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Abstract

The purpose of this article is to investigate the concept of gravita-
tional radiation and to look at the current research projects designed
to measure this predicted phenomenon directly. We begin by stat-
ing the concepts of general relativity which we will use to derive the
quadrupole formula for the energy loss of a binary system due to grav-
itational radiation. We will test this with the famous binary pulsar
PSR1913+16 and check the the magnitude and effects of the radiation.
Finally we will give an outlook to the current and future experiments
to measure the effects of the gravitational radiation
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1 Introduction

Waves are a well known phenomenon in Physics. Oscillating matter can cause
waves that carry its energy away. In our daily life we can see the mechanical
waves in water when you throw a stone in a pond or hear the sound waves
caused by oscillating snares. Physically understanding these waves comes
very natural to us. Energy stored in waves can be felt when you are blown
away by a large sound system or when a tsunami wipes down a village.

Another common physical phenomenon is light. The physical understand-
ing of light is more difficult, because of its dual character as a particle and a
wave at the same time. This still is a mysterious property but the theory of
electromagnetism provides us with an excellent tool to work with electromag-
netic waves. The energy contained by light waves is also easy to understand
because we can feel the warmth coming from a lamp or look at our electricity
bill caused by our electric devices such as a microwave and a television.

When Einstein concluded in 1918 that his Theory of General Relativity
also had a wave solution in the weak field regime (where there is almost no
gravitation) this was not easily accepted. The concept Einstein proposed to
describe gravity was counterintuitive, because in his theory gravity was no
longer an attractive force caused by large amounts of mass, as the physics
community had believed for about 300 years. Using the same arguments
he used for special relativity and the equivalence principle (which will be
explained later on) he described gravity in terms of curved spacetime. Energy
and momentum curve spacetime, and the natural motion of mass in curved
spacetime is what we observe as a force pulling us to the Earth or as the
Earth travelling around the sun in a steady orbit.

It isn’t even important whether you say that every object has its own
gravitational field or that it creates its own curvature in spacetime, the effects
are described by general relativity. When a massive object accelerates, the
gravitational field changes and an attracted (smaller) object experiences a
different gravity. One of Einstein’s famous postulates states that nothing
travels faster than the speed of light, including information. There has to be
something that carries the information about the changed gravitational field
to our attracted object. This information is stored in gravitational waves
traveling with the speed of light.

The theory of general relativity is not easy to work with. The theory
holds all the information we need, but it is (currently) not always possible to
find an exact answer and it is not always straightforward to understand what
it is trying to tell us. When physicist calculated that it was possible within
the theory to have a gravitational wave solution, concluding that these waves
contain information and therefore energy, a lot of physicists we sceptical. It
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was doubted till the observations on the pulsar PSR1913+16, which gave
good experimental evidence that gravitational waves indeed carry energy.
This indirect evidence that gravitational waves exist was also rewarded with
the Nobel price in 1993. Before that time the doubters argued that real vac-
uum could not contain energy and there were ways to rewrite the coordinate
systems such that the waves seemed to disappear. Sir Arthur Eddington said
that gravitational waves travel at ”the speed of thought” (referring to a sub-
set of waves which indeed are coordinate artifacts). It is ironic to say that
even Einstein wrote an article in 1936 which he named ”Do Gravitational
Waves Exist?”, with the answer ”No”. It is even more ironic that Physical
Review refused to publish this paper, because they thought it was wrong.
They were right after all, but Einstein was offended and never submitted an
article to Physical Review again.

In the 1960s Joseph Weber believed firmly that he could dettect passing
gravitational waves with a resonance principle. He didn’t succeed, however
with the currently used interferometer principle physicists have good hope
to find gravitational waves in a laboratory soon. To understand the concept
of gravitational waves we have to study a bit of general relativity.

2 A very short introduction to the Theory of

General Relativity

The theory of relativity was constructed by Einstein in the beginning of
the 20th century. It was a time paradigms in physics were broken and a
lot of new physical fields were explored. Einstein and his famous equation
E = MC2 became very popular among the general public. The general
theory of relativity is not so well known, mainly because of its mathematical
difficulty and somewhat counterintuitive arguments. The purpose of this
thesis is not to teach you General Relativity (GR) but to show you what
aspects of the theory lead to the assumption that gravitational waves exist.
Some basic knowledge of GR is therefore necessary. I will not derive the
Einstein equations or make it plausible that they are true, but show you the
famous tensor formula (where the Greek indices run from 0 to 3) and explain
what it means

8πG

c4
Tµν = Rµν −

1

2
Rgµν . (1)
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2.1 On the left-hand side: The energy-momentum ten-
sor

T µν is the energy-momentum tensor which has 16 components. The com-
ponents describe the energy and the momentum of a macroscopic system.
And just as in special relativity, where pµ = (p0, p1, p2, p3) = (E

c
, ~p), the

µ = 0 component relates to energy and µ = 1, 2, 3, relates to the momentum.
For physical understanding the Greek indices µ = 1, 2, 3, are sometimes re-
placed by Roman indices i = 1, 2, 3, so pµ = (E

c
, pi). The components can be

interpreted as follow:
T 00 : Energy density
T i0 : Momentum pi density
T 0j : Energy flux in the direction of j
T ij : Momentum pi flux in the direction of j

The tensor is symmetric (T µν = T νµ) and also satisfies the continuity equa-
tion in flat space

∂

∂xν
T µν = 0. (2)

Here, just as in special relativity, xµ = (x0, x1, x2, x3) = (ct, ~x). The Einstein
summation convention is also used (see appendix A). If you take µ = 0
equation (2) reduces to the famous law of conservation of energy

∂

∂ct
T 00 +

∂

∂xi
T i0 = 0, (3)

∂E/c

∂t
+∇ · ~p = 0. (4)

It can also be shown that µ = 1, 2, 3 leads to the law of conservation of
momentum [3]. The factor 8πG

c4
before the energy-momentum tensor is a

normalization factor, where G is the universal constant of gravity known
from Newtons famous inverse-square law for gravity

F = −GMm

r2
er. (5)

This factor is found, using the fact that Einsteins theory of relativity in
the weak gravitational field limit (like on earths surface) should reduce to
Newtons theory of gravity. If you are interested in the derivation you can
read Carroll [4] for more information.
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2.2 On the right-hand side: The Einstein tensor

The Einstein equations relate the energy and momentum to the ’curvature’
of spacetime. The right-hand side gives us the ”shape” of the spacetime
caused by the energy and momentum. This curvature influences the motion
of matter and this is what we experience as gravity. This gravitational motion
also influences the curvature which makes the Einstein equations nonlinear
and hard to solve. A well known picture to intuitively understand curvature
is the two dimensional representation of the curved space around the earth:

Figure 1: A two dimensional representation of the curved space caused by
the earth

