The Essence of Synchronisation
in Asynchronous Data Flow Programming *

Clemens Grelck

University of Amsterdam, Institute of Informatics
Science Park 107, 1098 XG Amsterdam, Netherlands
c.grelck@uva.nl

Abstract. We discuss the aspect of synchronisation in the language de-
sign of the asynchronous data flow language S-NET. Synchronisation is
a crucial aspect of any coordination approach. S-NET provides a partic-
ularly simple construct, the synchrocell. The synchrocell is actually two
simple to meet regular synchronisation demands itself. We show that in
conjunction with other language feature, S-NET synchrocells can effec-
tively do the job. Moreover, we argue that their simplistic design in fact
is a necessary prerequisite to implement even more interesting scenarios,
for which we outline ways of efficient implementation.

1 Introduction

The current hardware trend towards multi-core and soon many-core chip designs
for increased performance creates a huge problem on the software side. Software
needs to become parallel to benefit from future improvements in hardware, which
will be rather in th number of cores available than in the individual computing
power of a single core. So far, parallel programming has been confined to niches of
software engineering, like for instance high performance computing. Now, parallel
programming must become mainstream, and the real question is how existing
software can be parallelised and how new software can be engineered without
the cost currently attributed to, for instance, high performance computing.

S-NET [1-3] is a declarative coordination language whose design thoroughly
avoids the intertwining of computational and organisational aspects through
active separation of concerns: S-NET completely separates the concern of writ-
ing sequential application building blocks (i.e. application engineering) from the
the concern of composing these building blocks to form a parallel application
(i.e.concurrency engineering).

More precisely, S-NET defines the coordination behaviour of networks of
asynchronous, stateless components and their orderly interconnection via typed
streams. We deliberately restrict S-NET to coordination aspects and leave the
specification of the concrete operational behaviour of basic components, named
bozes, to conventional languages. An S-NET box is connected to the outside

* This work was supported by the European Union through the projects AEther and
Advance.



world by two typed streams, a single input stream and a single output stream.
Data on these streams is organised as non-recursive records, i.e. collections of
label-value pairs.

The operational behaviour of a box is characterised by a stream transformer
function that maps a single record from the input stream to a (possibly empty)
stream of records on the output stream. In order to facilitate dynamic reconfig-
uration of networks, a box has no internal state and any access to external state
(e.g. file system, environment variables, etc.) is confined to using the streaming
network. Boxes execute fully asynchronously: as soon as a record is available
on the input stream, a box may start computing and producing records on the
output stream.

The restriction to a single input stream and a single output stream per box
again again is motivated by separation of concurrency engineering from appli-
cation engineering. If a box had multiple input streams, this would immediately
raise the question as to what extent input data arriving on the various input
streams is synchronised. Do we wait for exactly one data package on each in-
put stream before we start computing like in Petri nets? Or do we alternatively
start computing when the first data item arrives and see how far we get without
the other data? Or could we even consume varying numbers of data packages
from the various input streams? This immediately intertwines the question of
synchronisation, which is a classical concurrency engineering concern, with the
concept of the box, which in fact is and should only be an abstraction of a se-
quential compute component. The same is true for the output stream of a box.
Had a box multiple output streams, this would immediately raise the question
of data routing, again a classical concurrency engineering concern, as the box
code would need to decide to which stream data should be sent. Having a single
output stream only, in contrast, clearly separates the routing aspect from the
computing aspect of the box and, thus, concurrency engineering from application
engineering.

The construction of streaming networks based on instances of asynchronous
components is a distinctive feature of S-NET: Thanks to the restriction to a
single-input /single-output stream component interface we can describe entire
networks through algebraic formulae. Network combinators either take one or
two operand components and construct a network that again has a single in-
put stream and a single output stream. As such a network again is a compo-
nent, construction of streaming networks becomes an inductive process. We have
identified a total of four network combinators that prove sufficient to construct
a large number of network prototypes: static serial and parallel composition of
heterogeneous components as well as dynamic serial and parallel replication of
homogeneous components.

