing energy due to escaping
gravitons, from the process of escaping gravitons itself. Figure 4 displays the
result of a simulation of missing energy processes.
In a collider, apart from the process that produces Kaluza Klein gravitons, there
are many other processes which do not involve missing energy that can occur
during a collision. These collisions are not interesting from our point of view,
thus making them unwanted collisions. It is convenient to choose the so called

somewhat less, but certainly much more than ∼ 100 MeV.
13The CDF is a detector of the Tevatron experiment at Fermilab
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Figure 4: Events with missing energy as predicted by the standard model (in
grey and black) and from a graviton signal (points). For large missing energy
it is more likely that the missing energy is due to escaping gravitons.[2]

acceptance cuts in such a way that the number of unwanted collisions relative
to the number of wanted collisions is minimal. The signal received from the
unwanted collisions is known as the background signal.
As an example we will examine the following collision.

e+e− → ff̄Ĕ

where f can be either a muon or a quark. To keep things short, we will only
discuss the situation where f is a muon. Because Kaluza Klein gravitons couple
to the energy momentum tensor, they can be added to any vertex or line in a
Feynman diagram. Thus, the possible ways for a graviton to be created in the
electron positron collision are the following: see figure 5.
We start our analysis by imposing the following constraints:

C1 We require that the events present a missing transverse momentum bigger
than 10 GeV

C2 The muons or jets should have a transverse momentum bigger than 5 GeV

C3 The muons or jets be observed in the region | cos θ |< 0.98, where θ is the
muon or jet polar angle
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Figure 5: Feynman diagrams contributing to the Kaluza Klein graviton radia-
tion process e+e− → ff̄Ĕ.[12]

C4 The muons are required to be separated by ∆R > 4.

n 2 3 4 5 6 7
σsignal

µµĔ
(fb) 55.1 17.2 6.08 2.27 0.888 0.357

Table 1: Total signal cross section in fb where b = 10−24cm2 for different number
of extra dimensions, using a center of mass energy of 500 GeV and Mpl(4+n) = 1
TeV after applying the acceptance cuts (C1)-(C4).[12]

In table 1 the signal cross section drops quickly as n increases. We know M2
pl ∼

RnMn+2
pl(4+n) from 19, so

R ∼ n

√√√√ M2
pl

Mn
pl(4+n)

This means that R gets smaller for a larger number of extra dimensions (n). As
we already know, the energy spacing between the Kaluza Klein modes is ∼ 1

R
so for larger n the Kaluza Klein modes aquire higher energies. The chance of
a collision where gravitons will be exited in the nth Kaluza Klein mode will
decrease as n increases.
For comparison, the total cross section for the standard model background is
σback

µµĔ
= 73.6fb. As we can see in table 1 the signal cross sections are very small,

especially for large n, compared to background cross section. The signal cross
section is proportional to the chance for a collision where a graviton, together
with two muons, is created, while background cross section is proportional to
the chance for a collision where background radiation is created. In order to
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investigate the Kaluza Klein gravitons, it is therefore necessary to maximize the
signal cross section relative to the background cross section.

Figure 6: Missing invariant mass Mmiss spectrum originated from the Kaluza
Klein graviton radiation (solid line) and the standard model contributions to
the muonic channel divided in the neutrino flavors: νe (dot-dashed), νµ (dotted)
and ντ (dashed). dσ

dm is proportional to the probability for a graviton with mass
m to be created.[12]

In figure 6 we see the Kaluza Klein graviton radiation has the largest differential
cross section14 for Mmiss > 320 GeV. We choose the next cut (C5) to be:
Mmiss > 320 GeV. Due to the fact that emitted Kaluza Klein gravitons carry
momentum in the brane directions, the final state jets or muons are not expected
to be back to back because the total momentum is conserved. This means the
angle between the final state muons (cos θµµ) is not close to −1.
As figure 7 displays, the Kaluza Klein graviton signal prefers the region where
the angle cos θµµ between the final state muons is small due to the fact that
the cosine of cos θµµ is close to 1. Therefore, the next cut (C6), is chosen as
followed: cos θµµ > 0

n 2 3 4 5 6 7
σsignal

µµĔ
(fb) : (C1)− (C4) 55.1 17.2 6.08 2.27 0.888 0.357

σsignal

µµĔ
(fb) : (C1)− (C6) 18.7 7.46 3.05 1.27 0.537 0.230

Table 2: The total signal cross section for the muonic channel with cuts (C1)-
(C4) compared to (C1)-(C6).[12]

