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Abstract

S-NET is a declarative coordination language and component
technology primarily aimed at modern multi-core/many-core chip
architectures. It builds on the concept of stream processing to
structure dynamically evolving networks of communicating asyn-
chronous components, which themselves are implemented using a
conventional language suitable for the application domain.

We sketch out the design and implementation of Distributed
S-NET, a conservative extension of S-NET aimed at distributed
memory architectures ranging from many-core chip architectures
with hierarchical memory organisations to more traditional clusters
of workstations and supercomputers. Three case studies illustrate
how to use Distributed S-NET to implement different models of
parallel execution, i.e. pipelined signal processing, client-server
and domain decomposition. Runtimes obtained on a workstation
cluster demonstrate how Distributed S-NET allows programmers
with little or no background in parallel programming to make
effective use of distributed memory architectures with minimal
programming effort.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent ProgrammingDistributed program-
ming; D.3.3 [PROGRAMMING LANGUAGES]: Language Con-
structs and FeaturesConcurrent programming structures; D.3.4
[PROGRAMMING LANGUAGES]: ProcessorsRun-time environ-
ments

General Terms design, languages, performance

Keywords stream processing, component coordination, cluster
computing, message passing

1.

The historic end of clock frequency scaling and today’s hardware
trend towards multi-core/many-core chip architectures [1, 2] has
brought parallel programming issues from the niche of compu-
tational science applications into the main stream of computing.
Whereas today’s commodity processors from Intel or AMD with
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four to eight cores are bound to a shared memory model, it is some-
what clear that a substantial increase in core numbers, as envisioned
by the manufacturers, can only achieve scalability with a hierarchy
of (distributed) memories. Current generations of GPGPU acceler-
ator cards or Intel’s new 48-core single chip cloud computer (SCC)
already illustrate this likely future trend. Many-core architectures
like SCC need to be programmed in one way or another via mes-
sage passing. And, as soon as multiple machines are to be used co-
operatively as a cluster of workstations, there is little hope to avoid
message passing at all.

Message passing as a programming paradigm has been studied
at least for two decades, and even its most prominent implemen-
tation MPI has been around for quite a while. What is new today
is the fact that with future chip architectures the message passing
paradigm will need to be applied to far less regular problems than in
the past, where well structured numerical applications with a regu-
lar domain decomposition and communication pattern prevailed. In
our opinion this requires a new interpretation of the message pass-
ing paradigm that raises the level of abstraction in programming
and reasoning such that the challenges of irregular problems can
successfully be met.

S-NET [3] is such a novel technology: a declarative coordina-
tion language and component technology. The design of S-NET
is built on separation of concerns as the key design principle.
An application engineer uses domain-specific knowledge to pro-
vide application building blocks of suitable granularity in the form
of (rather conventional) functions that map inputs into outputs.
In a complementary way, a concurrency engineer uses his expert
knowledge on target architectures and concurrency in general to
orchestrate the (sequential) building blocks into a parallel applica-
tion. While the job of a concurrency engineer does require extrin-
sic information on the qualitative and the quantitative behaviour of
components, it completely abstracts from (intrinsic) implementa-
tion concerns.

Figure 1. Illustration of an S-NET streaming network of asyn-
chronous components

In fact, S-NET turns regular functions/procedures implemented
in a conventional language into asynchronous, state-less compo-
nents communicating via uni-directional streams. Fig. 1 shows an
intuitive example of an S-NET streaming network. The choice of a



component language solely depends on the application domain of
the components itself. In principle, any conventional programming
language can be used, but for the time being we provide interface
implementations for the functional array language SAC [4] and for
a subset of ANSI C.

Distributed S-NET is a careful extension of S-Net that allows
programmers to map sections of streaming networks onto nodes of
a distributed memory compute environment with extremely little
additional programming effort.

The remainder of the paper is organised as follows. In Sec-
tion 2 we provide background information to the design and ratio-
nale of S-NET. In Section 3 we introduce Distributed S-NET while
Section 4 sketches out its implementation principles. Three case
studies demonstrate how Distributed S-NET can be used to imple-
ment typical models of parallel program organisation: signal pro-
cessing pipelines (Section 5), client-server software architectures
(Section 6) and domain decomposition (Section 7). Eventually, we
discuss some related work in Section 8 and conclude in Section 9.