The right-hand side of formula (1) we can write down as one tensor, the
Einstein tensor (Gµν). This tensor has to satisfy the same basic identities as
the energy-momentum tensor. So in flat spacetime

∂

∂xν
T µν = 0 =

∂

∂xν
Gµν , (6)

the Einstein tensor obeys the continuity equation and it is trivial it also sym-
metric Gµν = Gνµ. Now we introduce the metric tensor gµν . This quantity
defines the geometry of a system and is very important (see appendix B).
In flat space it is very natural to compare two vectors at different points
(subtract, take the dot product and so on). When you move one vector to
another, to make such a comparison, you can keep the Cartesian components
constant and the value of the vector will not change because the spacetime
is equal at every point (flat). The spacetime we now learn to work with is
curved and therefore it is generally not possible to compare two vectors on
two different places with each other. The concept of moving vectors along a
path, keeping them as constant as possible all the while, is known as parallel
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transport. To do this we need to construct a ’connection’ between the two
vectors. For more explanation on this topic you can read Carroll section 3.3.
But what we have to know right now is that you need a unique combination
of the metric (gµν) which we also call the Christoffel symbol

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν). (7)

This symbol (it is not a tensor) is used to find the path of the shortest distance
between two points and is used to construct the covariant derivative. This is
the generalization of the partial derivative which we use in flat spacetime

∇µV
λ = ∂µV

λ + Γλ
µνV

ν . (8)

This generalization is needed because the partial derivative of a tensor does
not generally become another tensor. Therefore we need a correction which
turns out to be the Christoffel symbol [15]. Notice that in flat space (gµν =
ηµν = diag(−1, 1, 1, 1)) the Christoffel symbol vanishes because of the partial
derivatives. The covariant derivative then reduces to the partial derivative.
Now that we know the generalization of the partial derivative we can rewrite
equation (6) so it also makes sense in curved spacetime

∇νT
µν = 0 = ∇νG

µν . (9)

This equation seems simple but it yields a lot of physics. Physical phenomena
do not depend on the coordinate basis we use to describe them. All the
equations in a physical law should transform in the same way under general
coordinate transformations. This is called generally covariant. The quantities
that change in the same way under these conditions are the tensors. A tensor-
equation has to have tensors with the same number of indices on both sides
for it to be correct in all coordinate systems (Aµν = Qµν). We want a physical
law to be a tensor that is equal to an other tensor with the same order or to
zero, because zero can be a tensor with any number of indices (Gµν). Using
the covariant derivative ensures that a tensor stays a tensor and the product
remains independent of coordinates.

To construct the tensor Gµν out of the metric and its derivatives we need
to take a few steps. From a combination of the Christoffel symbol and its
derivative we can construct a tensor. This is known as the Riemann tensor
and it is the only tensor you can construct out of the metric tensor with at
most two derivatives (either two first derivatives or one second derivative).
To make the formulas more compact we use the comma notation for the
partial derivatives ( ∂

∂xµ F ν = ∂µF
ν = F ν

,µ) and the semicolon notation for
the covariant derivative (∇µF

ν = F ν
;µ). The Riemann tensor becomes
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Rλ
µκν = Γλ

µν,κ − Γλ
µκ,ν + Γη

µνΓ
λ
κη − Γη

µκΓ
λ
νη. (10)

From this (1,3)-tensor we can construct a (0,2)-tensor by contracting the first
and third indices

Rµν ≡ Rλ
µλν . (11)

This tensor is known as the Ricci tensor. Because of antisymmetry in the
Riemann tensor this is the only (0,2)-tensor you can construct from Rλ

µκν

(because of symmetry Rµν = Rνµ, see appendix C). When you contract the
Riemann tensor twice you get the Ricci scalar

R = gµνRµν = gµνRλ
µλν = gµνgκλRκµλν . (12)

It can also be proven that R is the only scalar that can be constructed from
the Riemann tensor. Now we are ready to construct a symmetric (0,2)-tensor
because Rµν and gµν are symmetric. And when we demand ∇νG

µν = 0 we
find

Gµν = Rµν −
1

2
Rgµν . (13)

It is remarkable to know this tensor is uniquely determined up to normal-
ization and is the only way to relate curvature and energy-momentum in a
tensor equation

8πG

c4
Tµν = Gµν (14)

.

3 Working with the Einstein equations of Gen-

eral Relativity

In the special theory of relativity Einstein used two postulates:
1. The principle of relativity
2. A constant speed of light

The first postulate states that different inertial systems, moving at a constant
speed with respect to each other, should have the same laws of physics. The
second states that the speed of light is the same in every inertial system and it
is the maximum speed. With these two postulates Einstein realized that there
is no such thing as a universal time and a three-dimensional space. Space
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and time are part of a larger structure: spacetime, spanned by four coordi-
nates (t, x, y, z) that all change according to their Lorentz-transformations.
Nowadays we assume that all the laws of physics are consistent with these
postulates. If they are they are called Lorentz invariant. In the beginning of
the 20th century it was already known that Maxwells equations of electrody-
namics were Lorentz invariant. In 1905 Einstein was able to rewrite the laws
of mechanics to be Lorentz invariant. A successful combination of gravitation
and Lorentz invariance was not found until Einstein came up with another
principle in 1915:

3. The principle of equivalence
At every spacetime point of an arbitrary gravitational field it is possible to
choose a ”locally inertial coordinate system” such that, within a sufficiently
small region around the point in question, the laws of nature take the same
form as in unaccelerated coordinate systems in the absence of gravitation,
where they can be described by the principles of special relativity. The suf-
ficiently small region is necessary so that the gravitational field is constant
throughout it. With a locally inertial coordinate system we mean a coordi-
nate system where the point in question is in rest. Because such a coordinate
system is only valid over a short period of time and in a small region of space
we have to find a local coordinate system over and over again and every time
the gravitational field vanishes. When you do this to describe a free falling
system it is said you use free falling coordinates to describe, for example a
rock falling to the earth. Now you can’t determine whether the rock is in
a gravitational field or not, because in your coordinate system it is at rest.
This thought led Einstein to believe that gravity does not act as a force but
as something that changes the curvature of space so we should use curved
coordinate systems.

Gravity is now described as something that changes the curvature of
spacetime and the principle of equivalence states that using local inertial
systems in small enough regions gives you back the domain where special
relativity applies. For an equation to be correct in curved spacetime it has to
be a valid equation in special relativity if the spacetime is flat (when gµν = ηµν

and Γρ
µν = 0). It also has to have a tensorial form so you can change the

”locally inertial coordinate system” to any other coordinate system as well
as its original coordinate system. This is called general covariant. To make
general covariant formulas you should write down an equation that holds in
the special relativity in a tensorial form and change the ηµν to gµν and the
partial derivatives (∂) to covariant derivatives (∇).