After applying (C5) and (C6) the signal cross sections are almost reduced three
14The cross section is the area within which the particles have to meet in order to come

close enough to collide in a certain manner. Therefore, the chance on a particular collision is
proportional to the cross section.
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Figure 7: Distribution of the cosine of the angle between the final state muons
originated from the Kaluza Klein graviton radiation and the standard model
contributions as in figure 6.[12]

times in size, while the background cross section is reduced a lot more! The
standard model background is reduced to σback

µµĔ
= 3.24fb which is more than 20

times as small as σback
µµĔ

without (C5) and (C6). Therefore, these cuts enhance
the signal relative to the background.[12]

2.4 Graviton effects

It will not surprise the reader that, when investigating extra spatial dimensions
as described in the ADD model, gravitons are an important subject of study.
Therefore, we will now spend some more time on these interesting particles.
To be more specific, in the following section we will discuss the following two
possible effects of gravtions, one of which has already been introduced in the
section Interdimensional gravitons.
-Monojet creation due to graviton decay
-Drell-Yan process
The first effect is a direct graviton effect, while the second is a virtual graviton
effect. Also, direct graviton effects depend directly on M4+n, while virtual
graviton effects depend directly on MS .
An exited graviton that is allowed to propagate by itself after the collision,
for example a Kaluza Klein graviton that propagates in the extra dimensions,
is what we refer to as a normal graviton. It is relatively stable, and more
important, it satisfies it’s equations of motion.
A normal graviton as described above is created at the following collision, where
a quark antiquark collision results in the creation of a normal graviton and a
Kaluza Klein graviton.

qq̄ → g + GKK

At this process, a monojet is created. The final state particles in the monojet

17



can be detected by a non conservation in transverse momentum. Also, the
monojet will lead to an amplification of the tail of transverse energy spectrum.
Apart from collisions where normal gravitons are excited, it’s also possible for a
so called virtual graviton to be created. Virtual, in a sense, means that if we look
at the Feynman diagram that describes the collision, the graviton is not allowed
to leave the diagram. For example, all the Feynman diagrams that are shown in
figure 5, display normal gravitons that are allowed to leave the diagram. Virtual
gravitons on the other hand, are stuck between the two vertices. What is meant
by ”not allowed to leave the diagram” is that the gravitons are not able to live
by themselves. This is a direct consequence of the fact that the virtual gravitons
do not satisfy their equations of motion15. Thus, they are only allowed to exist
in some sort of intermediate state, which is what the line connecting the two
vertices in the Feynman diagram stands for.
Virtual graviton effects take place at the Drell-Yan process, mentioned above.
Note that this is just one of the many processes where virutal graviton effects can
take place. The Drell-Yan processes in the presence of large extra dimensions
is shown in figure 8.

Figure 8: Feynman diagrams for the modified Drell-Yan production in the pres-
ence of large extra dimensions.[21]

Both processes noted above have already been studied at Tevatron Fermilab
with the CFD and DØ detectors. We will discuss the results obtained at Teva-
tron Fermilab ref shortly. Results from the monojet searches in Run 1 are
summarized in the next table.

Experiment and channel n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
DØ monojets, K = 1 0.89 0.73 0.86 0.64 0.63 0.62
DØ monojets, K = 1.3 1.99 0.80 0.73 0.66 0.65 0.63
CDF monojets, K = 1 1.00 0.77 0.71
CDF monojets, K = 1.3 1.06 0.80 0.73

Table 3: Individual 95% CL lower limits on the fundamental Planck scale MD

(in TeV) in the ADD model from the CDF and DØ experiments. Ordering of
the results is chronological.[21]

It is possible to compute the chance of a certain collision to take place from the
accompanying Feynman diagram. Figure 9 shows both the
calculated events per transverse energy of the monojet, as well as the measured
events per transverse energy of the monojet.

