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Abstract. Sac (Single Assignment C) is a strict, purely functional pro-
gramming language primarily designed with numerical applications in
mind. Particular emphasis is on efficient support for arrays both in terms
of language expressiveness and in terms of runtime performance. Array
operations in Sac are based on elementwise specifications using so-called
With-loops. These language constructs are also well-suited for concur-
rent execution on multiprocessor systems.
This paper outlines an implicit approach to compile Sac programs for
multi-threaded execution on shared memory architectures. Besides the
basic compilation scheme, a brief overview of the runtime system is given.
Finally, preliminary performance figures demonstrate that this approach
is well-suited to achieve almost linear speedups.

1 Introduction

Sac (Single Assignment C) is a strict, first-order, purely functional programming
language primarily designed with numerical applications in mind. Particular em-
phasis is on efficient support for array processing. Efficiency concerns are essen-
tially twofold. On the one hand, SAC offers the opportunity of defining array
operations on a high level of abstraction, including dimension-invariant program
specifications which generally improves productivity in program development.
On the other hand, sophisticated compilation schemes ensure efficiency in pro-
gram execution. Extensive performance evaluations on a single though important
kernel application (3-dimensional multigrid relaxation from the Nas benchmark
[5]) show that Sac clearly outperforms its functional rival Sisal[17] both in
terms of memory consumption and in terms of wallclock execution times[23].
Even the Fortran reference implementation of this benchmark is outperformed
by about 10% with respect to execution times.

Although numerical computations represent just one application domain, cer-
tainly, this is a very important one with many applications in computational sci-
ences. In these fields, the runtime performance of programs is the most crucial
issue. However, numerical applications are often well-suited for non-sequential
program execution. On the one hand, underlying algorithms expose a consider-
able amount of concurrency; on the other hand, the computational complexity
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can be scaled easily with the computational power available. So, multiprocessor
systems allow substantial reductions of application runtimes, and, consequently,
computational sciences represent a major field of application for parallel pro-
cessing. Therefore, sufficient support for concurrent program execution is par-
ticularly important for a language like Sac.

Due to the Church-Rosser-Property, purely functional languages are often
considered well-suited for implicit non-sequential program execution, i.e., the
language implementation is solely responsible for exploiting concurrency in mul-
tiprocessor environments. However, it turns out that determining where con-
current execution actually outweighs the administrative overhead inflicted by
communication and synchronization is nearly as difficult as detecting where con-
current program execution is possible in imperative languages [25]. Many high-
level features found in popular functional languages like Haskell or Clean,
e.g. higher-order functions, polymorphism, or lazy evaluation, make the neces-
sary program analysis even harder.

As a consequence, recent developments are often in favour of explicit solu-
tions for exploiting concurrency. Special language constructs allow application
programmers to specify explicitly how programs are to be executed on multi-
ple processors. Many different approaches have been proposed that reach from
simple parallel map operations to full process management capabilities and even
pure coordination languages [26, 19, 4, 9, 12, 16]. Although the actual degree of
control varies significantly, explicit solutions have in common that, in the end,
application programmers themselves are responsible for the efficient utilization of
multiprocessor facilities. Programs have to be designed specifically for the execu-
tion in multiprocessor environments and, depending on the level of abstraction,
possibly even for particular architectures or concrete machine configurations.

However, typical Sac applications spend most of their execution time in array
operations. In contrast to load distribution on the level of function applications,
elementwise defined array operations are a source of concurrency that is rather
well-suited for implicit exploitation, as an array’s size and structure can usually
be determined in advance, often even at compile time. This allows for effective
load distribution and balancing schemes. Implicit solutions for parallel program
execution offer well-known advantages: being not polluted with explicit specifi-
cations, a program’s source code is usually shorter, more concise, and easier to
read and understand. Also, programming productivity is generally higher since
no characteristics of potential target machines have to be taken into account
which also improves program portability. Functional languages like Sisal[17],
Nesl[6], or Id[3], have already demonstrated that, following the so-called data
parallel approach, good speedups may well be achieved without explicit specifi-
cations [11, 7, 13].