9



4 A derivation of the energy loss due to grav-

itational radiation

The purpose of this thesis is to show that general relativity has room for
gravitational waves. The theory of Electromagnetism describes the properties
of electromagnetic waves. Whereas the calculations in Electromagnetism
invoke the vector and scalar potentials V and ~A, in general relativity it
is the metric that contains the information we need. It is in general not
possible to find an exact solution to the Einstein equations because they
are highly nonlinear. A gravitational wave itself is a distribution of energy
and momentum and influences the spacetime it travels in. To simplify the
analysis we use the linearized theory of gravity. We look at gravitational
waves that propagate on a flat background and do not carry enough energy
and momentum to affect the spacetime they travel in. This is the weak-field
approximation of the metric and it is a reasonable approximation if we are
far away from any source, because gravitational radiation is generally very
weak.

We look at waves that propagate in vacuum but do contain energy them-
selves. The amount of energy is small and does not influence the main con-
tribution of the wave solution. The left-hand side of the Einstein equation
(1) therefore reads zero. The right-hand side consists of the Ricci tensor (and
scalar), which we can expand to a sum of different orders in the perturbation.
The Ricci tensor to zeroth order in h holds no information. The Ricci tensor
to first order in h, R

(1)
µν = 0, can be used to find the solution of the pertur-

bation, which turns out to be a plane-wave solution (�hµν = 0) [14]. To

second order of h it becomes a delicate story, but G
(2)
µν can be interpreted as

the stress-energy momentum tensor. Finally we want to find the formula for
the energy loss due to gravitational radiation by an isolated nonrelativistic
object. But we first start with the metric that can be described as the flat
Minkowski metric with a small perturbation.

4.1 Finding the stress-energy tensor

gµν = ηµν + hµν , |hµν | � 0 (15)

Because |hµν | � 0 we will only need the first-order terms in hµν . From the
definition gνσg

σµ = δµ
ν we can find the inverse metric: gµν ' ηµν − hµν . We

are free to choose any coordinate system we want. So to make life easier we
choose them in such a way the metric becomes transversal and traceless. This
is called the transversal-traceless gauge. So the metric is traceless: hα

α = 0
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and transversal: ∂αhα
β = hα

β,α = 0. And as said before the perturbation is a
plane-wave solution.

The Christoffel symbols and the Riemann tensor can be written as a sum
of different orders of h

Γ = Γ(0) + Γ(1) + Γ(2) + .... (16)

We only need the first-order Christoffel symbol for our calculations (Γ(0) = 0
and the Γ(2) terms will turn out to non essential so we don’t need to calculate
them explicitly)

Γ(1) =
1

2
ηµν(hβµ,ν + hβν,µ − hµν,β). (17)

The Ricci tensor to 0th order in hµν is not interesting, because Γ(0) = 0 and

R
(0)
µν = 0. The Ricci tensor to 1st order in hµν , R

(1)
µν = Γ

α(1)
µν,α−Γ

α(1)
µα,ν = 0 is used

to find the solution of the perturbation. To learn something about the energy
contained in the gravitational field we have to look at the second-order Ricci
tensor

R(2)
µν = Γα(2)

µν,α − Γα(2)
µα,ν + Γβ(1)

µν Γ
α(1)
αβ − Γβ(1)

µα Γ
α(1)
νβ , (18)

Γβ(1)
µν Γ

α(1)
αβ = Γβ(1)

µν (
1

2
ηαρ(hρα,β + hρβ,α − hαβ,ρ)) = Γβ(1)

µν (
1

2
hα

α,β) = 0. (19)

Here we used ηαρhρβ,α = ηραhαβ,ρ and the gauge condition hα
α = 0. The last

part of equation (18) reeds

−Γβ(1)
µα Γ

α(1)
νβ = −1

4
(hβ σ

µ, + hβσ
,µ − hσ β

µ, )(hσν,β + hσβ,ν − hβν,σ) (20)

= −1

4
(hβ σ

µ, hσν,β − hβ σ
µ, hβν,σ + hβσ

,µhσβ,ν − hσ β
µ, hσν,β + hσ β

µ, hβν,σ) (21)

= −1

4
hβσ

,µhσβ,ν +
1

2
hβ σ

µ, hσν,β −
1

2
hβ σ

µ, hβν,σ. (22)

Here we used the symmetry in the metric hµν = hνµ to make some terms
disappear (21) and merge some terms (22). Using partial integration on the
last two terms give

−1

2
hβ σ

µ, hβν,σ = −1

2
(hβ

µhβν,σ),σ +
1

2
hβ

µh σ
βν,σ, (23)

and
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1

2
hβ σ

µ, hσν,β =
1

2
(hβ

µhσν,β),σ −1

2
hβ

µh σ
σν,β . (24)

The second part of equation (24) will vanish because of the gauge condition
hα

β,α = 0. The tensor terms that are total derivatives in σ in equations
(23, 24) and the second-order Christoffel symbol that is total derivative in α
(equation 18) will we put together and will be renamed

S α
µν ,α =

1

2
(hβ

µ,hαν,β),α−1

2
(hβ

µhβν,α),α +Γα(2)
µν,α. (25)

The other second-order Christoffel symbol we rename

Qµ,ν = −Γα(2)
µα,ν . (26)

Now we can rewrite the Riemann tensor

R(2)
µν = Qµ,ν + S α

µν ,α −
1

4
hβα

,µhαβ,ν +
1

2
hβ

µ�hβν . (27)

Where ,σσ = ∂σ∂σ = �. The last thing we have to do before we can write
down the Einstein tensor is to find

(
1

2
gµνR)(2) =

1

2
ηµνR

(2) +
1

2
hµνR

(1) (28)

= Qµ,µ + S α
µµ ,α −

1

4
hβα

,µhαβ,µ +
1

2
hβ

µ�hβµ. (29)

Here 1
2
hµνR

(1) = 0 because R
(1)
µν = 0 as said before. So we finally have

G(2)
µν = R(2)

µν −
1

2
ηµνR

(2). (30)

The Einstein tensor in zeroth and first order of hµν gives G
(0)
µν = G

(1)
µν = 0.

