
February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A GENTLE INTRODUCTION TO S-NET:
TYPED STREAM PROCESSING AND DECLARATIVE

COORDINATION OF ASYNCHRONOUS COMPONENTS

CLEMENS GRELCK

University of Lübeck, Institute of Software Technology and Programming Languages
Ratzeburger Allee 160, 23538 Lübeck, Germany

and

SVEN-BODO SCHOLZ and ALEX SHAFARENKO

University of Hertfordshire, Department of Computer Science

College Lane, Hatfield, AL10 9AB, United Kingdom

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

ABSTRACT

We present the design of S-Net, a coordination language and component technology
based on stream processing. S-Net achieves a near-complete separation between applica-
tion code, written in a conventional programming language, and coordination code writ-
ten in S-Net itself. S-Net boxes integrate existing sequential code as stream-processing
components into streaming networks, whose construction is based on algebraic formulae
built out of four network combinators. Subtyping on the level of boxes and networks and
a tailor-made inheritance mechanism achieve flexible software reuse.

Keywords: Parallel programming models, stream processing, component models, coordi-
nation, declarative programming, structural subtyping

1. Introduction

The recent advent of multicore technology in processor designs [1] has introduced
parallel computing power to the desktop. Unlike the increase in clock frequency
characteristic for previous generations of processors, application programs do not
automatically benefit from multiple cores, but require explicit parallelisation. This
need brings parallel and distributed programming techniques from the niche of
traditional supercomputing application areas into the main stream of software en-
gineering. This shift in application characteristics also demands new programming
concepts, tools and infrastructure.

We present the design of the declarative coordination language S-Net [2].

1

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

2 Parallel Processing Letters

S-Neta describes the coordination behaviour of networks of asynchronous com-
ponents and their orderly interconnection via typed streams. We deliberately re-
strict S-Net to coordination aspects and leave the specification of the concrete
operational behaviour of basic components, named boxes in S-Net terminology, to
conventional languages. For the time being, we focus on the data-parallel functional
array programming language SaC [3] as our primary box language. However, co-
ordination and computation layers are sufficiently orthogonalised in our approach
to support a range of box implementation languages. In fact, the same S-Net may
well contain boxes implemented in different box languages. This strict separation
between computing and coordination layers facilitates the reuse of existing software
and opens an avenue towards mixed language programming.

An S-Net box is connected to the outside world by two typed streams, a single
input stream and a single output stream. Data on these streams is organised as non-
recursive records, i.e. collections of label-value pairs. The operational behaviour of a
box is characterised by a stream transformer function that maps a single record from
the input stream to a (possibly empty) stream of records on the output stream. In
order to facilitate dynamic reconfiguration of networks, a box has no internal state
and any access to external state (e.g. file system, environment variables, etc.) is
confined to using the streaming network. Boxes execute fully asynchronously: as
soon as a record is available on the input stream, a box may start computing and
producing records on the output stream. The restriction to a single input stream
avoids any confusion as whether to implicitly synchronise or how to respond to
partially available data.

S-Net features two built-in components: Filter boxes take care of various kinds
of housekeeping tasks that do not require the full power of a box language, e.g. dele-
tion, duplication or renaming of record fields. Synchronisation boxes recombine mul-
tiple records on the input stream into a single record on the output stream based
on structural pattern matching.

The construction of streaming networks based on instances of user-defined and
built-in asynchronous components is a distinctive feature of S-Net: Thanks to the
restriction to a single-input/single-output stream component interface we can de-
scribe entire networks through algebraic formulae. Network combinators either take
one or two operand components and construct a network that again has a single
input stream and a single output stream. As such a network again is a component,
construction of streaming networks becomes an inductive process. We have identi-
fied a total of four network combinators that prove sufficient to construct a large
number of network prototypes: static serial and parallel composition of heteroge-
neous components as well as dynamic serial and parallel replication of homogeneous
components.