Successfully reducing application runtimes through non-sequential program
execution makes it necessary to consider at least basic design characteristics of
intended target hardware architectures. Having a look at recent developments
in this area, two trends can be identified. Up to a modest number of processing
facilities (usually ≤ 32) symmetric shared memory multiprocessors dominate. If
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a decidedly larger number of processing sites is to be used, the trend is towards
networks of entire workstations or even personal computers. Both approaches are
characterized by reusing standard components for high performance computing
which is not only more cost-effective than traditional supercomputers but also
benefits from an apparently higher annual performance increase.

In our current approach for Sac, we focus on shared memory multiproces-
sors. Machines like the Sun Ultra Enterprise Series, the HP 3000/9000 series, or
the SGI Origin have become wide-spread as workgroup or enterprise servers and
already dominate the lower part of the Top500 list of the most powerful com-
puting facilities worldwide [10]. Although their scalability is conceptually limited
by the memory bottleneck, processor private hierarchies of fast and sufficiently
large caches help to minimize contention on the main memory. Theoretical con-
siderations like Amdahl’s law [2], however, show that an application itself may
be limited with respect to scalability anyway. Our current approach may also
serve as a first step to be integrated into a more comprehensive solution covering
networks of shared memory multiprocessors in the future.

As a low-level programming model, multi-threading just seems to be tailor-
made for shared memory architectures. It allows for different (sequential) threads
of control within the single address space of a process. Each thread has its
private execution stack, but all threads share access to the same global data.
This programming model exactly coincides with the hardware architecture of
shared memory multiprocessors which is characterized by multiple execution
facilities but uniform storage. To ensure portability between different concrete
machines within the basic architectural model, the current implementation is
based on Posix-Threads[18] as the major standard.

The rest of the paper is organized as follows: after a short introduction to
Sac in Sect. 2, the basic concepts of our shared memory multiprocessor imple-
mentation are outlined in Sect. 3. Preliminary performance figures are presented
in Sect. 4. Finally, Sect. 5 draws conclusions and discusses future work.

2 SAC — Single Assignment C

This section is to give a very brief overview of Sac. A more detailed introduction
to the language may be found in [21, 24]; its strict, purely functional semantics
is formally defined in [20].

The core language of Sac may be considered a functional subset of C, ruling
out global variables and pointers to keep the language free of side effects. It is
extended by the introduction of arrays as first class objects. An array is repre-
sented by two vectors: a data vector which contains the elements of the array, and
a shape vector which provides structural information. The length of the shape
vector specifies the dimensionality of the array whereas its elements define the
array’s extension in each dimension. Built-in functions allow determination of
an array’s dimension or shape as well as extraction of array elements.

Complex array operations may be specified by means of so-called With-
loops, a versatile language construct similar to the array comprehensions of
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Haskell or Clean and to the For-loops of Sisal. It allows the dimension-
invariant, elementwise definition of operations on entire arrays as well as on
subarrays selected through index ranges or strides.

WithExpr ⇒ with ( Generator ) Operation

Generator ⇒ Expr Relop Identifier Relop Expr [ Filter ]

Relop ⇒ < | <=

Filter ⇒ step Expr [ width Expr ]

Operation ⇒ genarray ( Expr , Expr )
| modarray ( Expr , Expr , Expr )
| fold ( FoldFun , Expr , Expr )

Fig. 1. The syntax of With-loops.

The syntax of With-loops is outlined in Fig. 1. A With-loop consists of two
parts: a generator part and an operation part. The generator part defines a set
of index vectors along with an index variable representing elements of this set.
Two expressions that must evaluate to vectors of equal length, define the lower
and the upper bounds of a range of index vectors. This continuous range may
be restricted by a filter which defines strides of arbitrary widths. For instance,
with a, b, s, and w denoting expressions that evaluate to vectors of length n,
( a <= i vec < b step s width w ) specifies the set of index vectors
{i vec | ∀i∈{0,...,n−1} : ai ≤ i veci < bi ∧ (i veci − ai) modulo si < wi}.