If you take the second order to hµν into account as well as Gµν 6= 0 you are
not able to find an exact solution to the Einstein equations. To fix this you
need another correction on the metric gµν . The Einstein tensor in first order

to the second order perturbation (G
(1)
µν [h(2)]) can be interpreted as an energy

momentum tensor and we can write down

8πGTµν = −G(2)
µν . (31)

Interpreting Tµν as the energy momentum tensor of the gravitational waves
causes problems. The equivalence principle states that at small scales we
can always find a local frame of reference where spacetime is flat and all
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local ”gravitational fields” disappear. We can not find a local gravitational
energy-momentum tensor because gravitational energy is not localizable. If
we look at a macroscopic region of multiple wavelengths we can say that a
gravitational wave has an effective stress-energy. We can interpret Tµν as the
such a tensor that describes the energy of gravitational waves. This tensor
is symmetric and is also conserved at a flat background ∂µT

µν = 0. To un-
derstand what justifies this reasoning better you can look in Weinberg 7.6 or
Carroll 7.6. Averaging over a macroscopic region also gives us mathematical
tools to simplify the Einstein tensor. The formula for averaging reads

〈f(x)〉 =
1

b− a

∫ b

a

f(x)dx. (32)

If we have a total derivative on the left-hand side (f ′(x)) the right-hand side
will be of the order f(b)−f(a). In physics its common to work with functions
that are going fast to zero when you let a and b approach infinity. In this
case we also work with functions constructed out of the perturbation, which
is small. The difference in value of the function on any point will also be
small. If the wavelength of the gravitational wave is much bigger then the
region we look at (b − a), f(a) and f(b) will also be almost equal. If you
multiply this with 1/(b − a) this will be almost zero. When the left-hand
side of (32) has no derivatives or has products of derivatives this will not be
the case. This is why we made the tensors Q and S. They can be neglected
after averaging

〈S α
µν ,α〉 = 〈Qµ,ν〉 = 0. (33)

Because the total derivative will average to zero, we can integrate by parts
to get 〈AB,µ〉 = −〈A,µB〉. Remember that hµν is a plane-wave solution so:
�hµν = 0

〈1
4
hβα

,µhαβ,µ〉 = −〈1
4
hβα�hαβ〉 = 0. (34)

At the end we are only left with a single term for the effective stress-energy
of gravitational waves (using c 6= 1)

Tµν =
c4

32πG
〈hβα

,µhαβ,ν〉. (35)

4.2 Rewriting the quadrupole formula to the TT gauge

In the previous section we derived the expression for the gravitational wave
energy-momentum tensor. We know that the T00 component describes the
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energy density. Therefore we can easily find an expression for the total energy
contained in the gravitational radiation on the surface of Σ of constant time.
To use the symmetries of the system optimally we place the source of the
radiation in the origin. This is especially important when we work with the
retarded time

E =

∫
Σ

T00d
3x. (36)

The energy loss due to radiation through a sphere with radius R per second
can also be calculated because T0µ describes the energy flux in the µ-direction

dE

dt
=

∫
S

T0µn
µr2dΩ. (37)

nµ is the normal vector which points in the direction of r. So in spherical
coordinates

T0µn
µ = T0r =

1

32πG
〈hTT

αβ,0h
αβ
TT,r〉, (38)

is the expression we need to find. We use (hTT ) to denote we used the
transversal-traceless gauge to find equation (35), and the perturbation is
therefore also transversal and traceless. To find the right metric we take a
big step by introducing the quadrupole formula for which the derivation can
be found in Carroll [8]

h̄ij(t,x) =
2G

r

d2Iij

dt2
(tr). (39)

Beginning on the left-hand side you see a different perturbation with only
spatial components. This is the trace-reversed perturbation:

h̄µν = hµν −
1

2
hηµν (40)

h̄ = ηµν h̄µν = −h (41)

For the derivation of the quadrupole formula it is not convenient to use the
metric perturbation hµν with the traceless-transversal gauge which we used
in the previous section. The reason these two different perturbations are used
lies in the fact that they are both made of the same original perturbation,
so they hold the same information. When we are in vacuum far away from
the source, the place where the weak field approximation is correct, both
perturbations will be equal when the traceless-transversal gauge (hα

α = h = 0)
is used
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h̄TT
µν = hTT

µν . (42)

On the right-hand side of the quadrupole formula the second derivative of
the quadrupole moment tensor

Iij(t) =

∫
yiyjT 00(t,x)d3y, (43)

is evaluated at the retarded time tr = t− r/c. We can make an analogy with
the origin of electromagnetic radiation. The multipole expansion is used
to show that the major contribution for radiation comes from the chang-
ing dipole moment. A changing monopole moment is not possible because
that violates the conservation of electric charge. In the theory of gravity the
monopole moment can be related to the mass and the dipole moment to the
center of mass. Both can not oscillate without violating conservation of mo-
mentum. The quadrupole moment, which measures the shape of a system,
can vary in time and therefore yields the main contribution to the gravita-
tional radiation. The quadrupole moment is much smaller compared to a
dipole moment and gravity has a far more weaker coupling to matter, there-
fore gravitational radiation is generally much weaker than electromagnetic
radiation.

Now we need to impose the transversal-traceless gauge to the trace-
reversed perturbation so it changes to the weak field perturbation and we
can use it in equation (35). We have to find a transversal-traceless tensor
constructed from I ij, I ij

TT . We can use this to find T0µ, after which we can
change I ij

TT back to I ij without information loss. We begin by projecting I ij

on its traceless component Qij(TrQij = Qi
i = 0)

Qij = I ij − 1

3
δijδklI

kl. (44)

To make Qij transversal we want to project its components on a transversal
image. Therefore we will use the projection operator

P a
b (x) = δa

b −
xaxb

r2
, (45)

where x = (x1, x2, x3) and r2 = |x| = xixi. When you project Qij on its
transversal image you can use the projection again but it stays the same
transversal image. A basic property of a projection operator is therefore:
P 2 = P ∧ P b

aP a
c = P b

c . Using this quality we can check that

I ij
TT = Qij

TT = P i
aQabP

j
b −

1

2
PabQ

abP ij, (46)
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is indeed traceless and transversal, see appendix D. Now we can insert equa-
tion (39) into equation (38)

hTT
ij,0 =

2G

r

∂tr
∂t

∂

∂tr
(Q̈TT

ij (tr)) =
2G

r

...
Q

TT

ij , (47)

hij
TT,r =

2G

r

∂tr
∂t

∂

∂tr
(Q̈TT

ij (tr))−
2G

r2
(Q̈TT

ij (tr)) =
2G

r

...
Q

TT

ij − 2G

r2
Q̈TT

ij .(48)

Because we are at a great distance from the source we can neglect the last
term 2G

r2 Q̈TT
ij ≈ 0 and we can write down an expression for the power radiated

by a gravitational source

dE

dt
= 〈

∫
S2
∞

4G2r2

32πGr2
Qij

TT QTT
ij dΩ〉 = 〈 G

8π

∫
S2
∞

Qij
TT QTT

ij dΩ〉. (49)

4.3 Solving the integral and getting rid of the TT’s

We want to use the solution of the integral so it is convenient to transform
the product Qij

TT QTT
ij back to a form which is not transversal. To do this we

use again the property of the projection operator P 2 = P

...
Q

ij

TT

...
Q

TT

ij = (P a
i P b

j −
1

2
P abPij)(P

i
cP

j
d −

1

2
PcdP

ij)
...
Qab

...
Q

cd
. (50)

We can divide this in four products

P a
i P b

j P i
cP

j
d = P a

c P b
d , (51)