2. S-Net in a Nutshell

As a pure coordination language S-NET relies on a separate com-
ponent language to describe computations. Such components are
named boxes in S-NET terminology, their implementation lan-
guage box language. Any box is connected to the rest of the net-
work by two typed streams: an input stream and an output stream.
Concurrency concerns like synchronisation and routing that imme-
diately become evident if a box had multiple input streams or mul-
tiple output streams, respectively, are kept away from boxes.

Messages on typed streams are organised as non-recursive
records, i.e. sets of label-value pairs. Labels are subdivided into
fields and tags. Fields are associated with values from the box lan-
guage domain. They are entirely opaque to S-NET. Tags are asso-
ciated with integer numbers that are accessible both on the S-NET
and on the box language level. Tag labels are distinguished from
field labels by angular brackets. On the S-NET level, the behaviour
of a box is declared by a type signature: a mapping from an input
type to a disjunction of output types. For example,

box foo ({a,<b>} -> {c} | {c,d,<e>})
declares a box that expects records with a field labelled a and a tag
labelled b. The box responds with a number of records that either
have just a field c or fields c and d as well as tag e. Both the number
of output records and the choice of variants are at the discretion of
the box implementation alone. The use of curly brackets to define
record types emphasises their character as sets of label-value pairs.

As soon as a record is available on the input stream, a box con-
sumes that record, applies its box function to the record and emits
records on its output stream as determined by the computation. The
mapping of an input record to a (potentially empty) stream of out-
put records is stateless. We exploit this property for cheap relo-
cation and re-instantiation of boxes; it distinguishes S-NET from
most existing component technologies.

In fact, the above type signature makes box foo accept any input
record that has ar least field a and tag <b>, but may well contain
further fields and tags. The formal foundation of this behaviour is
structural subtyping on records: Any record type # is a subtype
of 1, iff 1, C ;. This subtyping relationship extends nicely to
multivariant types, e.g. the output type of box foo: A multivariant
type x is a subtype of y if every variant v € x is a subtype of some
variant w € y.

Subtyping on the input type of a box means that a box may
receive input records that contain more fields and tags than the box
is supposed to process. Such fields and tags are retrieved from the
record before the box starts processing and are added to each record
emitted by the box in response to this input record, unless the output
record already contains a field or tag of the same name. We call

this behaviour flow inheritance. In conjunction, record subtyping
and flow inheritance prove to be indispensable when it comes to
making boxes that were developed in isolation to cooperate with
each other in a streaming network.

It is a distinguishing feature of S-NET that we do not explicitly
introduce streams as objects. Instead, we use algebraic formulae
to define the connectivity of boxes. The restriction of boxes to a
single input and a single output stream (SISO) is essential for this.
S-NET supports four network construction principles: static serial/-
parallel composition of two networks and dynamic serial/parallel
replication of a single network. We build S-NET on these construc-
tion principles because they are pairwise orthogonal, each repre-
sents a fundamental principle of composition beyond the concrete
application to streaming networks (i.e. serialisation, branching, re-
cursion, indexing), and they naturally express the prevailing mod-
els of parallelism (i.e. task parallelism, pipeline parallelism, data
parallelism). We believe that these four principles are sufficient to
construct many useful streaming networks. The four network con-
struction principles are embodied by network combinators. They
all preserve the SISO property: any network, regardless of its com-
plexity, again is a SISO component.

Let A and B denote two S-NET networks or boxes. Serial com-
position (denoted A. . B) constructs a new network where the output
stream of A becomes the input stream of B while the input stream of
2 and the output stream of B become the input and output streams of
the compound network, respectively. As a consequence, instances
of A and B operate asynchronously in a pipelined fashion. In the
intuitive example of Fig. 1 serial composition can be identified be-
tween the left, the middle and the right subnetworks.

Parallel composition (denoted (A|B)) constructs a network
where all incoming records are either sent to A or to B and the
resulting record streams are merged to form the overall output
stream of the compound network. Type inference associates each
operand network with a type signature similar to the annotated type
signatures of boxes. Any incoming record is directed towards the
operand network whose input type better matches the type of the
record itself. The example network in Fig. 1 features parallel com-
position in combining A and B. If both branches in the streaming
network match equally well, one is selected non-deterministically.
More precisely, the routing of such a record is under-specified
and, hence, implementation-dependent. While in principle an im-
plementation could send all such records to the, say, left branch,
a more useful implementation employs some statistical distribu-
tion. However, we deliberately do not specify properties of such a
statistical distribution in the language definition for now.