The operation part specifies the operation to be performed on each element of
the index vector set defined by the generator. Three different operation parts ex-
ist. Let shp and idx denote Sac-expressions that evaluate to vectors, let array
denote a Sac-expression that evaluates to an array, and let expr denote an
arbitrary Sac-expression. Moreover, let fold op be the name of a binary com-
mutative and associative function with neutral element neutral. Then

– genarray( shp, expr) generates an array of shape shp whose elements are
the values of expr for all index vectors from the specified set, and 0 otherwise;

– modarray( array, idx, expr) defines an array of shape shape(array)
whose elements are the values of expr for all index vectors from the specified
set, and the values of array[idx] at all other index positions;

– fold( fold op, neutral, expr) allows the specification of reduction oper-
ations. Setting out with neutral, for each index vector from the specified set
the value of expr is folded using fold op.

The expressive power of the With-loop allows the specification of a com-
prehensive array library for Sac in the language itself. This library provides
numerous dimension and shape independent high-level array operations similar
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to those available in Apl[15] or Fortran-90[1] as intrinsic functions, e.g. exten-
sions of binary scalar operations to combinations of scalars and arrays as well
as to arrays of equal shape by elementwise application, various types of sub-
array selection, concatenation of arrays along given axes, shifting and rotating
arrays, or the reduction operations sum, product, any, and all. Since this library
can easily be extended by any application programmer, Sac allows high-level
programming without the restriction of a fixed set of built-in operations.

3 Implementation Aspects

This section introduces the basic concepts of extending the Sac compiler in order
to generate multi-threaded target code based on Posix-Threads. This thread
API provides operations to dynamically create new threads and to synchronize
them upon termination. As threads communicate with each other by means
of global data, various synchronization primitives are available to ensure data
integrity in the presence of simultaneous accesses by different threads. While on
a uniprocessor, these are simply executed in a time-sharing mode, on a shared
memory multiprocessor, the operating system scheduler may assign them to
different processors for simultaneous execution. Thread scheduling is performed
implicitly by the operating system; there is no means to explicitly assign threads
to specific processors for execution.

For reasons already pointed out, concurrency in Sac program specifications
is not to be exploited on the level of function applications but within elementwise
defined array operations. Here, the design of arrays in Sac pays off. Since all
high-level array operations are implemented by With-loops in Sac itself, we can
focus entirely on this single though powerful language construct. Consequently,
without any extra effort, the operations provided by the Sac array library benefit
from multi-threaded execution just as any user-defined array operation.

A = with ( lb <= iv < ub step s width w )

genarray( shp, e );

...

B = with ( lb <= iv < ub step s width w )

modarray( A, iv, A[iv] + 1);

...

c = with ( lb <= iv < ub step s width w )

fold( foldfun, neutral, B[iv]);

Fig. 2. Sac code example.

The compilation of With-loops into multi-threaded (imperative) pseudo code
is outlined by means of a small example. The Sac code fragment in Fig. 2 features
all three variants of the With-loop as introduced in Sect. 2. The variables lb,
ub, s, and w that make up the generator parts as well as shp are assumed
to be defined before the statements shown and to evaluate to vectors of equal
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length. For reasons of simplicity, the same variable names are used in all three
generator parts, however, their actual values may be different. First, an array A
of shape shp is generated by means of a genarray-With-loop. The variable e
is also assumed to be defined before and to evaluate to a scalar, say int. Next,
a modarray-With-loop defines an array B identical to A except for the elements
selected by the generator, which are incremented by 1. Finally, a fold-With-
loop is used to fold selected elements of array B by the operation foldfun whose
neutral element neutral is assumed to denote a constant.

A = ALLOCATE_ARRAY( shp);

LOOP_NESTING( iv: shape(A), lb, ub, s, w) {

A[iv] = ? e : 0;

}

...