−1

2
P a

i P b
j PcdP

ij = −1

2
PcdP

ab, (52)

−1

2
P abPijP

i
cP

j
d = −1

2
PcdP

ab, (53)

1

4
P abPijPcdP

ij =
1

2
PcdP

ab. (54)

(55)

So there are two products of the projection operator we need to calculate
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P a
c P b

d = (δa
c −

xaxc

r2
)(δb

d −
xbxd

r2
) (56)

= δa
c δ

b
d − δa

c

xbxd

r2
− xaxc

r2
δb
d +

xaxcx
bxd

r4
, (57)

PcdP
ab = (δab − xaxb

r2
)(δcd −

xcxd

r2
) (58)

= δabδcd − δab xcxd

r2
− xaxb

r2
δcd +

xaxbxcxd

r4
. (59)

And

P a
c P b

d

...
Qab

...
Q

cd
=

...
Qab

...
Q

ab − xbxd

r2

...
Qab

...
Q

a

d −
xaxc

r2

...
Qab

...
Q

b

c (60)

+
xaxcxbxd

r4

...
Qab

...
Qcd, (61)

−1

2
PcdP

ab
...
Qab

...
Q

cd
= −1

2

...
Q

...
Q +

xcxd

2r2

...
Q

...
Q

cd
+

xaxb

2r2

...
Qab

...
Q (62)

−xaxbxcxd

2r4

...
Qab

...
Qcd. (63)

Remembering that the quadrupole moment of mass distribution is still trace-
less (Q = 0) we can rewrite equation (50)

...
Q

ij

TT

...
Q

TT

ij =
...
Qab

...
Q

ab − xbxd

r2

...
Qab

...
Q

a

d −
xaxc

r2

...
Qab

...
Q

b

c +
1

2

xaxbxcxd

r4

...
Qab

...
Qcd. (64)

Now we use some standard integrals for a surface S with radius R

∫
S

dΩxaxb = ηab 4

3
πR2, (65)∫

S

dΩxaxbxcxd =
4

15
πR4(ηabηcd + ηacηbd + ηadηbc). (66)

We are almost at the end when we use these integrals to calculate
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∫
S

dΩ
...
Q

ij

TT

...
Q

TT

ij = 4π
...
Qab

...
Q

ab − 4π

3
ηac

...
Qab

...
Q

b

c −
4π

3
ηbd

...
Qab

...
Q

a

d (67)

+
4π

30
(ηabηcd + ηacηbd + ηadηbc)

...
Qab

...
Qcd (68)

= 4π
...
Qab

...
Q

ab − 8π

3

...
Qab

...
Q

ab
(69)

+
2π

15
(
...
Q

...
Q +

...
Qab

...
Q

ab
+

...
Qab

...
Q

ba
) (70)

= π(
60

15
− 40

15
+

4

15
)
...
Qab

...
Q

ab
=

8π

5

...
Qab

...
Q

ab
, (71)

using again Q = 0 and also Qab = Qba. We finally find the quadrupole
radiation formula

dEgrav

dt
=

G

5c5
〈
...
Qab

...
Q

ab〉 (72)

As said earlier this equation looks a lot like the one for the energy loss due
to electromagnetic radiation.

dEEM

dt
=

µ0p̈2

6πc
, (73)

where p is the dipole moment

p(x, t) =

∫
ρ(x, t)y(x)d3x. (74)

5 Testing the quadrupole radiation formula

with the pulsar PSR 1913 + 16

In the previous section we found the formula for the energy loss due to
gravitational radiation. To find gravitational wave sources we have to look for
objects with a nonzero third derivative of the quadrupole momentum. These
objects are in general nonsymmetric and accelerating (and decelerating). A
binary system is such an object. In 1974 Hulse and Taylor found a binary
system with a special property, a Pulsar. By measuring changes in the pulse-
repetition frequency they could measure the properties of the system needed
to test the existence of gravitational radiation.

So to check these calculations we have to find the quadrupole moment
of the pulsar and then take its third derivative. Beginning with the reduced
quadrupole moment
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Figure 2: This is a artist impression of periodic change in the curvature of
spacetime caused by a binary system. This is gravitational radiation.

Qij = I ij − 1

3
δijδklI

kl, (75)

I ij(t) =

∫
yiyjT 00(t,y)d3y =

∫
xixjρ dV, (76)

xi
a = r(φ)

µ

Ma

(cos(φ), sin(φ), 0), (77)

xi
b = r(φ)

µ

Mb

(− cos(φ),− sin(φ), 0), (78)

ρ = δ(x3)[Maδ(x
1 − x1

a)δ(x
2 − x2

a) + Mbδ(x
1 − x1

b)δ(x
2 − x2

b)].(79)

The stars travel in an eccentric orbit and the distance between the stars
depends on there position, which is related to φ. Because the masses are
different each star needs a different correction which is related to the mass.
These corrections can be found using Kepler’s law: aMa = bMb, with a+ b =
r. In writing down the right parameterization we used the reduced mass:
µ = MaMb

Ma+Mb
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I11 =

∫
x1x1ρ dV = x1

ax
1
aMa + x1

bx
1
bMb (80)

= (
µ2r2(φ)

M2
a

Ma +
µ2r2(φ)

M2
b

Mb) cos2 φ = µ2r2(
1

Ma

+
1

Mb

) cos2 φ (81)

= cos2(φ)r2µ =
1

2
(cos(2φ) + 1)r2µ, (82)

(83)

where we used the delta functions from equation (79) to simplify the integral.
We used a different but equal definition of the reduced mass µ = 1

Ma
+ 1

Mb

and basic trigonometric functions. Similar we can calculate

I22 = sin2(φ)r2µ =
1

2
(1− cos(2φ))r2µ, (84)

I12 = I21 = sin(φ) cos(φ)r2µ =
1

2
sin(2φ)r2µ, (85)

1

3
δijδklI

kl =
1

3
δij(

1

2
(cos(2φ) + 1) +

1

2
(1− cos(2φ)))r2µ (86)

=
1

3
δijr2µ. (87)

Finally we can write down the reduced quadrupole moment

Qij = I ij − 1

3
δijδklI

kl =
1

2
r2µJ ij(φ), (88)

with

J ij(φ) =

 cos(2φ) + 1
3

sin(2φ) 0
sin(2φ) − cos(2φ) + 1

3
0

0 0 −2
3

 . (89)

Now we have to take the third derivative to the time. To make this easier
we use h = r2φ̇, u = r−1, d/dt = hu2d/dφ and J ′′′ = −4J ′. It is important to
realize that h is the angular momentum per unit mass. This is a conserved
quantity and can therefore be taken out of the equation to get:

...
Q

ij
= (hu2d/dφ)3(

1

2

µ

u2
J ij(φ)) =

µh3

2
(u2d/dφ)3(

1

u2
J ij(φ)) (90)