Fig. 1 shows a simple example of an S-NET streaming network. The five
boxes execute fully asynchronously and data items or tokens in the form of
records flow through the stages of the streaming network. Neither the split point
nor the merge point in the network constitute any form of synchronisation. Both



Box B Box C
—» Box A Box E —»
Box D

A4

Fig. 1. Example of an S-NET streaming network of asynchronous components

are rather routing points where data can be either sent into multiple directions
or received from multiple directions.

What does synchronisation mean in the streaming network context of S-NET?
Due to the SISO restriction of network construction, no S-NET entity can have
multiple input streams. Hence, synchronisation can only mean the combination
of multiple data items or records appearing in some order on a single input
stream. For this purpose S-NET provides a built-in component, the synchrocell.
The design of the synchrocell is geared towards simplicity. In fact, a synchrocell
waits for two differently typed records on its own input stream. Whichever record
appears first is held within the synchrocell until the other appears as well. On
this occasion the the synchrocell joins the two records and emits the resulting
record on its output stream. Any synchrocell can only synchronise exactly once.
Whenever a type pattern (more on this in the following chapters) has been
matched any further records matching the same pattern will be forwarded to
the output stream directly. Consequently, after successful synchronisation all
patterns have been matched and, hence, the synchrocell becomes an identity
box.

This operational behaviour may surprise. However, exactly this one-off be-
haviour proves essential to use synchrocells effectively in varying contexts. It is
the contribution of this paper to show how and why.

The remainder of the paper is organised as follows: Section 2 provides more
technical background information on S-NET while in Section 3 we focus entirely
on the aspect of synchronisation and introduce S-NET synchrocells. Sections 4
and 5 describe two application scenarios for synchrocells that proves their sim-
plistic design as an essential prerequisite. In Section 6 we sketch out directions
of efficient implementation, and we conclude in Section 7.

2 S-Net in a Nutshell

S-NET is a high-level, declarative coordination language based on the concept of
stream processing. As such S-NET promotes functions implemented in a standard
programming language into asynchronously executed stream-processing compo-
nents, termed bozres. Both imperative and declarative programming languages
qualify as box implementation languages for S-NET, but we require any box
implementation to be free of state on the coordination level. More precisely, a



box must not carry over any information between two consecutive activations
on the streaming layer.

Each box is connected to the rest of the network by two typed streams: one
for input and one for output. Messages on these typed streams are organized
as non-recursive records, i.e. sets of label-value pairs. The labels are subdivided
into fields and tags. The fields are associated with values from the box language
domain; they are entirely opaque to S-NET. Tags are associated with integer
numbers, which are accessible both on the coordination and on the box level.
Tag labels are distinguished from field labels by angular brackets.

Operationally, a box is triggered by receiving a record on its input stream.
As soon as that happend, the box applies its box function to the record. In the
course of function execution the box may communicate records on its output
stream. Once the execution of the box function has terminated, the box is ready
to receive and to process the next record on the input stream.

On the S-NET level a box is characterized by a box signature: a mapping
from an input type to a disjunction of output types. For example,
box foo ((a,<b>) -> (c) | (c,d,<e>));

declares a box that expects records with a field labeled a and a tag labeled b.
The box responds with an unspecified number of records that either have just
field ¢ or fields ¢ and d as well as tag e. The associated box function foo is
supposed to be of arity two: the first argument is of type void* to qualify for
any opaque data; the second argument is of type int.

The box signature naturally induces a type signature. Whereas a concrete
sequence of fields and tags is essential for the proper specification of the box in-
terface, we drop the ordering when reasoning about boxes in the S-NET domain.
Consequently, this step turns tuples of labels into sets of labels. Hence, the type
signature of box foo is {a,<b>} —> {c} | {c,d,<e>}. We call the left hand side
of this type mapping the input type and the right hand side the output type, and
we use curly brackets instead of round brackets to emphasise the set nature of
types.

To be precise, this type signature makes foo accept any input record that
has at least field a and tag <b>, but may well contain further fields and tags.
The formal foundation of this behaviour is structural subtyping on records: Any
record type t7 is a subtype of s iff to C ¢;. This subtyping relationship extends
to multivariant types, e.g. the output type of box foo: A multivariant type z is
a subtype of y if every variant v € x is a subtype of some variant w € y. Again,
the variant v is a subtype of w if and only if every label A € v also appears in w.