B = ALLOCATE_ARRAY( shape(A));

LOOP_NESTING( iv: shape(B), lb, ub, s, w) {

B[iv] = ? A[i]+1 : A[i];

}

...

c = neutral;

LOOP_NESTING( iv: lb, ub, s, w) {

c = foldfun( c, B[iv]);

}

Fig. 3. Compilation to sequential code1.

As a starting point, the compilation of this example code fragment into se-
quential (imperative) pseudo code is outlined in Fig.3. After memory for the tar-
get array is allocated, all its elements are initialized in a nesting of (for-) loops
either with the value of e or with 0. The loop nesting defines a complete iteration
of the variable iv on the target array; the concrete design however depends on
lb, ub, s, and w. On this level of abstraction, the genarray and the modarray
variants of the With-loop turn out to be identical, i.e., modarray-With-loops
can be ignored from now on. The implementation of the fold-With-loop is
slightly different. It starts with the initialization of the fold variable c with the
neutral element of the fold operation. The loop nesting lets iv only iterate within
the iteration space actually defined by lb, ub, s, and w. In each iteration step,
the value of c is updated by folding its old value with the respective element of
array B.

With this sequential implementation in mind, the basic idea of organizing the
multi-threaded execution of a With-loop is straightforward. The corresponding
iteration space has to be partitioned into several disjoint subspaces, one for each
thread. In the case of the genarray and the modarray variant, each thread then

1 Here A[iv] = ? e : 0; denotes that in different parts of the loop nesting the oper-
ation is either A[iv] = e; or A[iv] = 0;.
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simply initializes a disjoint part of the target array. In the case of a fold-With-
loop, each thread computes a partial fold result. Afterwards, these partial results
are again folded to form the overall result.

A = ALLOCATE_ARRAY( shp);

MT_EXECUTION( 0 <= tid < #THREADS) {

do {

sb, se, cont = SCHEDULE( tid, #THREADS, shape(A), lb, ub, s, w);

LOOP_NESTING( iv: sb, se, shape(A), lb, ub, s, w) {

A[iv] = ? e : 0;

}

} while (cont);

}

Fig. 4. Multi-threaded implementation of the genarray-With-loop.

The multi-threaded implementation of the genarray-With-loop of the ex-
ample is outlined in Fig.4. The pseudo statement MT EXECUTION denotes that the
following code block is to be executed concurrently by multiple threads. The ex-
act number of threads is specified by #THREADSwhich is considered a runtime con-
stant. Although each thread executes the same code, threads can identify them-
selves by means of the variable tid whose value in the range [0..#THREADS-1]
is unique for each thread.

In the presence of subranges and strides of different widths in multiple dimen-
sions, the actual nesting of loops can be extremely complicated. An optimiza-
tion called With-loop-folding[22] that allows for condensing several subsequent
With-loops into a single, more powerful variant increases this complexity even
further. For reasons of efficiency in compiler design, it is therefore highly recom-
mendable to reuse the existing sequential compilation scheme for With-loops as
far as possible. The solution here is to completely separate from the computa-
tion, i.e. from the loop nesting, the decision of which thread actually initializes
which array elements. In Fig. 4, this decision-making code is denoted by the
pseudo statement SCHEDULE as this discipline is usually called loop scheduling.

The idea is that the loop scheduler defines a rectangular subrange of the
original iteration space covered by the loop nesting, based on the total number
of threads (#THREADS) and the thread ID (tid). This rectangular subspace is
defined by the two vectors sb (’schedule begin’) and se (’schedule end’). The
original (sequential) loop nesting is only slightly modified in that each loop is
restricted to the intersection between its original range and the iteration sub-
space defined by sb and se. Apart from reusing existing compilation schemes,
strictly separating the scheduling from the computation offers the additional
advantage that different scheduling strategies may easily be implemented and
tested, and later on the compiler may choose the one which is most appropriate
with respect to the overall array operation. Enclosing the scheduler and the loop
nesting within a (do-) loop allows scheduler implementations that repeatedly
assign different iteration subspaces to one thread. The scheduling code itself de-
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cides whether or not a re-scheduling is required and stores this information using
the local variable cont.