Serial replication (denoted A* t ype) constructs an unbounded
chain of serially composed instances of A with exit pattern type.
At the input stream of each instance of A, we compare the type of
an incoming record (i.e. the set of labels) with t ype. If the record’s
type is a subtype of the specified type (we say, it matches the
exit pattern), the record is routed to the compound output stream,
otherwise into this instance of A. Fig. 1 illustrates serial replication
as a feedback loop; however, it is not. Indeed, serial replication
means the repeated instantiation of the operand network A and,
thus, defines a streaming network that evolves over time (though in
a controlled and restricted way) depending on the data processed.

Indexed parallel replication (denoted A!<tag>) replicates in-
stances of A in parallel. Unlike in static parallel composition we
do not base routing on types and the best-match rule, but on a
tag specified as right operand of the combinator. All incoming
records must feature this tag; its value determines the instance
of the left operand the record is sent to. Output records are non-
deterministically merged into a single output stream similar to par-
allel composition. In Fig. 1 we can identify parallel replication of
network C.



To summarise we can express the S-NET sketched out in Fig. 1

by the following expression:

(AIB) .. (C!<t>)*{p} .. D
assuming previous definitions of A, B, C and D. The choice of net-
work combinators was inspired by Broy’s and Stefanescu’s network
algebra [5].

While any box can split a record into parts, we so far lack means
to express the complementary operation: merging two records into
one. Therefore, S-NET features dedicated synchrocells. A synchro-
cell has the syntactic form [|type, typel]. Similar to serial
replication the types act as patterns for incoming records. A record
that matches one of the patterns is kept in the synchrocell. As soon
as a record arrives that matches the other pattern, the two records
are merged into one, which is forwarded to the output stream. In-
coming records that only match previously matched patterns are
immediately forwarded to the output stream. Hence, a synchrocell
becomes an identity after successful synchronisation and may be
removed by a runtime system. The extremely simplified behaviour
of synchrocells captures the essential notion of synchronisation in
the context of streaming networks. More complex synchronisation
behaviours, e.g. continuous synchronisation of matching pairs in
the input stream, can easily be achieved using synchrocells and
network combinators. See [6] for more details on this and on the
S-NET language in general.

3. Distributed S-Net

As a high-level coordination language, S-NET in general is not
bound to any memory model. The language concepts, however, fit
in rather well with the idea of message passing. S-NET boxes and
networks are indeed asynchronous components that communicate
with each other by sending messages via communication channels.
In principle, the language could be used to define distributed mem-
ory systems as it is by mapping components directly to nodes of the
system. However, direct mapping of components may not be sensi-
ble as we must take the cost of data transfers between nodes into ac-
count. Execution times of components may vary significantly from
simple filters performing lightweight operations to boxes consist-
ing of heavy computations. Another obstacle is the dynamic nature
of S-NET networks that evolve over time due to serial and parallel
replication.

What we need instead of a one-to-one mapping of boxes to com-
pute nodes is a veritable distribution layer within an S-NET net-
work where coarse-grained network islands are mapped to different
compute nodes while within each such node networks execute us-
ing the existing shared memory multithreaded runtime system [7].
Each of these islands consists of a number of not necessarily con-
tiguous networks of components that interact via shared-memory
internally. Only S-NET streams that connect components on differ-
ent nodes are implemented by means of message passing. From the
programmer’s perspective, however, the implementation of individ-
ual streams on the language level by either shared memory buffers
or distributed memory message passing is entirely transparent.

In principle, it would be desirable if the decomposition of net-
works into islands would be transparent as well, thus resulting in
a fully implicit parallelisation architecture, that balances itself au-
tonomously as the network evolves over time. With our shared
memory runtime system, we have done exactly this. However,
given the substantial cost of inter-node data communication in re-
lation to intra-node communication between S-NET components
the right selection of islands is crucial to the overall runtime per-
formance of a network. Therefore, we postponed the idea of an
autonomously dynamically self-balancing distributed memory run-
time system for now and instead carefully extend the language in
order to give the programmer control over placement of boxes and
networks.