Subtyping on input types of boxes raises the question what happens to the
excess fields and tags. As mentioned previously, S-NET supports the concept of
flow inheritance whereby excess fields and tags from incoming records are not
just ignored in the input record of a network entity, but are also attached to any
outgoing record produced by it in response to that record. Subtyping and flow
inheritance prove to be indispensable when it comes to getting boxes that were
designed separately to work together in a streaming network.



It is a distinguishing feature of S-NET that it neither introduces streams as
explicit objects nor that it defines network connectivity through explicit wiring.
Instead, it uses algebraic formulae to describe streaming networks. The restric-
tion of boxes to a single input and a single output stream (SISO) is essential for
this. S-NET provides four network combinators: static serial and parallel com-
position of two networks and dynamic serial and parallel replication of a single
network. These combinators preserve the SISO property: any network, regardless
of its complexity, is an SISO entity in its own right.

Let A and B denote two S-NET networks or boxes. Serial combination (A..B)
constructs a new network where the output stream of A becomes the input stream
of B, and the input stream of A and the output stream of B become the input
and output streams of the combined network, respectively. As a consequence, A
and B operate in pipeline mode.

Parallel combination (A|B) constructs a network where incoming records are
either sent to A or to B and the resulting record streams are merged to form the
overall output stream of the combined network. The type system controls the
flow of records. Each network is associated with a type signature inferred by the
compiler. Any incoming record is directed towards the subnetwork whose input
type better matches the type of the record. If both branches match equally well,
one is selected non-deterministically. Parallel composition can be used to route
different kinds of records through different branches of the network (like branches
in imperative languages) or, in the presence of subtyping, to create generic and
specific alternatives triggered by the presence or the absence of certain fields or
tags.

The parallel and serial combinators have their infinite counterparts: serial
and parallel replicators for a single subnetwork. The serial replicator A*type
constructs an infinite chain of replicas of A connected by serial combinators.
The chain is tapped before every replica to extract records that match the type
specified as the second operand. More precisely the type acts as a so-called type
pattern and patter matching is defined via the same subtype relationship as
defined above. Hence, a record leaves a serial replication context as soon as its
type is a subtype of the type specified in the type pattern position.

The parallel replicator A!<tag> also replicates network A infinitely, but the
replicas are connected in parallel. All incoming records must carry the tag; its
value determines the replica to which a record is sent.

S-NET is an abstract notation for streaming networks of asynchronous com-
ponents. It is a notation that allows programmers to express concurrency in an
abstract and intuitive way without the need to reason about the typical annoy-
ances of machine-level concurrent programming. Readers are referred to [3, 2,
4] for a more thorough presentation of S-NET and to [5, 6] for case studies on
application programming with S-NET.



3 Synchronisation

What does synchronisation mean in the streaming network context of S-NET?
Network combinators inspect records for routing purposes, but never manipulate
individual records. This is the privilege of boxes and filters. They both may also
split a single record into several records. However, no user-defined box or filter
can ever join two records into a single one. The absence of state is an essential
property of boxes. So, boxes cannot join records. Joining records is the essence
of synchronisation in asynchronous data flow computing in the style of S-NET.
Since synchronisation is an integral aspect of the coordination layer, we separate
synchronisation as far as possible from any computing aspects and provide a
special construct for this purpose: the synchrocell.

Syntactically, a synchrocell consists of two type patterns enclosed in [| and
|1 brackets, for example [| {a,b,<t>}, {c,d,<u>} |]. The synchrocell holds in-
coming records which match one of the patterns until both patterns have been
matched. Only then are the records merged into a single one, which is released
to the output stream. A match happens when the type of the record is a sub-
type of the type pattern. The pattern also acts as an input type specification of
the synchrocell: it only accepts records that match at least one of the patterns.
Any record arriving at a synchrocell whose type matches a pattern that has
previously been matched by a preceding record, is directly forwarded to the out-
put stream without any further processing or even analysis. Consequently, once
both patterns of a synchrocell have been matched and a joined record has been
emitted to the output stream, the synchrocell is bound to forward all further
records regardless of their type directly to the output stream. Effectively, once
a synchrocell has successfully synchronised and joined two records, it becomes
the identity box. In a more operational sense, the synchrocell should be removed
from the streaming network. In essence, synchronisation in S-NET is a one-shot
operation.