The basic organizational concepts of a multi-threaded implementation of
With-loops as outlined in the context of the genarray variant may also be
be applied to modarray- and fold-With-loops in a more or less straightforward
way. Instead of going into more details, we now focus on the aspect of organiz-
ing a whole program with respect to multiple execution threads. This concerns
such issues as where and how to create and terminate additional threads, thread
synchronization, and inter-thread communication.

As a result of the compilation steps described so far, all With-loops from
the original Sac program are replaced by MT EXECUTION blocks. These blocks
exactly indicate the code sections that actually are to be executed concurrently
by multiple threads. This leads straightforwardly to a fork/join execution model
as depicted on the left hand side of Fig. 5. The primary thread of an application
process serves as a master thread (thread ID 0). Upon program startup, the
master thread begins executing the program sequentially. Each time the mas-
ter thread encounters an MT EXECUTION block, it creates #THREADS - 1 so-called
worker threads. Afterwards, the master thread and the worker threads jointly
execute the MT EXECUTION block as described before. Upon completing their com-
putation, worker threads simply terminate. The master thread, however, has to
wait until the last worker thread terminates, and thereupon continues with the
execution of sequential code.

This fork/join model is conceptually simple and may be implemented straight-
forwardly. Synchronization and communication is exactly limited to thread cre-
ation and thread termination; the worker threads do not interact with each other
in any way. However, in a concrete implementation, the performance achieved
by a pure fork/join model turns out to be rather poor. Sufficient speedups may
only be achieved for extremely large problem sizes or with extremely costly op-
erations per element. The reason for this is that although thread creation is
relatively cheap compared to process creation, it is still expensive in terms of
machine instructions. So, creating new worker threads upon each multi-threaded
With-loop-execution and terminating them afterwards is inefficient. 2

A solution to this problem that combines the conceptual benefits of the
fork/join approach with an efficient execution scheme is graphically outlined
in the centre of Fig. 5. In the enhanced fork/join model, all worker threads are
created exactly once at program startup and do not terminate until the whole
program does so. The necessary synchronization and communication between
the threads is implemented by means of two different types of barriers: each
MT EXECUTION block is enclosed within a start barrier and a stop barrier. Af-
ter creation, worker threads immediately stop at a start barrier. This barrier
is lifted when the master thread encounters the first MT EXECUTION block. The
master thread and all worker threads activated thereupon share the computation

2 On one of our test machines, we measured > 10, 000 clock cycles for creating just
one (kernel) thread.



46 C. Grelck

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

pr
og

ra
m

 e
xe

cu
tio

n

pr
og

ra
m

 e
xe

cu
tio

n

1 2 3 4 5 6 7

Pure fork/join Enhanced fork/join Thread creation
00 0

0

Stop barrier

Start barrier

Fig. 5. Multi-threaded execution schemes.

of the With-loop exactly as in the pure fork/join model. Worker threads which
complete their individual part of the computation, pass a stop barrier, and, with
nothing else to do, immediately move on to the following start barrier. However,
the master thread has to wait for the last worker thread to reach the stop barrier
before it may proceed with further (sequential) computations.

Two major extensions to the compilation scheme described so far are required
in order to implement this enhanced fork/join execution model. First, a function
has to be specified that is executed by the worker threads upon creation, in the
following called thread control function; second, the code within MT EXECUTION
blocks has to be abstracted out of its original context and lifted to a separate
function definition in order to be accessible from the thread control function.
These new functions are named WL-functions.

The thread control function is outlined in Fig. 6. It shows how the worker
threads reach the start barrier immediately after creation. Before the master
thread lifts this barrier, it stores the address of the WL-function to be executed
in the global variable WL FUN ADDR. Upon activation, each worker thread retrieves
this address and executes the respective function with its own unique thread
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void ThreadControl( int tid)

{

wl_fun_t *wl_fun;

do {

START_BARRIER_WORKER();

wl_fun = WL_FUN_ADDR;

*wl_fun( tid);

} forever;

}

Fig. 6. Thread control function.