Structural subtyping on records greatly facilitates adaptation of individual com-
ponents to varying contexts. More precisely, components only need to be specific

aMore information on S-Net is available at http://www.snet-home.org/ .

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 3

about record fields that are actually needed for the associated computation or that
are (at least potentially) created by that computation. In excess to these required
fields, however, an input record to some component may have an arbitrary number
of further fields. These additional fields bypass the component and are added to any
outgoing record through an automatic coercion mechanism, named flow inheritance.

The remainder of the paper is organised as follows. In Section 2 we sketch out the
S-Net type system. Sections 3 and 4 introduce boxes and networks, respectively.
In Section 5 we discuss some related work, and we conclude in Section 6.

2. The type system of S-Net

2.1. Record types

The type system of S-Net is based on non-recursive variant records with record
subtyping. Informally, a type in S-Net is a non-empty set of anonymous record
variants separated by vertical bars. Each record variant is a possibly empty set
of named record entries, enclosed in curly brackets. We distinguish two different
kinds of record entries: fields and tags. A field is characterised by its field name
(label); it is associated with an opaque value at runtime. Hence, fields can only be
generated, inspected or manipulated by using an appropriate box language. A tag is
represented by a name enclosed in angular brackets. At runtime tags are associated
with integer values, which are visible to both box language code and S-Net. The
rationale of tags lies in controlling the flow of records through a network. They
should not be misused to hold box language data that can be represented as integer
values.

We illustrate S-Net types by a simple example from 2-dimensional geometry:
For instance, we may represent a rectangle by the S-Net type
{x, y, dx, dy}

providing fields for the coordinates of a reference point (x and y) and edge lengths
in both dimensions (dx and dy). Likewise, we may represent a circle by the center
point coordinates and its radius:
{x, y, radius}

Using the S-Net support for variant record types we may easily define a type for
geometric bodies in general, encompassing both rectangles and circles:
{x, y, dx, dy} | {x, y, radius}

Often it is convenient to name variants. In S-Net this can be done using tags:
{<rectangle>, x, y, dx, dy} | {<circle>, x, y, radius}

S-Net supports type definitions; we refer the interested reader to [2] for details.

2.2. Record subtyping

S-Net supports structural subtyping on record types. Subtyping essentially is based
on the subset relationship between sets of record entries. Informally, a type is a sub-

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

4 Parallel Processing Letters

type of another type if it has additional record entries in the variants or additional
variants. For example, the type
{<circle>, x, y, radius, colour}

representing coloured circles is a subtype of the previously defined type
{<circle>, x, y, radius} .

Likewise, we may add another type to represent triangles:
{<rectangle>, x, y, dx, dy}

| {<circle>, x, y, radius}
| {<triangle>, x, y, dx1, dy1, dx2, dy2};

which again is a supertype of
{<rectangle>, x, y, dx, dy}

| {<circle>, x, y, radius}

as well as a supertype of
{<circle>, x, y, radius, colour} .

Our definition of record subtyping coincides with the intuitive understanding
that a subtype is more specific than its supertype(s) while a supertype is more
general than its subtype(s). In the first example, the subtype contains additional
information concerning the geometric body (i.e. its colour) that allows us to dis-
tinguish, for instance, green circles from blue circles, whereas the more general
supertype identifies all circles regardless of their colour. In our second example, the
supertype is again more general than its subtype as it encompasses all three dif-
ferent geometric bodies. Subtype {<circle>,x,y,radius,colour} is more specific
than its supertypes because it rules out triangles and rectangles from the set of
geometric bodies covered. Unlike subtyping in object-oriented languages like C++
or Java our definition of record subtyping is purely structural; {} (i.e. the empty
record) denotes the most common supertype.

2.3. Type signatures

Type signatures describe the stream-to-stream transformation performed by a box
or a network. Syntactically, a type signature is a non-empty set of type mappings
each relating an input type to an output type. The input type specifies the records
a box or network accepts for processing; the output type characterises the records
that the box or network may produce in response. For example, the type signature
{a,b} | {c,d} -> {<x>} | {<y>} , {e} -> {z}

describes a network that accepts records that either contain fields a and b or fields
c and d or field e. In response to a record of the latter type the network produces
records containing the field z. In all other cases, it produces records that either
contain tag x or tag y.