This definition of synchronisation, in our view, is the bare minimum that is
required: a one-shot synchronisation between two records on the same stream.
This is truly the essence of synchronisation in the asynchronous data flow context
of S-NET. This one-shot design of the synchrocell seems almost disturbing at
first glance. However, in the following sections we will demonstrate how this
simplistic design and only this design allows to implement essential higher level
synchronisation features like continuous pairwise synchronisation or modelling
of state.

4 Continuous Synchronisation

A very common form of synchronisation in a streaming network is continuous
synchronisation, where the first record that matches pattern A is joined with
the first record that matches pattern B, the second record that matches pat-
tern A with the second record that matches pattern B and so on. With S-NET
synchrocells this behaviour can easily be achieved when embedded into a serial



replication with an exit pattern that is the union of all patterns in the synchro-
cell. For example, the network

[l {a,B},{C,D} |] * {A,B,C,D}
achieves continuous synchronisation for records of type {A,B} with records of
type {C,D}. Let us see how this works in detail. Fig. 2 illustrates the operational
behaviour.

Initially the serial replication is uninstantiated. When the first record, say
{A,B} arrives, it does not match the exit pattern of the star combinator and,
hence, the serial replication unfolds and instantiates a fresh synchrocell, where
the record is stored. Let us assume another record {A,B} comes next. Since it
neither matches the exit pattern it is routed into the first instance of the serial
replication and hits the synchrocell. As the corresponding pattern has already
been matched, the synchrocell passes {A,B} on. It still does not match the exit
pattern and, hence, a second instance of the serial replication unfolds, which
again has a fresh synchrocell where the record is stored.

If the third record is of type {C,D}, it likewise is routed into the first instance
of the serial replication where it hits the synchrocell that is already primed with
the first record {A,B}. The synchrocell joins the two records forming a new record
{A,B,C,D}. This record does match the exit pattern of the serial replication and
leaves the network. Semantically the first synchrocell now becomes the identity,
but, operationally, the whole first instance of the serial replication is removed
and subsequent records immediately reach the second instance.

In fact, the combination of synchrocell and serial replication allows us to
implement an unbounded matching store with the means of S-NET. Of course,
we could also have just defined the semantics of the synchrocell as a matching
store and provide continuous synchronisation built-in. We do not do so for two
reasons. Firstly, it is good programming language design to keep the number
and the complexity of primitive language constructs to the minimum and use
constructive features whenever possible. Secondly, and actually more important,
the simplistic design of synchrocells allows for another application, more precisely
the modelling of state in an otherwise state free environment. We will learn more
about this in the following section.

5 Modelling State

Functional programming and state typically do not go well together, and S-NET
makes no exception here. In general, the absence of state must be seen as the
great advantage of function approaches when it comes to parallel processing. In
the context of S-NET, for example, the statelessness of boxes allows the S-NET
runtime system to schedule box computations to computing resources at will,
including the relocation and migration of computations between processing el-
ements. A common example of modelling some form of state in main stream
functional programming is tail-end recursion: a function with a number of pa-
rameters applies itself (recursively) to a new set of arguments computed from



Step 1: Step 2:

[l {A,B}, {C,D}|I* {AB,C,D} [l {A,B}, {C,D} |1* {A,B,C,D}
{A,B}
—> —> —>
Step 3: Step 4:
[l {A,B}, {C,D} [1* {A,B,C,D} [l {A,B}, {C,D} [I* {A,B,C,D}
{A,B}
{A,B} {A,B}
Step 5: Step 6:
[l {A,B}, {C,D}|I* {A,B,C,D} [l {A,B}, {C,D} |1* {A,B,C,D}
{C,D}
> | (A,B} {A,B} > {A,B} {A,B} >
—> —>
Step 7: Step 8:
[l {A,B}, {C,D}|I* {A,B,C,D} [l {A,B}, {C,D} [1* {A,B,C,D}
{A,B,C,D}
{A,B} {A,B} {A,B}
{cp} | g
Step 9: Step 10:
[I{A,B}, {C,D} [I* {A,B,C,D} [I {AB}, {C,D} |] *{A,B,C,D}
{A,B}
2 — — —
N_» {A,B} N_’ {A,B} Ly {A,B}

Fig. 2. Illustration of continuous synchronisation

the parameters in the last syntactic position, i.e. the value of recursive function
application will become the value of the current function invocation.