ID as argument. Afterwards the worker threads stop again at the start barrier
waiting for further activations.

If a block of code is to be abstracted out of its original context, it must
first be transformed into a combinator. For this purpose, two sets of variables
have to be inferred: the set IN of all variables referenced within the block but
defined outside and the set OUT of the variables assigned a value within the
block that is needed outside. To actually generate a new function definition, the
set LOC of all identifiers exclusively used within the block is also required. For
the MT EXECUTION block outlined in Fig.4, these sets can easily be identified as

IN = { A, e, lb, ub, s, w}, OUT = ∅, LOC = { iv, sb, se, cont},
and for the fold-With-loop introduced with the initial example in Fig. 2 as

IN = { B, lb, ub, s, w}, OUT = { c }, LOC = { iv, sb, se, cont}.
With these sets of identifiers at hand, it is rather straightforward to construct
a function definition and to replace the original code block by the respective
function application. However, in our case, we have to observe that WL-functions
are restricted in their signature since they have to be called from within the
thread control function in a uniform way (see Fig. 6). As a consequence, an
alternative parameter passing mechanism is required. The complete solutions
for the genarray-With-loop of our example is outlined in Figs. 7 and 9.

At the original position of the genarray-With-loop, the MT EXECUTION block
is replaced by code which stores the value of each variable from the correspond-
ing IN set within the global argument frame ARG FRAME (Fig. 9). Afterwards, the
address of the respective WL-function which actually contains the code to be
executed concurrently, is stored in the global variable WL FUN ADDR. The master
thread now activates the worker threads by reaching the start barrier and subse-
quently joins them in executing the With-loop through an ordinary call to the
respective WL-function with its special thread ID 0 as argument.

In the following, all threads execute the same function (WL FUN 1, Fig.7).
This function definition has a local declaration for each variable from the corre-
sponding IN, OUT, and LOC sets. Before any computations are done, the values
of the IN variables, i.e. the ’arguments’ of the WL-function, are retrieved from
the global argument frame ARG FRAME. The WL-function also contains the stop
barrier. So, after returning from the application of a WL-function, the master
thread may simply proceed with further (sequential) computations (Fig. 9).
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void WL_FUN_1(int tid)

{

int A[] = ARG_FRAME.WL1.A;

int e = ARG_FRAME.WL1.e;

int lb[] = ARG_FRAME.WL1.lb;

...

int iv[], sb[], se[], cont;

do {

...

} while (cont);

STOP_BARRIER(tid);

}

Fig. 7. WL-function: genarray.

int WL_FUN_3(int tid)

{

int B[] = ARG_FRAME.WL3.B;

...

int c, iv[], sb[], se[], cont;

c = neutral;

do {

...

} while (cont);

STOP_BARRIER_F(tid, foldfun, c);

return(c)

}

Fig. 8. WL-function: fold.

A = ALLOCATE_ARRAY( shp);

ARG_FRAME.WL1.A = A;

ARG_FRAME.WL1.e = e;

...

WL_FUN_ADDR = &WL_FUN_1;

START_BARRIER_MASTER();

WL_FUN_1( 0);

Fig. 9. WL-context: genarray.

ARG_FRAME.WL3.B = B;

ARG_FRAME.WL3.lb = lb;

ARG_FRAME.WL3.ub = ub;

...

WL_FUN_ADDR = &WL_FUN_3;

START_BARRIER_MASTER();

c = WL_FUN_3( 0);

Fig. 10. WL-context: fold.

Only minor extensions of this scheme are required for fold-With-loops as
depicted in Figs. 8 and 10. The OUT variable c which is used to accumulate
the partial fold result private to each thread is also declared a local variable.
However, a special variant of the stop barrier is required that takes care of
folding the partial results of the various threads, i.e., behind the stop barrier,
c represents the overall fold result which then is simply returned by the WL-
function. The master thread may directly use this value for further computations
while the worker threads just ignore the return value of the WL-function (Fig. 6).