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 5

2.4. Flow inheritance

Up-coercion of records upon entry to a certain box or network creates a subtle
problem in the stream-processing context of S-Net. In an object-oriented setting
the control flow eventually returns from a method invocation that causes an up-
coercion. While during the execution of the specific method the object is treated
as being one of the respective superclass, it always retains its former state in the
calling context. In a stream-processing network, however, records enter a box or
network through its input stream and leave it through its output stream, which are
both connected to different parts of the whole network. If an up-coercion results in
a loss of record entries, this loss is not temporary but permanent.

The permanent loss of record entries is neither useful nor desirable. For example,
we may have a box that manipulates the position of a geometric body regardless
of whether it is a rectangle, a circle or a triangle. The associated type signature of
such a box could be as simple as {x,y}->{x,y}. This box would accept circles, rect-
angles and triangles focusing on their common data (i.e. the position) and ignoring
their individual specific fields and tags. Obviously, we must not lose this data as
a consequence of the automatic up-coercion of complete geometric bodies to type
{x,y}. Hence, we complement this up-coercion with an automatic down-coercion.
More precisely, any field or tag of an incoming record that is not explicitly named
in the input type of a box or network bypasses the box or network and is added to
any outgoing record created in response, unless that record already contains a field
or tag with the same label. We call this coercion mechanism flow inheritance.

As an example, let us assume a record {<circle>,x,y,radius} hits a box
{x,y}->{x,y}. While fields x and y are processed by the box code, tag circle

and field radius bypass the box without inspection. As they are not mentioned
in the output type of the box, they are both added to any outgoing record, which
consequently forms a complete specification of a circle again.

3. Box abstractions

3.1. User-defined boxes

From the perspective of S-Net boxes are the atomic building blocks of streaming
networks. Boxes are declared in S-Net code using the key word box followed by a
box name as unique identifier and a box signature enclosed in round brackets. The
box signature very much resembles a type signature with two exceptions: we use
round brackets instead of curly brackets, and we have exactly one type mapping
that has a single-variant input type. For example,
box foo ((a,b,<t>) -> (a,b) | (<t>));

declares a box named foo, which accepts records containing (at least) fields a and
b plus a tag t and in response produces records that either contain fields a and b or
tag t. Boxes are implemented using a box language rather than S-Net. It is entirely
up to the box implementation to decide how many output records a box actually

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

6 Parallel Processing Letters

emits and of which of the output variants they are. This may well depend on the
values of the input record entries and, hence, can only be determined at runtime.

snet_handle_t *foo(snet_handle_t *handle,
int *a, mytype_t *b, int t)

{
/* some computation on a, b and t */

snetout(handle, 1, a, b);
/* some computation */

snetout(handle, 2, t);
return(handle);

}

Fig. 1. Example box function implementation in C

Box signatures use round brackets rather than curly brackets to express the fact
that in box signatures sequence does matter. (Remember that type signatures are
true sets of mappings between true sets of record entries.) Sequence is essential to
support a mapping to function parameters of some box language implementation
rather than using inefficient means such as string matching of field and tag names.
For example, we may want to associate the above box declaration foo with a C
language implementation in the form of the C function foo shown in Fig. 1.

The entries of the input record type are effectively mapped to the function
parameters in their order of appearance in the box signature. We implement record
fields as opaque pointers to some data structure and tags as integer values. In
addition to the box-specific parameters the box function implementation always
receives an opaque S-Net handle, which provides access to S-Net internal data.