You can calculate this by hand or use Mathematica to get

...
Q

ij
= µh3(u2(u′u′′ − uu′′′)J ij − 2u3(u′′ + u)J ′

ij
). (91)
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Using Tr(J2) = 8/3, Tr(JJ ′) = 0 and Tr(J ′2) = 8 you can calculate equation
(72)

dE

dt
=

G

5c5
〈
...
Qab

...
Q

ab〉. (92)

But remember that Q is still an average so

〈Tr(
...
Q2)〉 =

1

P

∫ P

0

dtTr(
...
Q2) (93)

=
µ2h5

2πP

∫ 2π

0

u−2dφ

dt
dt[32u4(u′u′′ − uu′′′)2 +

8

3
u6(u′′ + u)2].(94)

Using the solution for the relative coordinate

u =
1

a
(1− e2)−1[1− e cos(φ)], (95)

we can simplify the integral using

u + u′′ =
1

a
(1− e2)−1(1− e cos φ + e cos φ) =

1

a
(1− e2)−1 (96)

u′u′′ − uu′′′ =
e2

a2
(1− e2)−2(cos φ sin φ− cos φ sin φ + sin φ) (97)

=
e2

a2
(1− e2)−2 sin φ. (98)

So the integral simplifies to

=
32

a6
(1− e2)−6

∫ 2π

0

dφ[(1− e cos φ)4 +
1

12
(1− e cos φ)2(e sin φ)2](99)

=
2π32

a6
(1 +

73

24
e2 +

37

96
e4)(1− e2)−6. (100)

The answer can be found using good old Eulers formula, eiφ = cos(φ) +
i sin(φ) to rewrite the higher order terms to sines and cosines with bigger
angles. But I used our other friend Mathematica. Using h2 = aGM(1− e2)
we finally have

G

5c5

...
Qab

...
Q

ab
=

32µ2M3G4

5c5a5
(1− e2)−7/2[1 +

73

24
e2 +

37

96
e4]. (101)

If we would derive the energy loss of a binary system with two bodies with
the same mass we would find
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dE(e = 0)

dt
=

32µ2M3G4

5c5a5
. (102)

This is in agreement with (99), because a system with two bodies of equal
mass would have an eccentricity e = 0. If you would not use the quadrupole
formula but approximate the radiated power with a nonzero eccentricity you
would find a wrong answer. The radiated power becomes time-dependent
because of the changing distance between the two stars. Using classical ap-
proximations for the time dependence in the angular momentum and angular
velocity and taking the average over one period gives us a wrong correction

dE(average)

dt
=

dE(e=0)

dt
× (1 +

15

2
e2 +

45

8
e4 +

5

16
e6)(1− e2)−7/2. (103)

Using the eccentricity of our binary system e = 0.6171313±0.0000010 would
give an answer that is 2.5 times too big, because it is not a valid way to derive
the energy loss. The correction we found using the quadrupole formula is of
course the right one, else we would not have gone to so much trouble. To
find the answer we need some constants of nature

G = 6.6742× 10−8cm3g−1s−2, (104)

c = 2.997924580× 1010cms−1, (105)

M� = 1.989× 1033g. (106)

Because PSR 1913+16 is a pulsar Hulse and Taylor were able to find the
other values of the system which we need to find the energy loss due to
gravitational radiation. The techniques they used to find these values can be
found in the famous article written by Weisberg [5]

e = 0.6171313± 0.0000010, (107)

Mpulsar = (1.442± 0.003)M�, (108)

Mcompanian = (1.386± 0.003)M�, (109)

P = 27906.980895± 0.000002. (110)

Kepler’s law can be used to rewrite the semi-major axis

a =
3

√
GM(

P

2π
)2 = 1.95× 1011cm. (111)

Now we can write down the answer for the energy loss due to gravitational
radiation as we found in equation (101)
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dE

dt
= (6.554× 1030)(1− e2)−7/2[1 +

73

24
e2 +

37

96
e4] (112)

= 7.77× 1031J/s. (113)

The luminosity of the sun is 3.85 × 1026J/s, which is clearly less then the
loss due to gravitational radiation by this binary system. It is not that the
radiated energy is low but the effect coupling of gravitational waves to matter
that makes them hard to detect. A binary system is a heavy source with a
lot of bulk motion. Our sun also produces gravitational waves but the energy
loss is approximately 300 Watt.

If we want to calculate the decline of the orbital period we can use the
Kepler formula for the potential energy because the stars in the binary system
don’t travel with relativistic speeds. There radial velocity varies between 75
km/sec and 300 km/sec

Epot = −GM1M2

R
. (114)

Because the distance between the two stars varies in time we can write down
an expression for energy loss

dE

dt
=

d

dt
(
−GM1M2

R
) = −GM1M2

d

dt
(
1

R
). (115)

Here we use Kepler’s formula

1

R
=

1

2a
=

1

2
3

√
GM(

2π

P
)2, (116)

to find the changing in the period

d

dt
(
1

R
) =

1

2

3
√

4π2GM
dP− 2

3

dt
= −1

2

3
√

4π2GMṖ
2

3
P− 5

3 = − 2Ṗ

3RP
. (117)

So finally we can write down an expression that relates the loss of energy due
to gravitational radiation to the decrease of the orbital period

dE

dt
= −2M1M2G

3RP
Ṗ . (118)

We use this to calculate the theoretical predicted decrease
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Ṗ = − 3RP

2M1M2G

dE

dt
(119)

= −(3.09× 10−44)(7.77× 1031) = −2.40× 10−12s/s, (120)

to compare with the observed data

Ṗ = −(2.427± 0.026)× 10−12. (121)

We can conclude that these two results are in agreement with each other.

6 Gravitational wave detectors

The indirect observation of gravitational waves through the pulsar PSR1913+16
was a great success for the theory of general relativity. But the detection of
gravitational waves in a laboratory hasn’t yet occurred. This is a big chal-
lenge for experimental physicists because they are very hard to detect.

6.1 The effect of a passing gravitational wave on mat-
ter

To detect gravitational waves you have to know what you are looking for. We
know we are looking for plane waves. Remember the Einstein tensor Gµν ,
which is symmetric so it holds 10 independent components. The Bianchi
identities

∇Gµν = 0, (122)

relates the components in four differential equations. Therefore we are left
with 10−4 = 6 degrees of freedom. The Einstein equations are made in such
a way that they are independent of coordinates. We are working with a plane-
wave solution and when you use a set of coordinates or a gauge condition to
describe this you use four from the remaining degrees of freedom. We are
left with 10 − 4 − 4 = 2 degrees of freedom to describe the metric. In our
case we name the degrees of freedom h× and h+ for reasons that will soon be
clear. To make the solution of the metric more understandable we stick with
the TT-gauge and use the spatial coordinates such that the wave travels in
the z-direction. The solution of the metric becomes [8]

hTT
µν = Re[


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eiω(t−z)]. (123)
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Where ω is the frequency of the wave. Such a passing gravitational wave
traveling in the z-direction distorts the relative distance in the x and y di-
rection of matter. If a wave with the + polarization passes through a circle
of independent particles it will stretch the circle into a ellipse up and down
illustrated in figure (3). The h× polarization has a different effect on the par-
ticles. The distortion now happens in the shape of an × as seen in figure (4).
A linear combination of the two polarizations make it possible to describe
every gravitational wave.