Modelling state in S-NET follows the same basic idea, but, of course, has
its intricacies due to the stream processing approach of S-NET. Fig. 3 shows
an example implementation. The network model_state expects an initial state
{state} followed by a sequence of values {inval} on its input stream; it will
emit a sequence of values {outval} on its output stream, where each output
value is a function of the corresponding input value and the accumulated state.

The local networks join and id wrap a synchrocell and a filter, respectively.
Lifting these built-in constructs into separate networks is solely for illustration
purposes and has otherwise no semantic implication. At the core of the network
is the box step that expects a pair of state and value on the input stream. Based



net model_state {

net join connect [|{statel},{invall}|];

net id connect [{invall} -> {invall];

box step ({state,inval} -> {state} | {outvall);
}

connect (join..(id|step))*{outvall};

Fig. 3. S-NET network that models a stateful computation.

on both the current state and the current value the box computes a new state
and an output value that are individually emitted on the output stream. The
network model_state is made up of a synchrocell that synchronises one state
token with one input token. The subsequent parallel composition is crucial for
the overall idea. Whenever the initial synchrocell combines state and value to one
record, this record will be routed towards the step box because its input type is
{state,inval}. Any subsequent value that just passes through the synchrocell
will be routed towards the filter in the id network, which essentially is a typed
identity.

The network consisting of join, id and step is embedded within a serial
replication, i.e. the whole network is forward replicated on demand. The ter-
mination pattern {outval} ensures that any new value computed by the step
box leaves the model_state network, whereas any new state computed by the
step box triggers a re-instantiation of the network, including a fresh synchrocell
where the new state is captured to wait for the corresponding value from the
outermost input stream.

In Fig. 4 we illustrate the operational behaviour of the model_state network.
Note that for space reasons we abbreviate {state}, {inval} and {outval} as
{s}, {iv} and {ov}, respectively. Initially, the operand network of the serial
replication remains uninstantiated, and only the appearance of the first state
token (i.e. the initial state) triggers the instantiation of one instance. The {s}
record is immediately captured in the synchrocell. Next, we expect the first value
to appear on the input stream. It is likewise captured in the synchrocell leading
to successful synchronisation and the construction of a joined {s,iv} record.
The synchrocell becomes the identity thereafter.

The {s,iv} is routed towards the step box due to its type, which matches
the input type of that box more than the input type of the id network, which
is {iv}. The step box first emits an output value {ov}, which is sent to the
global output stream, as it perfectly matches the termination pattern of the
serial replication. Next, the step box emits a state token {s}. As this record
does not match the termination pattern, it triggers a subsequent instantiation
of the serial replication’s operand network. The state token flows into this newly
instantiated network, where is stuck in the fresh synchrocell.

In the meantime a second value appears on the input stream. It passes the
first (disabled) synchrocell and bypasses the first instance of the step box. Note
that we deliberately omit the identity filter in Fig. 4 as it can easily be identified



([l {s}, {iv} 1 .. (id | step) ) * {ov}

= [° -
(step |
{s}
step |
— 1 Xe= —
{s,iv} m

{iv}

:
|

{ov}

|
|

oy
12
A

{iv}

{s}

{s}
{iv}

117

{s,iv}

)
|

{ov}

i)

»
-

Fig. 4. lllustration of state-modelling network

by our implementation and simply leads to a bypass channel at runtime. Since
{iv} does again not match the termination pattern of the serial replication, it
is also routed into the second instance of the operand network. Here, it joins
the state token {s} in the synchrocell. Now, history repeats itself leading to a



new output record sent to the global output stream and a new state record that
triggers the next instantiation of the operand network.

The trick is that each instance of the subnetwork containing join, id and
step processes exactly one input value and one instance of the state. After that
each instance effectively becomes the identity for any subsequent input value.
Conversely, each input record is routed such that it eventually reaches the front
or active instance where it triggers the computation of a new output value and
a new state.