Since boxes in S-Net generally produce a variable number of output records
in response to a single input record, we cannot exploit the function’s return value
to determine the output record. Instead, we provide a special function snetout

that allows us to produce output records during the execution of the box function.
The first argument to snetout is the internal handle that establishes the necessary
link to the execution environment. The second argument to snetout is a number
that determines the output type variant used. So, the first call to snetout in the
above example refers to the first output type variant. Consequently, the following
arguments are two pointers. The second call to snetout refers to the second output
type variant and, hence, a single integer value follows. Eventually, the box function
returns the handle to signal completion to the S-Net context.

This is just a raw sketch of the box language interfacing. Concrete interface
implementations may look differently to accommodate characteristics of certain box
languages, and even the same box language may actually feature several interface
implementations with varying properties.

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 7

3.2. Filter boxes

The filter box in S-Net is devoted to housekeeping operations. Effectively, any
operation that does not require knowledge of field values can be expressed by this
versatile built-in box in a simpler way than using an atomic box and a fully-fledged
box language implementation. Among these operations are

• elimination of fields and tags from records,
• copying fields and tags,
• adding tags,
• splitting records,
• simple computations on tag values.

Syntactically, a filter box is enclosed in square brackets and consists of a type
(pattern) to the left of an arrow symbol and a semicolon-separated sequence of
filter actions to the right of the arrow symbol, for example:
[{a,b,<t>} -> {a} ; {c=b,<u=42>} ; {b,<t=t+1>}]

This filter box accepts records that contain fields a and b as well as tag t. In general,
the type-like notation to the left of the arrow symbol acts as a pattern on records;
any incoming record’s type must be a subtype of the pattern type.

As a response to each incoming record, the filter box produces three records
on its output stream. The specifications of these three records are separated by
semicolons to the right of the arrow symbol. Outgoing records are defined in terms
of the identifiers used in the pattern. In the example, the first output record only
contains the field a adopted from the incoming record (plus all flow-inherited record
entries). The second output record contains field b from the input record, which is
renamed to c. In addition there is a tag u set to the integer value 42. The last of
the three records produced contains the field b and the tag t from the input record,
where the value associated with tag t is incremented by one. S-Net supports a
simple expression language on tag values that essentially consists of arithmetic,
relational and logical operators as well as a conditional expression.

3.3. Synchrocells

The synchrocell is the only “stateful” box in S-Net. It also provides the only means
in S-Net to combine two existing records into a single one, whereas the opposite
direction, the splitting of a single record, can easily be achieved by both user-defined
boxes and built-in filter boxes. Syntactically, a synchrocell consists of an at least
two-element comma-separated list of type patterns enclosed in [| and |] brackets,
for example
[| {a,b,<t>}, {c,d,<u>} |]

The principle idea behind the synchrocell is that it keeps incoming records which
match one of the patterns until all patterns have been matched. Only then the
records are merged into a single one that is released to the output stream. Matching

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

8 Parallel Processing Letters

here means that the type of the record is a subtype of the type pattern. The pattern
also acts as an input type specification: a synchrocell only accepts records that match
at least one of the patterns.

A synchrocell has storage for exactly one record of each pattern. When a record
arrives at a fresh synchrocell, it is kept in this storage and is associated with each
pattern that it matches. Any record arriving thereafter is only kept in the synchrocell
if it matches a previously unmatched pattern. Otherwise, it is immediately sent to
the output stream. As soon as a record arrives that matches the last remaining
previously unmatched variant, all stored records are released. The output record is
created by merging the fields of all stored records into the last matching record.
If an incoming record matches all patterns of a fresh synchrocell right away, it is
immediately passed to the output stream.

Although we called synchrocells “stateful” above, this is only true as far as indi-
vidual records are concerned. Synchrocells nevertheless realise a functional mapping
from input stream to output stream as a whole.

4. Streaming networks

4.1. Network definitions

User-defined and built-in boxes form the atomic building blocks for stream pro-
cessing networks; their hierarchical definition is at the core of S-Net. As a simple
example of a network definition take:
net X {
box foo ((a,b)->(c,d));
box bar ((c)->(e));

}
connect foo..bar;

Following the key word net we have the network name, in this case X, and an
optional block of local definitions enclosed in curly brackets. This block may contain
nested network definitions and box declarations. Hierarchical network definitions
incur nested scopes, but in the absence of relatively free variables the scoping rules
are straightforward.