Figure 3: A gravitational waves with the + polarization will distort the circle
of particle into ellipses oscillating in a + pattern

Figure 4: A gravitational waves with the × polarization will distort the circle
of particle into ellipses oscillating in a × pattern

With the metric known it is possible to calculate the effect of a charac-
teristic gravitational source such as a binary system. We know that it is a
small effect because we don’t observe it in our daily life and even the best
laboratories did not detect it (yet). The distance between two test masses
changes with time according to the time variation of the gravitational wave,
which is described by the perturbation, hij(t,x)

δL

L
∼ hij. (124)

For a more extensive explanation you can consult Hartle 16.2. To find the
order of magnitude we are looking for we will make rough estimates. The
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quadrupole moment of binary system with e = 0 is Iij ∼ MR2. The second
time derivative will be

Ïij ∼ MR2/P 2. (125)

Now we can use formula (39) with c 6= 1 and the values found by Hulse and
Taylor, with the distance between the two stars averaged to 3 solar radii.
The distance between the pulsar and the earth ≈ 5000pc [6]

δL

L
∼ hij ∼

2GMR2

5rc4P 2
∼ 10−24. (126)

Suppose you have two independent test particles originally separated by a
meter. If the gravitational waves from PSR 1913+16 pass this set-up, the
distance between the particles will increase and decrease with a thousandths
of a thousandths of a thousandths of a typical nucleus, δL ∼ 10−24m. The
frequency of the wave is related to the frequency of the oscillation in the
source. This can be approximated with Kepler’s formula

f =
ω

2π
∼ GM

R3
∼ 10−4. (127)

Fortunately there are also gravitational wave sources that are somewhat eas-
ier to detect. Figure (5) gives an outlook to the gravitational waves emitted
by the most violent events in the universe. The collisions and collapses have
typical fingerprints which can be detected. For example a black hole bi-
nary coalescence can have a theoretical maximum gravitational luminosity
of L ∼ 1052J/s but this only lasts for 10−2 − 10−3 seconds [7].

6.2 The resonance based wave detector

The first gravitational wave detector was built in the late 60s by Joseph
Weber. He used an aluminium bar with detectors on the surface that would
’ring’ when a gravitational wave passed. The little oscillation in length and
height caused by a typical violent gravitational wave should cause the bar to
resonate up to a measurable signal. Weber claimed he did it in 1969 but it
was never scientifically accepted. The resonance principle is still used in a set
of experiments to find experimental evidence for the existence of gravitational
waves, but so far they haven’t succeeded. Even though they are supercooled
and put in superstable and supervacuum environments they are only able
to measure waves with a specific frequency and really high amplitude. The
International Gravitational Event Collaboration (IGEC) is a group, existing
of 5 currently operating detectors all over the earth, whose aim is to produce
common analysis of datasets produced by the detectors. This could filter the

26



Figure 5: Different sources give different kind of gravitational waves.

noise and determine the position of the source. The detectors have been in
almost continuous observation since 1997 but they haven’t detected a violent
event. A newer state of the art resonance based detector (MiniGRAIL) is
stationed in Leiden, with the means to find waves with a frequency of 3 kHz
and a δL/L ∼ 10−21. They hope to measure colliding small black holes and
instabilities in neutron stars.

6.3 Interferometry based wave detectors

In the early 70s another detection principle was proposed. The famous
Michelson and Morley interferometer could be modified to detect gravita-
tional waves. It uses the mirrors as freely suspended test masses. When a
gravitational wave passes from above the length of one arm shortens as the
other stretches with a frequency and amplitude depending on the passing
wave. The system is arranged such that the two laserbeams interfere de-
structively in absence of gravitational waves, so there is no signal observed
in the photodetector. When the length of the arm is distorted by the grav-
itational waves, the beams won’t destructively interfere anymore and send
a signal to the photodiode. These signals can tell you what kind of wave
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Figure 6: The interferometer detector used in a ground based laboratory

passed.
There are currently seven interferometer detectors in Europe, Japan, Aus-

tralia and the US. All these projects use four mirrors, as shown in figure (6),
to make the photons travel the cavity multiple times and thus effectively
enlarges the cavity as well as the effect of the distortion. The most pre-
cise laboratory is the Laser Interferometer Gravitational-Wave Observatory
(LIGO) located in the United States. The project has three interferometers.
Two near Hanford, Washington and one in Livingston, Louisiana. The two
locations are separated by 3000 km. First, it is good for statistical certainty
to have more detectors. Because noise is the main difficulty, all the gravita-
tional wave laboratories cooperate with each other, so random gravitational
wavelike signals are ruled out. Second, it is necessary to determine the po-
sition of a gravitational wave source. The largest LIGO detector has two 4
km long arms where photons travel about 200 times between the mirrors.
The effective path is about 109m. Looking at the phase difference between
the two beams of a micronlaser (λ ≈ 10−12cm) the LIGO experiment is able
to see displacements of δL ∼ 10−14m. Without background noise they could
measure amplitudes till h ∼ 10−23 [9]

h ∼ 10−23 ∼ δL

L
∼ 10−14

109
. (128)

The biggest technical problem is to find the gravitational wave signal in the
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background noise. An earthquake or falling tree have their own shockwave
that could be misinterpreted as a gravitational wave. To keep the mechanical
seismic noise as low as possible the detectors where built on reasonably quiet
sites. The test masses can be isolated by their environment using pendulums
and springs. This system stands also in an ultravacuum environment and is
supercooled. The vacuum is necessary for the laserbeam to travel without in-
terference and the supercooled environment lowers the thermal motion. With
the state of the art techniques in isolation, cooling, vacuum, lasers, mirrors
and photodiodes it is still really hard to isolate the gravitational signals from
the noises from the earth. But the calculations provide good hope that a
ground based detector will be able to find a gravitational signal. Especially
with the planned Advanced LIGO, an upgrade that has been approved in
March 2008, which enhances the sensitivity of the instruments with a factor
10, it is a matter of time till the detectors work optimally and a passing
gravitational wave will be registered.