15Virtual gravitons don’t satisfy E2 = m2c4 + p2c2
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Figure 9: Transverse energy of the leading jet in the DØ monojet analysis.
Points are data, while the histogram is the expected background radiation. The
shadow band corresponds to the change in the jet energy scale (JES) of +/- one
standard deviation.[21]

At Tevatron Run 2 the Drell-Yan process was investigated using both the CDF
and the DØ detectors. Figure 10 shows the invariant mass spectra of the pro-
duced dielectrons16 for two different topologies. As can be seen from figure 10,
the Kaluza Klein graviton contribution to the signal is dominant in the region
where the signal exceeds the expected background, rather than the interference
term which causes virtual graviton exchange.[21]

3 Black holes

A lot of new theories in physics suggest extra dimensions or need extra dimen-
sions to be valid. Until now there is no evidence for the existence of extra
dimensions but the investigation of mini black holes produced in particle col-
liders could give insight in the unexplored world of extradimensional physics.
If the fundamental planck scale is of order a TeV, as the case in some extra-
dimensions scenarios, future colliders such as the Large Hadron Collider (LHC)
will be black hole factories. In this section we investigate the behavior of black
holes in more dimensions and the possibility of creating them at the LHC.

3.1 Black holes in general

A black hole is a body which has such a great mass that not even light can
escape from it due to the gravitational field surrounding the black hole. Before
we will deal with black holes in accelerators we will take a look at black holes
in general.

16Indeed, in this case the leptons in figure 8 are electrons.
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Figure 10: Dielectron mass spectrum from the CDF search for large extra spatial
dimensions via virtual graviton effects. Left: central-central, right: central-
forward combinations. Again, points are data, while the solid line is the sum of
the standard model backgrounds. Also shown in the plots are effects of virtual
graviton exchange due to interference and direct terms for MS = 850 GeV.[21]

3.1.1 Black holes in 4 dimensions

The radius within which the gravitational force is so strong that nothing can es-
cape the black hole is called the Schwarzschild radius. To derive the Schwarzschild
radius we equate the potential energy to the kinetic energy of a particle with
vertical velocity c.

RS =
2GNMBH

c2

=
2~MBH

cMPl
(21)

In the last step we used MPl =
√

~c
G4

. Combining the formula for the Schwarzschild

radius with the formula for the acceleration due to gravity, a = MGN
r2 , will give

us the acceleration due to gravity at the horizon of a black hole:

ahorizon =
c4

4GNMBH

Hawking showed that a black hole radiates particles with a specific temperature
T . This temperature is proportional to the acceleration [3]. Using the funda-
mental constants ~, kB and c, we can get a formula for the temperature by
dimension analysis, up to a numerical constant.
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[T ] = K

[ahorizon] =
m

s2

[~] =
kgm2

s

[kB ] =
kgm2

s2K

[c] =
m

s

We need to satisfy the following equation:

[T ] = [ahorizon]α[~]β [kB ]γ [c]δ

This gives a system of equations which can be solved. We get:
α = 1 β = 1 γ = −1 δ = −1.
Now we can write down an explicit formula for the Hawking Temperature in 4
dimensions. The numerical constant is (8π)−1.

T =
~c3

8πGNMBHkB
(22)

Note that the temperature of the black hole increases as the mass decreases. A
black hole gets hotter as it decays, which causes the decay-process to accelerate.

We know from thermodynamics that the integrating factor of the entropy is the
inverse of the temperature. Using the first law of thermodynamics, dE = TdS,
we find [19]

S =
∫

c2

T (MBH)
dM

=
4πGNkBM2

BH

~c
(23)

= kBπ
R2

S

L2
Pl

In the last step we used equation 21 and LPl =
√

GN~
c3 .

If you consider a black hole in a canonical way, the energy density of a black
hole is given by the Stefan-Boltzmann law. To compute the luminosity of a
black hole we have to multiply the energy density by the surface area of the
black hole.