A distinctive feature of S-Net is the fact that complex network topologies are
not defined by some form of wire list, but by an expression language. Each network
definition contains such a topology expression following the key word connect.
Atomic expressions are made up of box and network names defined in the current
scope as well as of built-in filter boxes and synchrocells. Complex expressions are in-
ductively defined using a set of network combinators that represent the four essential
construction principles in S-Net: serial and parallel composition of two (different)
networks as well as serial and parallel replication of one network, as sketched out
in Fig. 2. Note that any network composition again yields a network with exactly
one input and one output stream.

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 9

net X connect foo..bar

foo bar

bar

net X connect foo|bar

foo

{stop}

net X connect foo*{stop}

foo foo
<T>

net X connect foo!<T>

foo

foo

Fig. 2. Illustration of network combinators and their operational behaviour: serial composition
(top-left), parallel composition (top-right), serial replication (bottom-left) and indexed parallel
replication (bottom-right)

4.2. Serial composition

The binary serial combinator “..” connects the output stream of the left operand
to the input stream of the right operand. The input stream of the left operand and
the output stream of the right operand become those of the combined network. The
serial combinator establishes computational pipelines, where records are processed
through a sequence of computational steps.

In the example of Fig. 2, the two boxes foo and bar are combined into such a
pipeline: all output from foo goes to bar. This example nicely demonstrates the
power of flow inheritance: In fact the output type of box foo is not identical to the
input type of box bar. By means of flow inheritance, any field d originating from box
foo is stripped off the record before it goes into box bar, and any record emitted by
box bar will have this field be added to field e. In contrast to box declarations, type
signatures of networks are inferred by the compiler. For example the inferred type
signature of the network X in the above example is {a,b}->{d,e}. Type inference
is a particularly interesting aspect of S-Net. We refer the interested reader to [4]
for a thorough treatment of the subject.

4.3. Parallel composition

The binary parallel combinator “|” combines its operands in parallel. Any in-
coming record is sent to exactly one operand depending on its own type and the
operand type signatures. The output streams of the operand networks (or boxes)
are merged into a single stream, which becomes the output stream of the combined
network. Fig. 2 illustrates the parallel composition of two networks foo and bar

(i.e. foo|bar).
To be precise, any incoming record is sent to that operand network whose type

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

10 Parallel Processing Letters

signature’s input type is matched best by the record’s type. Let us assume the
type signature of foo is {a}->{b} and that of bar is {a,c}->{b,d}. An incoming
record {a,<t>} would go to box foo because it does not match the input type of
box bar, but thanks to record subtyping does match the input type of box foo. In
contrast, an incoming record {a,b,c} would go to box bar. Although it actually
matches both input types, the input type of box bar scores higher (2 matches)
than the input type of box foo (1 match). If a record’s type matches both operand
type signatures equally well, the record is non-deterministically sent to one of the
operand networks.

4.4. Serial replication

The serial replication combinator “*” replicates the operand network (the left
operand) infinitely many times and connects the replicas by serial composition.
The right operand of the combinator is a type (pattern) that specifies a termina-
tion condition. Any record whose type is a subtype of the termination type pattern
(i.e. matches the pattern) is released to the combined network’s output stream.

In fact, an incoming record that matches the termination pattern right away is
immediately passed to the output stream without being processed by the operand
network at all. This coincidence with the meaning of star in regular expressions
particularly motivates our choice of the star symbol. Fig. 2 illustrates the opera-
tional behaviour of the star combinator for a network foo*{<stop>}: Records travel
through serially combined replicas of foo until they contain a tag <stop>. Actual
replication of the operand network is demand-driven. Hence, networks in S-Net are
not static, but generally evolve dynamically, though in a restricted way.