As you can see in figure (5) the ground based interferometers are limited
by their range of observable frequencies. The Laser Interferometer Space
Antenna (LISA) is a prestigious joint project from the ESA and the NASA
that could measure different frequencies and therefore different sources. The
interferometer principe still holds but the mirrors are situated in spacecrafts
that will be separated by 5 million kilometers at a distance of 50 million
kilometer from earth. Instead of a L shaped detector with suspended test
masses it uses three spacecrafts that are freely falling. They are positioned in
a triangle. With this detector it will be possible to measure the gravitational
waves emitted from binary systems. Our well known binary PSR 1913+16
has, as estimated in equation (127), a frequency that will be in range of the
detector f ∼ 10−4. The amplitude f ∼ 10−24 (equation 126) is too small to
detect but binary systems that are closer, such as ι Boo at a distance of 11.7
pc from earth, can be detected (h ∼ 10−21).

7 Conclusion and future applications

Calculations predict that in the near future a detector will find gravitational
wave signals. The detection of gravitational waves in a human laboratory
will be a great success of experimental physics, with a Nobel price waiting
for the discoverers, but that is only the start of a new field. Of course it
is interesting if gravitational waves travel with the predicted speed of light
but gravitational wave antennas used as an observation tool for astronomy
is the really interesting part. There are some fundamental differences with
electromagnetic waves that would allow us to ’look’ at cosmic objects on a
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Figure 7: Global network of ground based detectors, with LISA in space

whole other level.
Electromagnetic radiation is caused by the motion of small electromag-

netic particles. Therefore it can hold information about the thermodynamics
of an object. They interact strongly with their environment so they are easy
to detect. The downside to this is that a lot of electromagnetic waves are
absorbed and information about certain cosmic systems is not available to
us. Gravitational waves arise from the bulk motion of mass and contain in-
formation about the dynamics of a system. These waves interact very weak
with the environment which makes them hard to detect. This also has an
advantage because from their source to the earth they travel without be-
ing seriously absorbed. The gravitational waves can provide us information
about cosmic objects that are hidden in the dark such as binary black holes
and the collapse of a stellar core. Maybe we can find cosmic background
gravitational waves analogous with the electromagnetic cosmic background
microwave that can provide us with information about the big bang. About
3× 105 years after the big bang the universe started to become transparent
and electromagnetic radiation could freely propagate. Gravitational waves
could give us direct information about the period before the recombination
of matter into neutral atoms. Another big difference lies in the detector
mechanisms. Electromagnetic astronomy uses telescopes to look very deep
at a small part of the universe. A gravitational wave detector almost has a
4π steradian sensitivity to events over the sky. You could place an analogy
between looking and hearing. Electromagnetic waves have small wavelengths
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and can be used to make pictures and you can look very closely to a part of
the universe. Workers in gravitational radiation often use sounds to describe
a source.
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A The Einstein summation rule

To make the equations more elegant Einstein introduced the summation con-
vention. When the same index is used as subscript and superscript it implies
that the equation is summed over all possible values of that index

3∑
α=0

xαxα def
= xαxα, (129)

3∑
i=1

xix
i def

= xix
i. (130)

So equation (2) reads

∂

∂xν
T µν =

∂

∂x0
T µ0 +

∂

∂x1
T µ1 +

∂

∂x2
T µ2 +

∂

∂x3
T µ3. (131)

B The metric

To understand some of the basic calculation rules it is good to start with the
metric in flat space. We know from special relativity the four-vector which
is invariant under Lorentz transformations

x2 + y2 + z2 − c2t2 = constant, (132)

which also reads

ηµνx
νxµ = xµx

µ = constant, (133)

with

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (134)

where will use c = 1 for simplicity so xµ = (t, x, y, z) and xµ = (−t, x, y, z).
One of the important properties of the metric is now introduced which

also holds in non-flat spacetime (where the metric becomes gµν). The metric
can be used to raise or lower indices. The spacetime interval is also invariant
under changes of inertial coordinates

(4s)2 = −(c4t)2 + (4x)2 + (4y)2 + (4z)2 = ηµν4xµ4xν . (135)

32



For understanding it is nice to point out ∆s can be interpreted as the proper
time. The spacetime interval in curved spacetime is

(4s)2 = gµν4xµ4xν . (136)

The metric has some other properties that makes some calculations easier

gµνgµσ = δν
σ, (137)

g = |gµν | 6= 0, (138)

gµν = gνµ. (139)

The role the metric has is is too complex to explain in this short appendix,
but this text from Carroll (p71) illustrates it a bit: (1) the metric supplies
with a notion of ”past” and ”future”; (2) the metric allows the computation
of path length and proper time; (3) the metric allows the computation of
the ”shortest distance” between two points, and therefore the motion of test
particles; (4) the metric replaces the Newtonian gravitational field φ; (5) the
metric provides a notion of locally inertial frames and therefore a sense of ”no
rotation”; (6) the metric determines causality, by defining the speed of light
faster than which no signal can travel; (7) the metric replaces the traditional
Euclidian three-dimensional dot product of newtonian mechanics.

C The symmetries in the Ricci tensor

The symmetries in the Ricci tensor arise from the symmetries in the metric

gµν = gνµ. (140)

Therefore the Christoffel symbol is also symmetric in the two lower indices

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν) = Γλ

νµ. (141)

The Riemann tensor has therefore some special properties. To make it easier
to describe we write it down in the totally covariant form

Rρσµν = gρλR
λ
σµν , (142)

Rρσµν = −Rσρµν , (143)

Rρσµν = −Rρσνµ, (144)

Rρσµν = Rµνρσ, (145)

0 = Rρσµν + Rρµνσ + Rρνσµ. (146)
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The Ricci tensor is symmetric which can be seen directly from equation (145)

Rµν ≡ Rλ
µλν = Γλ

µν,λ − Γλ
µλ,ν + Γη

µνΓ
λ
λη − Γη

µλΓ
λ
νη. (147)

D Transversal and traceless Qij
TT

Qij
TT = P i

aQabP
j
b −

1

2
PabQ

abP ij (148)

Let us first check that Qij
TT is transversal ⇒ x ·Qij

TT = 0

xiQ
ij
TT = (xiP

i
a)QabP

j
b −

1

2
PabQ

ab(xiP
ij), (149)

xiP
i
a = xi(δ

i
a −

xixa

r2
) = xa −

xixi

r2
xa = xa − xa = 0, (150)

xiP
ij = xi(δ

ij − xixj

r2
) = xj − xixi

r2
xj = xj − xj = 0, (151)

xiQ
ij
TT = 0. (152)

Now we check of it is traceless ⇒ Qi
i = 0

Qi
i = gijQ

ij
TT = P i

aQabPib −
1

2
PabQ

abP i
i , (153)

P i
aPib = gbdP

i
aP

d
i = gbdP

d
a = Pab, (154)

1

2
P i

i =
1

2
(δi

i −
xixi

r2
) =

1

2
(3− 1) = 1, (155)

Qi
i = PabQ

ab − PabQ
ab = 0. (156)
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