L = 4πRSσT 4

=
σ~4c8

162π3G2
Nk4

B

∗ 1
M2

BH

(24)

Note that the luminosity of a black hole is inversely proportional to the square
of the mass.
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3.1.2 Black holes in (4+n) dimensions

The black holes that will possibly be formed at the LHC are smaller than the
radius of the extra dimensions. The topology of the object can be assumed to be
spherical symmetric in 4+n dimensions. We will use a semi-classical way of de-
riving the properties of the black hole. Our approach is valid if MBH � M4+n.
[19] [20]

To derive the schwarzschild radius of a (4+n)-dimensional black hole, we have
to equate the (4+n)-dimensional potential energy needed to take a particle away
from the surface of a black hole to infinity, to the kinetic energy of a particle
with vertical velocity c. The (4+n)-dimensional potential energy is given by

U =
1

n + 1
∗ G4+nMBHm

Rn+1
S

(25)

The kinetic energy in (4+n) dimensions is 1
2mc2 because the particle moves

in a two dimensional plane. Now it is easy to see that the (4+n)-dimensional
schwarzschild radius is given by

RH =
(

2G4+nMBH

(n + 1)c2

) 1
n+1

=

(
2

n + 1
MBH

Mn+2
4+n

) 1
n+1 ~

c

In the last step we used M4+n = n+2

√
~n+1

cn−1G4+n
. Setting ~ and c equal to 1, which

is often done in theoretical physics, gives us a nice formula for the schwarzschild
radius in 4+n dimensions.

RH =
(

2
n + 1

MBH

M4+n

) 1
n+1 1

M4+n
(26)

If we assume that M4+n = 1 TeV, and MBH = 5 TeV, which is reasonable for
the experiments at the LHC, we may calculate the value of the schwarzschild
radius as an function of n. [20] These values are given in table 4. From the
values for RH can be concluded that the two particles in a particle collision
have to come closer than 10−4 fm to form a black hole.

Table 4: Black hole horizon radii for different values of n

n 1 2 3 4 5 5 7
RH (10−4 fm) 4.06 2.63 2.22 2.07 2.00 1.99 1.99

The temperature of a (4+n)-dimensional black hole can be derived in a way
similar to the 4 dimensional case. We won’t give the derivation here. An
explicit derivation can be found in [19].

TH =
n + 1
4π

1
RH

(27)
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In the (4+n)-dimensional case the temperature is inversely proportional to

M
1

n+1
BH . As the parton collision energy increases, the resulting black hole gets

heavier and its decay products get colder. We also see that higher dimensional
black holes are hotter.

Figure 11: The temperature of a black hole as a function of its mass for different
numbers of extra dimensions. NB: here d is the number of dimensions, i.e. n+4.
[9]

Now we can derive the entropy. Again we are using the first law of the thermo-
dynamics.

SH = 2π
n + 1
n + 2

(
2

n + 1
MBH

M4+n

)n+2
n+1

= 2π
n + 1
n + 2

(M4+nRH)n+2 (28)

The entropy is a measure for the number of decay products, as we will see later
in this article.

The luminosity of a (4+n)-dimensional black hole is given by the (4+n)-dimensional
energy density times the (4+n)-dimensional volume of the black hole. We will
qualitatively motivate that the energy density is proportional to T

(n+4)
H .

Remember the derivation of the energy density in 4 dimensions. The energy
density is given by

∑
En ∗ npl, where En is the energy of a particle in a certain

state n, and npl is the planck distribution. To determine En one has to check
which wavelength of the particle fits in a 3 dimensional box with size L, to find
En = hc|~n|

2L with | ~n |=
√

n2
x + n2

y + n2
z. Converting the sum into an integral will

give a formula depending on n3. Changing variables to ν will give a formula
depending on ν3. Now, changing variables again to x = hν

kBT (the exponent
of the boltzmann factor), and evaluating the integral gives the 4 dimensional
stefan boltzmann equation, σT 4. This equation is proportional to T 4, because
of the ν3 plus an extra T from the jacobian. [22] [4]
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Now we will give the analogue in 4+n dimensions. To determine En one has
to check which wavelength of the particle fits in a (3+n) dimensional box with
size L. This will give En = hc|~n|