4.5. Indexed parallel replication

Last but not least, the parallel replication combinator “!” takes a network or box as
its left operand and a tag as its right operand. Like the star combinator, it replicates
the operand, but connects the replicas using parallel rather than serial composition.
The number of replicas is conceptually infinite. Each replica is identified by an inte-
ger index. Any incoming record goes to the replica identified by the value associated
with the given tag. Hence, all records that have the same tag value will be routed to
the same replica of the operand network. Fig. 2 illustrates the operational behaviour
of indexed serial replication for a network foo!<T>. In analogy to serial replication,
instantiation of replicas is demand-driven.

4.6. Putting it all together

The restriction of every box and every network to a single input stream and a single
output stream allows us to describe complex streaming networks in a very concise
way using algebraic formulae rather than wire lists. Fig. 3 demonstrates the power
of our approach by means of an example network

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 11

net XYZ connect ((A..B|C..D)!<i>)*{<stop>} .

The example uses 4 predefined boxes: A, B, C and D. Sequential compositions of
A/B and C/D, respectively, are combined in parallel. The resulting subnetwork is
replicated vertically through indexed parallel replication and, thereafter, horizon-
tally through serial replication. Although Fig. 3 demonstrates the complexity of this
network, its specification takes no more than half a line of code.

C D

C D

C D

C D

A B

A B

<i>

A B

A B

<i>

{<stop>}

net XYZ connect ((A..B | C..D)!<i>)*{<stop>}

Fig. 3. Example of complex network construction with S-Net network combinators

5. Related work

The concept of stream processing has a long history (see [5] for a survey). The view
of a program as a set of processing blocks connected by a static network of channels
goes back at least as far as Kahn’s seminal work [6] and the language Lucid [7].
Kahn introduced the model of infinite-capacity, deterministic process networks and
proved that it had properties useful for parallel processing. Lucid was apparently the
first language to introduce the basic idea of a block that transforms input sequences
into output sequences.

In the 1980s, a host of synchronous dataflow languages sprouted, notably Lus-
tre [8] and Esterel [9]. They introduced explicit recurrence relations over streams
and further developed the concept of synchronous networks. These languages are
still being used for programming reactive systems and signal processing algorithms
today [10]. The authors of Lustre broadened their work towards what they termed
synchronous Kahn networks [11, 12], i.e functional programs where the connection
between functions, although expressed as lists, is in fact ‘listless’: as soon as a list
element is produced, the consumer of the list is ready to process it, so that there is
no queue and no memory management required.

Likewise, Hume [13] combines the expressive power of Haskell-like box specifi-
cations with synchronous data flow processing. The emphasis of this project lies in

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

12 Parallel Processing Letters

the inference of exact bounds on resource consumption for applications in embedded
systems.

A non-functional interpretation of Kahn networks is also receiving attention. The
latest stream processing language of this category is, to the best of our knowledge,
StreamIt [14].

The coordination aspect of S-Net is related to a large body of work in data-
driven coordination, see [15] for a survey. Unlike many data-driven approaches,
S-Net achieves complete separation of coordination and computation. This is
achieved by using opaque SISO stream transformers implemented in a separate
box language chosen by the programmer.

The earliest related proposal, to our knowledge, is the coordination language
HOPLa from the Utrecht University’s Ariadne project [16]. It is a Linda-like coor-
dination language, which uses record subtyping (which they call “flexible records”)
in a manner similar to S-Net, but does not handle variants as we do, and has no
concept of flow inheritance. Also, HOPLa has no static “wiring” and does not use
the notion of type to establish concrete streaming network configurations.

Another early source to mention is the language Sisal [17], which pioneered
high-performance functional array processing with stream communication. Sisal

was not intended as a coordination language, though, and no attempt at the sepa-
ration of communication and computation was made.