(A..B) !@ <node> —»
((A..B)@1| C@2) @0

Figure 2. Example applications of static placement (left) and in-
dexed dynamic placement (right), where we assume the tag <node>
to feature values between 1 and some upper limit

We extend S-NET by two placement combinators that allow the
programmer to map networks to processing nodes either statically
or dynamically based on the value of a tag contained in the data. Let
A denote an S-NET network or box. Static placement (written A@42)
maps the given network or box statically to one node, here node 42.
A location assigned to a network recursively applies to all of those
subnetworks and boxes within the network whose location is not
explicitly specified by another placement combinator. If no location
is specified at the outermost scope of S-NET network definition
hierarchy, a default location, zero, is used instead. Fig. 2 shows an
example of static placement.

The second placement combinator is an extension of the in-
dexed parallel replication combinator. Instead of building multi-
ple local instances of the argument network, it distributes those
instances over several nodes. Let A denote an S-NET network or
box, then A!@<tag> creates instances of A on each node referred
to by <tag> in a demand driven way. Effectively, this combina-
tor behaves very much like regular indexed parallel replication, the
only difference being that each instance of A is located on a differ-
ent node. Fig. 2 shows an example of dynamic placement.

Placement combinators split a network into sections that are
located on the same node; each node may contain any number of
network sections. Sections located in the same node are executed
in the same shared memory, which means that data produced in
one section can be consumed in another section on the same node
without any data transfers between address spaces.

The concept of a node in S-NET is a very general one, and
its concrete meaning is implementation-dependent. We use ordi-
nal numbers as the least common denominator to identify nodes.
These nodes are purely logical; any concrete mapping between log-
ical nodes identified by ordinal numbers and physical devices is
implementation dependent. The motivation for this is that defin-
ing the actual physical nodes in the language level would bind the
program to the exact system defined at compile time. Using logi-
cal nodes allows the decisions about the physical distribution to be
postponed until runtime. With MPI as our current middleware of
choice the number directly reflects an MPI node. In more grid-like
environments it may be more desirable to have a URL instead. We
consider this mapping of numbers to actual nodes to be beyond the
scope of S-NET.

4. Distributed S-Net Runtime System

As mentioned earlier we chose MPI as middleware for its wide-
spread availability and because it satisfies our basic needs for asyn-
chronous point-to-point communication. Each Distributed S-NET
node is mapped to an MPI task; the node identifier directly corre-
sponds to the MPI task rank. Accordingly, we leave the exact map-
ping of logical nodes to physical resources to the MPI implemen-



tation. The Distributed S-NET runtime system is built as a separate
layer on top of our existing shared memory runtime system [7].
None of the existing components of the shared memory runtime
system is actually aware of the distributed memory layer. To ensure
scalability, nodes cooperate as peers: there is no central control or
service in the system that could become a performance bottleneck.

On the language level placement can be applied to any network
or box. Hence, the placement of S-NET components onto nodes of
a distributed system essentially follows the hierarchical or induc-
tive specification of S-NET streaming networks. In general, any
placement divides the network into three sections: one that remains
on the original node, one that is mapped to the given node and one
that is again mapped onto the original node. Of course, placement
can recursively be applied to any subsection of these three network
sections. As a consequence, each node hosts multiple contiguous
network sections that are independent of each other. Due to paral-
lel composition, such a network section is not necessarily a SISO
component itself, but may have multiple input or multiple output
streams. Each network section internally makes use of the shared
memory runtime system of S-NET [7].

S-NET runtime components never send records to other nodes.
Components are not even aware of nodes and the distributed run-
time system. Node boundaries are hidden within specific imple-
mentations of streams. To manage streams that cross node bound-
aries each node runs two active components: an input manager and
an output manager, as illustrated in Fig. 3. The output buffer of one
network section and the input buffer of the subsequent network sec-
tion can be considered as instances of the same buffer on different
nodes. Output and input managers transparently move records be-
tween these buffers and take of the necessary data marshalling and
unmarshalling.