2L , but now | ~n | is the absolute value of a (3+n)

dimensional vector: | ~n |=
√

n2
1 + n2

2 + · · ·n2
3+n. Converting the sum into an

integral gives a formula depending on n3+n and changing of variables twice will
give a formula depending of T 4+n, where the ’extra T ’ again comes from the
Jacobian. This time we cannot evaluate the integral exact but we know it will
just give a constant which we will call σ4+n. Note that this constant is not the
same at the 4 dimensional σ. So the (4+n) dimensional energy density is given
by

ε = σ4+nT 4+n

The volume of a sphere in 4+n dimensions is given by

V4+n(R) =
2π

n+3
2

Γ(n+3
2 )

Rn+2

as has been derived in section 1, equations 8 and 9. The luminosity is propor-
tional to

LH ∼ Rn+2
H T

(n+4)
H

∼ M
− 2

n+1
BH (29)

3.2 Black hole production

3.2.1 The experiment at the LHC

In the year 2007, scientists at the Large Hadron Collider (LHC) at CERN in
Geneve, Switzerland might be able to produce mini black holes with the next
generation of particle colliders. Two beams of accelerated particles will be
”fired” against each other, each particle having a high kinetic energy of about
14 TeV in the center of mass (c.o.m.) system. With such high energies the
particles will have such a small Compton-wavelength λC ∝ 1/E and the wave
package will be tightly packed such that the probability of particles coming
very close to each other will be high. Figure 12 shows a scheme of a particle

Figure 12: Particle Collision [19]

collision. As particles with very high energies collide, they can come closer
than the Schwarzschild radius RH , associated with their energy. If the impact
parameter b is smaller than 2RH a mini black hole will be formed. [10] [9]
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3.2.2 Energy needed to form a black hole

The Schwarzschild radius RH of a (4 + n) dimensional black hole with mass M
is given by equation 26. We suppose the Planck mass M4+n to be of order 1
TeV in (4 + n) dimensions. Thus, a black hole with mass of order M4+n has a
Schwarzschild radius

RH ≈ LPl = 1/M4+n (30)

We want the Compton wavelength λC of the particles to be in the same order
of magnitude. Assuming λC ≈ 1/E (and we can do that since by dimensional
analysis we can show that the fundamental constants must be the same in both
cases RH and λC and no big extra factors occur) we need a c.o.m. energy of
order M4+n to get λC close to RH . Thus the energy needed to form a black
hole will be of order E = 1 TeV. The next generation of particle accelerators
at the LHC will be able to produce such high energies in the coming years.[10]
[14] [18]

3.2.3 Cross section

The cross section is the area within which the partons have to meet to come
close enough to form a black hole. Arguments along the line of Thorne’s hoop
conjecture indicate that a black hole forms when partons collide at impact pa-
rameter b that is less than the Schwarzschild radius RH corresponding to E [14].
This cross section can be approximated by the classical geometric cross section

σ(M) ≈ πR2
H (31)

and contains no small coupling constants. This approximation of the cross
section has been and is still under debate, but it seems to be justified at least
up to energies of ≈ 10M4+n [19]. The cross section of a parton collision with
c.o.m. energy

√
ŝ ≈ M4+n ≈ TeV is of order (1TeV )−2 ≈ 400pb.[19] [14] [23]

3.2.4 Differential cross section

We will need the differential cross section dσ
dM to be able to compute the number

of black holes that will be formed with a certain mass MBH at a c.o.m. en-
ergy

√
s. It is given by summation over all possible parton interactions, which

is expressed in the functions fA(x1, ŝ), fB(x2, ŝ) giving the distribution of the
partons within the protons, and integration over the momentum fractions. We
will give the equation here but refer for further explanation to [19].

dσ

dM
=
∑

A1,B2

∫ 1

0

dx1
2
√

ŝ

x1s
fA(x1, ŝ)fB(x2, ŝ)σ(M,d) (32)

It is complicated to calculate this term. We will give a numerical evaluation of
it, shown in Figure 13, left. By integrating equation 32 we get the total cross
section. The plot in Figure 13, right, shows the total cross section of a black hole
with mass Mf = M4+n = 1TeV as a function of the collision energy