Among more recent papers, we cite the work on the language Eden [18] as
related to our effort, since it is based on the concept of stream communication. Here
streams are lazy lists produced by processes defined in Haskell using explicit process
abstraction and process instantiation. Unlike S-Net, Eden deploys processes fully
dynamically and even allows completely dynamic channels. Eden has no provision
for subtyping and does not integrate topology with types.

Another recent advancement in coordination technology is the language Reo [19].
Also based on streams, it concerns itself primarily with issues of channel and com-
ponent mobility and does not exploit static connectivity or type-theoretical tools
for network analysis.

We must also mention important theoretical advances in streaming networks.
The key work in this area has been done by Stefanescu, who has developed several
semantic models for streaming networks starting from flowcharts [20] and recently
including models for nondeterministic stream processing developed collaboratively
with Broy [21]. This work aims at an algebraic language for denotational semantics
of stream processing. While as such it is not focused on pragmatic issues, it never-
theless offers important structuring primitives, which can be used as the basis for
a network algebra.

6. Conclusions and future work

We have presented the design of S-Net, a declarative language for describ-
ing streaming networks of asynchronous components. Several features distinguish

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 13

S-Net from existing stream processing approaches.

• S-Net boxes are fully asynchronous components communicating over
buffered streams.

• S-Net thoroughly separates coordination aspects from computation as-
pects.

• The restriction to SISO components allows us to describe complex stream-
ing networks by algebraic formulae rather than error-prone wiring lists.

• We utilise a type system to guarantee basic integrity of streaming networks.
• Data items are routed through networks in a type-directed way making the

concrete network topology a type system issue.
• Record subtyping and flow inheritance make S-Net components adaptive

to their environment.

The overall design of S-Net is geared towards facilitating the composition of com-
ponents developed in isolation. The box language interface in particular allows ex-
isting code to be turned into an S-Net stream processing component with very
little effort.

We have by now completed a prototype implementation of S-Net. This consists
of a compiler for S-Net [22], including type inference [4], a runtime system based on
Posix threads for truly concurrent execution of S-Net programs on general-purpose
shared memory multiprocessor and multicore architectures [23] and box language
interfaces for C and SaC that allow us to write complete applications [24]

Besides several smaller demonstrator applications we are currently working on
a non-trivial plasma physics simulation to demonstrate the suitability of S-Net to
coordinate concurrent activities on a representative scale. In the future we aim at
compiling S-Net to novel many-core processor designs like the MicroGrid archi-
tecture [25] and to investigate into dynamic reconfiguration and self-adaptivity of
S-Net networks.

Acknowledgements

The development of S-Net is funded by the European Union through the FP-6 In-
tegrated Project Æther (Self-adaptive Embedded Technologies for Pervasive Com-
puting Architectures), where S-Net has been adopted as the main high-level soft-
ware approach.

References

[1] Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s Journal 30 (2005)

[2] Grelck, C., Shafarenko, A.: Report on S-Net: A Typed Stream Processing Language,
Part I: Foundations, Record Types and Networks. Technical report, University of
Hertfordshire, Department of Computer Science, Compiler Technology and Computer
Architecture Group, Hatfield, England, United Kingdom (2006)

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

14 Parallel Processing Letters

[3] Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multithreaded
execution. International Journal of Parallel Programming 34 (2006) 383–427

[4] Cai, H., Eisenbach, S., Shafarenko, A., Grelck, C.: Extending the S-Net Type Sys-
tem. In: Proceedings of the Æther-Morpheus Workshop From Reconfigurable to Self-
Adaptive Computing (AMWAS’07), Paris, France. (2007)

[5] Stephens, R.: A survey of stream processing. Acta Informatica 34 (1997) 491–541
[6] Kahn, G.: The semantics of a simple language for parallel programming. In Rosenfeld,

L., ed.: Information Processing 74, Proc. IFIP Congress 74. August 5-10, Stockholm,
Sweden, North-Holland (1974) 471–475

[7] Ashcroft, E.A., Wadge, W.W.: Lucid, a nonprocedural language with iteration. Com-
munications of the ACM 20 (1977) 519–526