Both managers are implemented by multiple threads, one per
connection. This is not just a convenience with respect to exploita-
tion of concurrency, but in fact a necessity to ensure the absence
of deadlocks. In the shared memory runtime system streams are
implemented as bounded FIFO buffers. Their boundedness is an
important property that enforces a back propagation of resource
pressure. This makes an S-NET streaming network make progress
in the absence of centralised control. We carry over this idea to
our distributed runtime system. Once the capacity of a distributed
buffer (i.e. one that interconnects two network sections mapped to
different nodes) the corresponding threads of the output manager
of the first network section and the input manager of the second
network section block and, hence, resource pressure is propagated
back over node boundaries transparently. With multithreaded input
and output managers only individual network connections block
while the managers themselves remain responsive to communica-
tion requests on other inter-node connections.

| ]

output
manager

{

{

i

section
N

Figure 3. Internal organisation of one node

In addition to a dynamic number of input threads (i.e. one per
inbound stream) the input manager has one control thread. The
control thread snoops for requests to create new network sections
on the node. Remember that due to dynamic serial replication and
dynamic indexed parallel replication S-NET streaming networks
actually evolve at runtime. When dynamic network replication ex-
pands over multiple nodes to to placement combinators in the repli-
cated networks, a corresponding control message arrives on the
node and is taken care of by the input manager’s control thread,
which in turn initiates network instantiation on the local node using
the corresponding features of the shared memory runtime system.
In addition, the control thread creates a new input thread to imple-
ment the inbound communication network connection of the new
S-NET streaming network section as well as a new output thread
of the output manager that takes care of the routing of outgoing
records of the new network section and routes them to the node
that hosts the subsequent network section.

In a naive approach data attached to record fields would be se-
rialised alongside the records themselves whenever a record moves
from one node to another. This obviously inflicts high overhead due
to marshalling and unmarshalling of potentially large data struc-
tures and puts high demand on network performance of a dis-
tributed system. It is also generally undecidable even at runtime
whether data really needs to be sent to the node hosting a follow-
up network section. In particular due to flow inheritance, records
typically piggy-back data that has been produced by earlier net-
work stages and/or will be needed by later network stages that net-
work sections in between are not even aware of and, hence, are not
needed on nodes that execute such intermediate network sections.

To avoid unnecessary data transfers we completely separate
data management from stream management. Data associated with
record fields is never transferred between the nodes alongside the
records themselves. Instead, only a representation of the data, con-
sisting of the field label, the unique data identifier (UDI) of the
data and the current location of the data are sent. The data itself
is always fetched on demand only when a box has unpacked the
required fields from an incoming record and is about to process
the corresponding data. A third active component, the data man-
ager, controls the movement of data in a Distributed S-NET. As
illustrated in Fig. 3, the data management is one additional com-
munication instance of each node in Distributed S-NET.

A node’s data manager organises all remote fetch, copy and
delete operations transparently to the rest of the runtime system.
Having such a unique component on each node ensures that, for
example, repeated fetch operations to identical data are avoided.
References to all data elements are stored into a hash table named
data storage that allows us to track data elements currently residing
on a node. UDIs are used as hash table keys for searching specific
data elements. In a way, our data management system resembles
a software cache only memory architecture (COMA), where the
data elements are freely replicated and migrated to the nodes’ local
memories [8].

Fetching data on demand from a remote node obviously delays
the execution of a box that is otherwise ready to process. Here, it
becomes apparent why we reuse our fully-fledged shared memory
runtime system on each node although individual nodes may only
expose a limited amount of hardware concurrency: multithreading
effectively hides the long latencies of data fetch operations. For
more details on the design and implementation of S-NET in general
and of Distributed S-NET in particular see [6].

5. Case Study: Pipelined Signal Processing

Our first case study is an application from the area of signal pro-
cessing. Signal processing applications are mainly characterised by
a potentially deep computational pipeline of filters that are applied
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Figure 4. The data processing graph of the MTI application is
subdivided into several modules. Modules are indicated by boxes
with folded bottom right corners. Small boxes with text denote
processing functions, boxes containing an arrow and a capital X
with a number denote structure transformers. These boxes are used
to re-arrange data in a matrix without effecting the actual values.

in some order to sequence of data samples. Of course, in non-trivial
appliations parts of the pipeline can be bypassed by certain data
or alternative (sub-)pipelines may be taken under certain circum-
stances, usually depending on properties of the processed data.