√
s. The

total (production) cross section at the LHC for black hole masses above 1 TeV
ranges from 0.5 nb for M4+n = 2TeV and n = 7 to 120 fb for M4+n = 6TeV
and n = 3.[19]
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Figure 13: Left: Differential cross section for black hole production in proton-
proton-collisions at the LHC for M4+n = 1TeV , Right: Integrated total cross
section as a function of the collision energy

√
s, both plots deal with the case d

= 6 extra dimensions. [19]

3.2.5 Number of produced black holes per year

According to [11], the LHC will have a (estimated) peak luminosity of 30fb−1/year.
This would result in a black hole production rate of 107/year. According to [19]
the luminosity is going to be about L = 1033cm−2s−1, which, at a c.o.m. energy
of 14 TeV, would give birth to about 109 black holes per year. This is about
one black hole per second! [19] [11]

3.3 Black hole decay

3.3.1 Balding phase, evaporation phase, Planck phase

Decay of spinning black holes can be divided in three phases.
Phase 1: The balding phase in which the black hole loses its ’hair’, that means
lost of multipole moments through the emission of (classical) radiation.
Phase 2: The evaporation phase, evaporation through emission of Hawking ra-
diation, which starts with a brief spin-down phase, giving away its angular
momentum, followed by the Schwarzschild phase: the emitted particles carry
signatures of mass, entropy and temperature of the black hole.
Phase 3: The Planck phase, when the mass of the black hole approaches M4+n

and the black hole’s final decay takes place by emission of a few quanta with cor-
responding Planck-scale-energies. There are two possibilities for an end state:
Either the black hole decays completely or some stable remnant is left, which
carries away the remaining energy. Information is lost.[19] [14] [15]

3.3.2 The evaporation phase: Hawking radiation

In the past scientists thought that there was no way for energy to escape a black
hole, they thought of a black hole as a massive object letting nothing escape the
so-called Schwarzschild-radius. But then there was Hawking, who published a
new theory in 1975. When taking quantum theory in account, black holes can
radiate according to Hawking’s theory because of random vacuum fluctuations
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near the Schwarzschild-radius.
Virtual particle pairs are constantly being created near the horizon of a black
hole. Normally, a particle-antiparticle pair annihilates quickly after creation.
However, near the horizon of a black hole it’s possible for one particle to fall
into the black hole, while the other particle escapes as Hawking radiation. In
this case the antiparticle with negative energy falling into the black hole takes
energy of the black hole that escapes by means of the other particle. [19] [5]
[17] [15]

3.3.3 Black body radiation

Hawking showed that the radiation of a black hole can be seen as radiation of
a black body with a specific temperature T. This implicates the use of thermo-
dynamics to calculate various properties of a black hole. The particle spectrum
of the radiation of a black hole can be seen as a thermal spectrum (Planck /
Maxwell-Boltzman distribution). Since we are dealing with black holes of very
small mass i.e. only few particles, one could suggest that the distributions are
not valid anymore. But since the black holes that are going to be produced have
a mass of order TeV and emitted particles will have an energy of order 10 GeV,
the spectra will keep their validity. Furthermore the radiated particles can be
seen as massless because their total energy will exceed their mass energy by far.
Therefore all kinds of particles of the Standard Model (SM) will be produced
with the same probability. [19] [5]

3.3.4 Evaporation rate and life time of a (mini-)black hole

The luminosity of a black hole is the energy it loses per second through radiation.

L = −dE

dt
(33)

The energy of a black hole of mass M has amount E = Mc2, therefore:

L = −c2 dM

dt
(34)

Combining with equation 24 we get the evaporation rate:

dM

dt
≈ − 1

15π83

c4~
G2

NM2
0

(35)

where M0 is the initial mass of the black hole at the time being investigated.
As the black hole loses mass, its temperature (see equation 22) increases and so
does dM

dt which results in an even quicker decay.
Integration over t reveals an estimate τ for the lifetime of a black hole.

τ ≈ 15π83 G2
N

c4~
M3

0 ≈ 1059

(
M0

M�

)3

Gyr (36)

For a mini-black hole or a black hole with small mass, say MBH ≈ MPl, dM
dt

should be calculated by using the micro canonical ensemble, applying the laws
of statistical mechanics (see [19]) since, using Hawking radiation and the Stefan-
Boltzman law for black body radiation, dM

dt goes to infinity as MBH approaches
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0. dM
dt can be calculated using the canonical ensemble, too, see [19]. Then the

variation of the mass is given by

dMBH

dt
=

4π3

45
M2

BH

M4
Pl

exp[−4π(MBH/MPl)2]
∫ MBH

0

(MBH−x)3exp[4π(x/MPl)2] dx

(37)
For further explanation and derivation of this formula see [19].