[8] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow pro-
gramming language LUSTRE. Proceedings of the IEEE 79 (1991) 1305–1320

[9] Berry, G., Gonthier., G.: The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87–152

[10] Binder, J.: Safety-critical software for aerospace systems. Aerospace America (2004)
26–27

[11] Caspi, P., Pouzet, M.: Synchronous kahn networks. In Wexelblat, R.L., ed.: ICFP
’96: Proceedings of the first ACM SIGPLAN international conference on Functional
programming. (1996) 226–238

[12] Caspi, P., Pouzet, M.: A co-iterative characterization of synchronous stream functions.
In Bart Jacobs, Larry Moss, H.R., Rutten, J., eds.: CMCS ’98, First Workshop on
Coalgebraic Methods in Computer Science Lisbon, Portugal, 28 - 29 March 1998.
(1998) 1–21

[13] Hammond, K., Michaelson, G.: The design of hume: a high-level language for the
real-time embedded systems domain. In: Domain-Specific Program Generation: In-
ternational Seminar, Dagstuhl Castle, Germany, March 23-28, 2003. Revised Papers.
Volume 3016 of Lecture Notes in Computer Science., Springer (2004) 127–147

[14] Michael I. Gordon et al: A stream compiler for communication-exposed architectures.
In: Proceedings of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA. October 2002. (2002)

[15] Papadopoulos, G.A., Arbab., F.: Coordination models and languages. In: Advances
in Computers. Volume 46. Academic Press (1998)

[16] Florijn, G., Bessamusca, T., Greefhorst, D.: Ariadne and hopla: Flexible coordination
of collaborative processes. In Ciancarini, P., Hankin, C., eds.: First International
Conference on Coordination Models, Languages and Applications (Coordination’96),
Cesena, Italy, 15-17 April, 1996. LNCS 1061. (1996) 197–214

[17] Feo, J.T., Cann, D.C., Oldehoeft, R.R.: A report on the sisal language project. J.
Parallel Distrib. Comput. 10 (1990) 349–366

[18] Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel Functional Programming in
Eden. Journal of Functional Programming 15 (2005) 431–475

[19] Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14 (2004) 329–366

[20] Stefanescu, G.: An algebraic theory of flowchart schemes. In Franchi-Zannettacci,
P., ed.: Proceedings 11th Colloquium on Trees in Algebra and Programming, Nice,
France, 1986. Volume LNCS 214., Springer-Verlag (1986) 60–73

[21] Broy, M., Stefanescu, G.: The algebra of stream processing functions. Theoretical
Computer Science (2001) 99–129

[22] Grelck, C., Penczek, F.: Implementing S-Net: A Typed Stream Processing Language,
Part I: Compilation, Code Generation and Deployment. Technical report, Univer-

February 20, 2008 20:55 WSPC/INSTRUCTION FILE paper

A Gentle Introduction to S-Net 15

sity of Hertfordshire, Department of Computer Science, Compiler Technology and
Computer Architecture Group, Hatfield, England, United Kingdom (2007)

[23] Penczek, F.: Design and Implementation of a Multithreaded Runtime System for the
Stream Processing Language S-Net. Master’s thesis, Institute of Software Technology
and Programming Languages, University of Lübeck, Germany (2007)

[24] Grelck, C., Scholz, S.B., Shafarenko, A.: Coordinating Data Parallel SAC Programs
with S-Net. In: Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS’07), Long Beach, California, USA, IEEE Computer
Society Press, Los Alamitos, California, USA (2007)

[25] Bernard, T., Bousias, K., de Geus, B., Lankamp, M., Zhang, L., Pimentel, A., Knij-
nenburg, P., Jesshope, C.: A Microthreaded Architecture and its Compiler. In Arenez,
M., Doallo, R., Fraguela, B., Tourino, J., eds.: Proceedings of the 19th International
Conference on Architecture of Computing Systems (ARCS’06), Frankfurt/Main, Ger-
many. (2006) 326–342