6 Implementation Aspects

The current S-NET implementation for shared address space parallel architec-
tures [7] is based on threads for boxes, including filters and synchrocells, and
bounded FIFO buffers as streams from which threads read and to which threads
write. In addition to the runtime components that explicitly appear in an S-NET
specification, i.e. essentially boxes, filters and synchrocells, the S-NET runtime
system makes use of a small further number of components that only implicitly
appear on the S-NET level. These are routing components for parallel composi-
tion (routing based on best match of record type and the types of the outgoing
streams), serial replication (routing into the replicated network potentially trig-
ger a re-instantiation or routing outside) and parallel replication (routing based
on the value of a named tag in the record) as well as merge components for all
three underlying network combinators. In essence each network combinator ex-
cept for serial composition inflicts the instantiation one routing and one merging
component for network control.

The most naive implementation of synchrocells in this context is by an in-
ternal finite state machine that once it reaches its final state routes any further
record on the input stream directly to the output stream. While obviously satis-
fying the semantics of S-NET [8], this solution is likewise obviously dissatisfying
as the synchrocell component infinitely binds resources at runtime for no good
and also the movement of records through the network is nothing but delayed
by such useless components.

In fact, the current runtime system [7] takes a more reasonable approach.
As soon as the finite state machine inherent to the synchrocell (runtime com-
ponent) reaches its final state, it wraps the address of its input stream in a
control message and sends this message to its own output stream. Thereafter,
the component immediately terminates thus releasing all associated resources.
When the subsequent component, i.e. the component that has the synchrocell’s
output stream as input stream, receives this control message, it releases its input
stream, which in this situation is guaranteed to be empty, and uses the former
synchrocell’s input stream as its new input stream.

This implementation is adequate from the perspective of a single synchrocell,
but is it also sufficient for the two application scenarios sketched out in the
previous sections?



Let us first look at continuous synchronisation as outlined in Section 4. The
runtime configuration of a synchrocell embedded within a serial replication is
as sketched out in Fig. 5. As an example, we see a two-fold instantiation of the
continuous synchronisation subnetwork. The serial repliation combinator leads
to a sequence of routing components alternating with synchrocells as the only
component embedded within the serial replication.

star star star
— sync |—» sync —»
router | 7| Y router | 7| Y router

| i T

Fig. 5. Runtime configuration of continuous synchronisation

If a synchrocell terminates in this configuration, one routing component be-
comes directly connected to the next routing component. Since all routing com-
ponent base their routing decision on the same type pattern, it is clear that serial
replication with an empty operand network is semantically transparent, i.e. the
instance of the serial replication may be eliminated and not just the synchrocell
inside.

This situation can relatively easily be identified by the runtime system. Com-
ponents register themselves with a stream when they first connect. More pre-
cisely, they store their individual identifiers withing the stream. At runtime,
this allows components to identify their communication partners. Hence, a se-
rial replication routing component, upon receiving its new input stream from
the disabled synchrocell, can immediately identify whether or not the writing
component to this stream belongs to the same serial replication. If so, the rout-
ing component, rather than reconnecting itself, forwards the stream to its own
successor before terminates itself. As a consequence of this simple solution, any
useless stage of the serial replication terminates and releases all resources along
with the successful synchronisation.

The modelling of state, as proposed in the previous Section, is a much harder
problem when it comes to efficient implementations. In this case, effective re-
moval of the synchrocell or its bypassing does not suffice because for each stage
of the serial replication the parallel composition within would simply remain as
it is. This case is more complicated than that of continuous synchronisation,
because the body of the serial replication contains a number of entities and not
just a synchrocell. The trick in this case is that following successful synchronisa-
tion, the initial synchrocell can no longer produce records of the joint type, but
only records of type. Consequently, all such records are guaranteed to use the
bypass around the step box. Like in the continuous synchronisation case, the
entire instance of the serial replication becomes the identity. However, this fact
is much harder to identify here.



One potential approach goes as follows. When a synchrocell terminates, it
not only wraps its input buffer into a control message but also a runtime repre-
sentation of the synchrocell patterns. We assume that after termination of the
synchrocell only records that match one of the synchronisation patterns may
appear, but no records that contain the union of fields and tags. In the given
example, this message arrives at the routing component derived from the parallel
composition. If the routing component compares the type information contained
in the message with the types that form the basis of its routing decision, it can
quickly come to the conclusion that all further records must take the upper or
bypass branch. Hence, the routing component can send a deactivation control
message into the other branch that subsequently removes the whole (now useless)
network until the corresponding join point.