Figure 14: Canonical contra micro canonical. [19]

Figure 14 shows the canonical and micro canonical results. As we can see, the
canonical evaporation rate diverges as M goes to 0 whereas the micro canonical
drops back after having passed a maximum near MBH = MPl.

In (4 + n) dimensions we get for the evaporation rate (see [19]:

dMBH

dt
=

Ω2
3+d

(2π)d+3
R2+d

H ζ(4 + d)e−S(M)

∫ MBH

0

(MBH − x)(3+d)eS(x) dx (38)

where Ωd+3 is the surface of the (d + 3) dimensional unit sphere Ωd+3 = 2π( d+3
2 )

Γ( d+3
2 )

,

ζ(4 + d) =
∑∞

j=1
1

jd+4 and S(M) = 2π d+1
d+2 (MP RH)(d+2)

Integration over t reveals a formula for the mass M as a function of t. We leave
it out here and only give a plot of the function of the mass M for various d. [19]

3.3.5 black hole relics

It is not clear how the last stages of Hawking radiation would look like. If the
black hole completely decays into statistically distributed particles, unitarity
can be violated. To avoid the information loss problem two possibilities are
left. Either some unknown mechanism will regain the information or the black
hole will form a final stable remnant which keeps the information. One way to
explain this remnant is the following. The spectrum of a black hole is quantized
in discrete steps, only particles with a wave length that fits the horizon size
can be emitted. Suppose now that the lowest energetic mode of such a particle
exceeds the total energy of the black hole, then the remaining energy can’t be
emitted. Thus, there will always remain a remnant of the black hole.[19] [6].
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Figure 15: The left plot shows the evaporation rate as a function of the initial
mass for various d, where d is the number of extra dimensions. The right plot
shows the time evolution of a black hole with an initial mass of 10 TeV. [19]

3.4 Signatures of black hole decay

In this section we will give some spectacular experimental signatures associated
with black hole production and decay.

3.4.1 Multiplicity

The number of decay products, which we will refer to as the multiplicity, is
high compared to Standard Model processes [19]. The average multiplicity of
particles produced in black hole evaporation is given by [11]

〈N〉 =
〈

MBH

E

〉
=

MBH

2TH

=
2
√

π

n + 1

(
MBH

M4+n

)n+2
n+1

(
8Γ(n+3

2 )
n + 2

) 1
n+1

(39)

Combining this equation with 28 shows us that the average number of particles
produced in the process of black hole evaporation is of the order of SH [14].
The particles have typical energies given by the Hawking temperature TH , thus
ranging over roughly 100 GeV - 1 TeV [13].

Figure 16 left shows the number of expected decay products of black hole events.
For larger n, with a fixed mass, the temperature increases 27, which leads to
evaporation into high energetic particles. Therefore the number of produced
particles is relatively low and the multiplicity reduces. Figure 16 right shows
the number of expected events with a certain event multiplicity for different n,
for a black hole with MBH = 5 TeV.
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Figure 16: Left: The average multiplicity of black hole events for various num-
bers of extra dimensions n=2 (black), 3 (green), 4 (red), 5 (cyan), 6 (blue) [19].
Right: Typical multiplicity distribution for 100 fb−1 of integrated luminosity.
[16]

3.4.2 Cut off high energy jets

In the standard model, we expect high energy collisions to be characterized
by a large multiplicity of QCD17 jets. The QCD-jets are created when one of
the decay products of the particle collision is a color-charged particle (quark or
gluon), since these particles can not exist isolated. Crossing the threshold for
black hole production causes a sharp cut-off for QCD jets as those jets now end
up as black holes instead. [19] [8]

Figure 17: Cross-section for jets at high transverse momentum.
√

s = 14 TeV,
M4+n = 1 TeV. NB: d = n = number of extra dimensions [19]

The expected cross section for pertubative QCD jets is shown in figure 17. If
there are extra dimensions the cross section drops at a certain energy. The
cut-off is close to the (4+n)-dimensional plankmass but it’s hardly sensitive to
the number of extra dimensions. This cut-off is been considered as a smoking
gun signature for black hole production.