Some issues of particular interest have not been addressed yet: the thread
creation phase and the implementation of start and stop barriers. Since these
represent the administrative overhead of a multi-threaded program, their efficient
implementation is crucial to achieve good speedups.

In a straightforward implementation of the thread creation phase, the master
thread starts all worker threads one after another by means of a for-loop. As a
consequence, the execution of the actually productive code is delayed by a time
that grows linearly with the number of threads. This delay can easily be reduced
if the worker threads participate in thread creation. This leads to a tree-like
creation scheme which reduces this initial delay to a factor of dlog2 #THREADSe.
However, the initial delay factor may be further reduced to only 1 by excluding
the master thread from the thread creation scheme as outlined on the upper right
hand side of Fig. 5. The master thread creates exactly one worker thread and then
immediately starts with the execution of the actual program. The first worker



Shared Memory Multiprocessor Support for SAC 49

thread subsequently creates the other worker threads following a binary tree
scheme. In this way, the administrative overhead due to thread creation overlaps
with the execution of a program’s (sequential) startup phase, e.g. reading input
data from files.

The combination of a stop barrier and a subsequent start barrier represents
a full barrier synchronization which is known to scale poorly with the number
of threads [14] and, therefore, is a major cause of overhead. However, scalability
can be improved by organizing the barrier as a tree-like structure of pairwise
synchronizations, as depicted on the lower right hand side of Fig.5. Threads with
an odd ID simply pass the stop barrier, immediately stopping at the following
start barrier. Each thread with an even ID n waits for thread n+ 1 to complete.
Then, it either passes the stop barrier itself if its ID is not a multiple of 4
or it continues to wait for thread n + 2 otherwise, and so on. This concurrent
synchronization scheme allows the master thread (thread ID 0) to synchronize
itself with all worker threads in only dlog2 #THREADSe steps.

In the case of a fold-With-loop, the stop barrier is also responsible for fold-
ing the partial results of the single threads to form the overall result. Each time
a thread synchronizes itself with another thread, it folds its own intermediate
result with that of the other thread. This scheme is further improved by allow-
ing threads which synchronize with several other threads to do so in any order.
Then, a thread may already execute final fold operations while still waiting for
other threads to complete their partial result. As in the thread creation phase,
administrative overhead again overlaps with productive computation.

4 Preliminary Performance Evaluation

20

40

60

80

100

120

140

160

180

200

1 2 3 4

ov
er

al
l e

xe
cu

tio
n 

tim
e 

in
 s

ec

number of threads

  50x50,   500,000 iterations
 100x100,  100,000 iterations

1000x1000, 1000 iterations
2000x2000, 250 iterations
3000x3000,  100 iterations

1

2

3

4

1 2 3 4

sp
ee

du
p

number of threads

linear speedup
  50x50,   500,000 iterations

 100x100,  100,000 iterations
1000x1000, 1000 iterations
2000x2000, 250 iterations
3000x3000,  100 iterations

Fig. 11. 2-D Jacobi relaxation on 4-proc. Sun Ultra Enterprise 3000.

Preliminary performance tests of the current implementation described in the
previous section have been made on two different machines: a Sun Ultra Enter-
prise 3000 with 4 processors and 512MB of memory and a Sun Ultra Enterprise
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4000 featuring 12 processors and 7.5GB of memory. Both are running Solaris,
versions 2.5.1 and 2.6, respectively. A simplified variant of 2-dimensional Jacobi
relaxation [8] served as a benchmark kernel. Test runs for various problem sizes
have been made with up to 4 threads on the Enterprise 3000 and with up to
12 threads on the Enterprise 4000. Overall execution times achieved on the two
machines are depicted in Figs. 11 and 12. The respective speedups relative to a
program which from exactly the same Sac source code has been compiled for
sequential execution are shown in Figs. 11 and 13.
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Fig. 12. 2-D Jacobi relaxation on 12-proc. Sun Ultra Enterprise 4000: execution times.