Once this has happened we find the network in the same situation as in
the previous scenario of continuous synchronisation. We have a serial replication
with an empty body, i.e. two routing components of the star combinator have
become immediate neighbours in the streaming network. Fortunately, we can
use the same technique as above to finalise an entire stage in the dynamically
replicated pipeline.

In either scenario the implementation tricks sketched out lead to a queue-like
behaviour of serial replication. The pipeline grows at the front, and it shrinks
at the end. Under normal circumstances, resource consumption should remain
within reasonable bounds rather than grow unbounded as in the naive imple-
mentation.

7 Conclusion

In this paper we have explained and motivated the concept of synchronisa-
tion through synchrocells in the asynchronous data flow coordination language
S-NET. Synchrocells, in our view, capture the bare essence of synchronisation
in the context of S-NET. Through two examples, continuous synchronisation
and the modelling of state, we demonstrate that it is this bare-bone design of
synchrocells that acts as a prerequisite for the expressiveness of S-NET, when
combined with other language features. In other words the deliberate restriction
to a built-in synchronisation primitive that is unexpectedly simple proves to be
essential for expressiveness, a seeming paradox.

We have shown how to use synchrocells to implement advanced synchroni-
sation concepts. Their efficient implementation, however, is a slightly different
matter. In fact, orthogonal language design that aims at using a minimum of
built-in constructs of minimal complexity, puts a specific burden on language im-
plementors. We have sketched out approaches to implement the scenarios used
throughout the paper efficiently. Realisations of these implementation concepts
are still outstanding leaving their practical evaluation as future work.



Acknowledgements

Design and implementation of S-NET is truly a team effort. The author would
like to thank the other members of the S-NET team, namely Alex Shafarenko,
Sven-Bodo Scholz and Frank Penczek, for endless fruitful discussions and an
exciting research context.

References

1. Grelck, C., Scholz, S.B., Shafarenko, A.: A Gentle Introduction to S-Net: Typed
Stream Processing and Declarative Coordination of Asynchronous Components.
Parallel Processing Letters 18 (2008) 221-237

2. Grelck, C., Scholz, S.B., Shafarenko, A.: Asynchronous Stream Processing with
S-Net. International Journal of Parallel Programming 38 (2010) 38-67

3. Grelck, C., Shafarenko, A. (eds):, Penczek, F., Grelck, C., Cai, H., Julku, J.,
Hoélzenspies, P., Scholz, S.B., Shafarenko, A.: S-Net Language Report 2.0. Techni-
cal Report 499, University of Hertfordshire, School of Computer Science, Hatfield,
England, United Kingdom (2010)

4. Shafarenko, A.: Nondeterministic coordination using s-net. In Gentzsch, W.,
Grandinetti, L., Joubert, G., eds.: High Speed and Large Scale Scientific Computing.
Volume 18 of Advances in Parallel Computing. IOS Press (2009) 74-96

5. Grelck, C., Scholz, S.B., Shafarenko, A.: Coordinating Data Parallel SAC Programs
with S-Net. In: Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS’07), Long Beach, California, USA, IEEE Computer
Society Press, Los Alamitos, California, USA (2007)

6. Penczek, F., Herhut, S., Grelck, C., Scholz, S.B., Shafarenko, A., Barrere, R., Lenor-
mand, E.: Parallel signal processing with S-Net. Procedia Computer Science 1
(2010) 2079 — 2088 ICCS 2010.

7. Grelck, C., Penczek, F.: Implementation Architecture and Multithreaded Runtime
System of S-Net. In Scholz, S.; Chitil, O., eds.: Implementation and Application
of Functional Languages, 20th International Symposium, IFL’08, Hatfield, United
Kingdom, Revised Selected Papers. Lecture Notes in Computer Science, Springer-
Verlag (2009) to appear.

8. Penczek, F., Grelck, C., Scholz, S.B.: An Operational Semantics for S-Net. In Chap-
man, B., Desprez, F., Joubert, G., Lichnewsky, A., Peters, F., Priol, T., eds.: Parallel
Computing: From Multicores and GPU’s to Petascale. Volume 19 of Advances in
Parallel Computing. I0S Press (2010) 467-474