17QCD stands for Quantum Chromo Dynamics
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3.4.3 Sphericity and transverse energy of black hole events

High energy collisions normally are characterized by jets. When a black hole is
created, is will evaporate by hawking radiation. Most of the hawking radiation
is isotropic in the black hole’s rest frame, due to thermal properties [19] [13].
Therefore these events would have a high sphericity, in contrast to standard
model processes which are not spherical at all. Even the low multiplicity events
tend to be rather spherical.
Figure 18 shows the expected sphericity of black hole events. For higher dimen-
sions, the events become significantly less spherical [16].

Figure 18: A typical set of expected distributions of the sphericity for 8 TeV
black holes for n = 2 (black), 3 (green), 4 (red), 5 (cyan), 6 (blue). [16]

Due to the high sphericity a large component of the energy is in the trans-
verse direction. The total visible transverse energy of a typical black hole event
(
∑

pT ) is between 1
3 and 1

2 of the total visible energy. The transverse energy
increases as the black hole mass increases. See figure 19. [16] [15]

Figure 19: The distribution of
∑

pT for various numbers of extra dimensions
n=2 (black), 3 (green), 4 (red), 5 (cyan), 6 (blue), for 100 fb−1 of integrated
luminosity. [16] Left: MBH = 5 TeV. Right: MBH = 8 TeV. [16]
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3.4.4 High missing transverse energy

As a black hole decays, neutrinos can be produced. This will not always hap-
pen, but if it does, the neutrinos will have energies that can be as high as half
the black hole mass. The energy of these neutrinos is considered as missing
energy, �pT . Most standard model processes tend to have much lower missing
transverse energy. Figure 20 left shows the distribution of transverse missing
energy of standard model events, super symmetry events and black hole evap-
oration events in 2 and 6 extra dimensions. As we can see from the figure the
transverse missing energy for black hole evaporation is much greater than for
the other processes. A high missing transverse energy will be a clear signal for
black hole production. [16]

Figure 20: Left: The distribution of �pT . [16] Right: Distribution of the charge
of a black hole. M4+n = 1 TeV, n = 3. [16]

3.4.5 Black hole charge

Black holes are charged objects because they are formed of charged valence
quarks. The charge of the black hole should be ∼ + 2

3 electron charge (e) and
has a little energy-dependence. A black hole charge distribution is given by
figure 20 right [23]. The remaining of the charge of the colliding protons, 4

3 e,
will disappear down the beam pipes.
To determine the black hole charge, 〈QBH〉, one has to measure the average
charge of the leptons emitted by the black hole, 〈Qlep〉. This charge should
equal the black hole charge times a probability of emitting a charged lepton.
[16]
There are two reasons to use leptons for the charge determination instead of
other charged particles. First, the average lepton charge can be measured un-
ambiguously. Second, because of the black hole thermal spectrum the light
lepton are produced more often than other charged particles are. [3]

3.4.6 Ratio hadronic leptonic particles

A black hole decays roughly with equal probability to all 60 particles of the
standard model. [14] [13], due to its thermal properties. The ratios of particles
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change a bit due to fact that the particles interact with each other, As well as
the fact that the primary particles decay. The ratio of hadronic and leptonic
activities we will eventually measure is roughly 5:1. This will be a clear signal
of black hole decay [15].

4 Conclusion

Within a few years particle physics will possibly make a big breakthrough.
Future colliders are going to be able to give particles enough energy to reveal new
physics: mini black holes as well as Kaluza Klein gravitons might be produced
and perhaps even detected at these colliders. Whether or not this is going to
happen will decide if extra dimensions, as proposed in the ADD model, exist
within our universe. The existence of these extra spatial dimensions will mean
the end of short distance physics due to the creation of mini black holes at high
energy colliders. On the other hand, it will also mean the beginning of the
exploration of the geometry of the extra spatial dimensions.
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