As the figures demonstrate, multi-threaded execution of the benchmark ker-
nel yields substantial reductions in overall runtimes on both machines and for all
problem sizes investigated. Speedups reach up to 3.71 on the 4-processor system
and up to 8.83 on the 12-processor system. Considerable speedups are achieved
even for relatively small problem sizes of only 100×100 or 50×50 array elements
although they require very frequent synchronization among threads. Only for un-
favourable combinations of array size and number of threads, speedups decrease
due to load imbalances resulting from the simple loop scheduling mechanism.

It is important to note that multi-threading per sé produces nothing but
overhead. Only when it comes to program execution on a multiprocessor does
multi-threading enable the operating system scheduler to assign different threads
to different processors for execution. As a consequence, speedups due to multi-
threading can only be expected if different threads of an application actually
run on different processors. However, the way the underlying operating system
distributes runnable threads among the available processors on a given machine
cannot be influenced by the application itself. Still, it is obvious that no addi-
tional speedup can be expected if the number of threads exceeds the number of
available processors.

However, if exclusive access to a machine cannot be guaranteed as it is the
case with the machines used for benchmarking, the execution of an application’s
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Fig. 13. 2-D Jacobi relaxation on 12-proc. Sun Ultra Enterprise 4000: speedups.

threads may interfere with other user and system processes. As soon as the total
number of runnable threads in a system exceeds the number of processors avail-
able, the operating system scheduler is forced to assign several threads to the
same processor for execution. In this case, a loop scheduler that statically assigns
work to threads, like the one in our implementation, causes severe load imbal-
ance, leading to a performance degradation. This is exactly what can be observed
with the performance figures for the two larger test cases on the 12-processor
machine. When these measurements were done, exactly one other process was
constantly running in the system. Hence, up to 11 threads, execution time and
speedup figures scale well, but drop dramatically if 12 threads are used.

5 Conclusions and Future Work

Sac is a programming language primarily designed with numerical applications
in mind. A powerful language construct called With-loop allows the specifica-
tion of high-level array operations independent of the operands’ dimensionalities
and shapes. Operations are defined elementwise on entire arrays or on subarrays
selected by index ranges or strides. Despite the high level of abstraction in pro-
gram specifications, sophisticated compilation schemes allow the transformation
of With-loops into efficiently executable (sequential) code [21,23].

The elementwise specification of operations on (sufficiently large) arrays ex-
poses a high amount of fine-grained concurrency. This paper describes a com-
pletely implicit approach to exploit this concurrency to speed up program execu-
tion on shared memory multiprocessors. A compilation scheme which transforms
With-loops into multi-threaded target code is outlined along with the required
runtime system. By completely separating the loop scheduling facility from the
loops themselves, the existing sequential compilation scheme of With-loops can
largely be reused. Moreover, this provides the opportunity to easily exchange
the loop scheduling implementation in order to adjust load balancing strategies
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to the program structure or target system properties. An execution model for
multi-threaded programs is presented that overcomes the limitations of a sim-
ple fork/join oriented approach. Instead of repeatedly creating and terminating
threads, they are created exactly once upon program startup while all synchro-
nization is realized by a tailor-made variant of barrier synchronization.

Preliminary performance evaluations of our current implementation are made
on two Sun Ultra Enterprise systems with 4 and 12 processors. A simplified
version of 2-dimensional Jacobi relaxation is used as a benchmark kernel. Per-
formance figures for various problem sizes demonstrate that even for relatively
small problems substantial speedups are achieved on both systems reaching up
to 3.71 or 8.83, respectively.

Future work will focus on reducing the negative performance impact of the
synchronization barriers which complete each concurrently executed code seg-
ment. Since the barrier implementation itself is already highly optimized, the
emphasis will be on improving the load balancing capabilities of the loop sched-
uler in order to cope with variations in computational complexity for different
elements of the target array as well as with threads belonging to other pro-
cesses on systems not used exclusively. An alternative approach is to identify
larger sections of code that can be executed concurrently without intermediate
synchronization, e.g., synchronization barriers between consecutive With-loops
can be eliminated as far as there is no data dependence between them.
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