Our signal processing application implements Moving Target
Indication (MTI). The purpose of MTI is to detect slow moving
objects on the ground using a radar antenna based on an aircraft.
The aircraft illuminates the ground with a beam orthogonal to its
movement. The sequences of periodic pulses (bursts) may vary
in timing and amount of bursts. The reception time of an echoed
pulse depends on the number of the pulse and the distance of the
reflecting surface on the ground. Measuring the latter is achieved
by sampling the received signal at a given frequency, resulting
in the distance being sampled into range gates (rg). The detected
signal is received by the radar processing chain as a 3D array
with dimensions Nrg,Nrec,Nant. One of the main challenges in
MTI applications is to distinguish actual objects on the ground
from reflections of the earth’s surface (clutter). We use a technique
known as ’Space Time Adaptive Processing’ (STAP) [9], which
computes a set of filters from signals received by the antenna array
at different time steps. This example application as well as the
C-implementations of boxes originate from a collaboration with
Thales Research, France; more details can be found in [10].

The processing chain of the MTI application is subdivided into
independent modules, as shown in Fig. 4. For simulation purposes,
we also implement a ’Stimuli Generation’ module, which simulates
the signal received by the radar antenna array. This is achieved by
computing a 2D array representing the Radar Cross Section (RCS)
of the ground surface situated on range gate rg and angle 0. The
clutter model of ’CreateClutter’ is computed from random, positive
values with a given average and adding peak reflectivity values of
a given probability. The returned signal from a burst of pulses of
the ground surface to which targets with a given RCS and radial
velocity have been added, is computed by ’EchoRaf’. The final
processing step in this module is the addition of white noise to the
signal.

The presented processing chain contains some naive, well-
known radar processing techniques for legacy reasons. Neverthe-
less, the characteristics, i.e. the main challenges from an imple-

menters point of view, are representative for the important indus-
trial domain of embedded signal-processing applications on paral-
lel hardware, as: a) The processing chain uses multiple operators
with different requirements on precision and/or dynamic ranges. b)
The static processing graph represents a dynamic processing chain,
as algorithm parameters, such as array sizes, loop boundaries, etc.,
change (multi-mode radar [11]). ¢) The computational load is high
enough to require parallel computing hardware. d) Performance
is one of the key requirements, both in terms of computational
throughput and latency, which may be due to operational require-
ments or architecture constraints such as memory limitations.

The starting point of the design process of the MTI application
in S-NET is the data-flow graph of the original implementation
shown in Fig. 4. We use the structure of this graph to derive the
structure of our application: Each signal processing function, i.e.
the small boxes in Fig. 4, becomes an S-NET box that we build
from the existing components. The modules translate to individual
networks which connect the boxes using combinators according
to the connections within the module. This hierarchical approach
allows us to implement and test networks, i.e. the modules of the
application, independently, as each network is a fully functional
application itself when deployed individually.

In the sequel we illustrate the S-NET design process of succes-
sively turning application modules into networks. We start with the
module ’Stimuli Generation’, which according to Fig. 4 contains
three processing functions. The same holds for the network we
implement. The boxes are arranged in a serial combination (Cre-
ateClutter .. EchoRaf .. Noise). This step turns sequential function
composition into a computing pipeline of three asynchronous tasks,
see Fig. 4.

net Thresholding
{
box ApplyFilter( (3d_signal, 4d_filter)
-> (4d_filtered));
box X5( (4d_filtered) -> (4d_filtered));

box CalcCohCoeff ( () -> (coh_2d));
}
connect [{4d_filter, 3d_signal} ->
{4d_filter, 3d_signall}; {}]
((ApplyFilter .. X5) | CalcCohCoeff)

[l{4d_filtered}, {coh_2d}|];

Figure 5. Implementation of Thresholding network

The network that implements the ’Filter Calculation’ module
of the MTI application is a sequence of boxes as defined by the
order of tasks shown in Fig. 4. Special treatment is necessary for
boxes CalcSteerVect and CalcFilter, as the former lacks an input
channel, whereas the latter requires two input channels. One possi-
bility to model this, is to assign an empty input type to box Calc-
SteerVect and place it as direct predecessor of CalcFilter. A record
that arrives at this box triggers execution of the box without any of
the record’s fields or tags being read. Flow-inheritance inserts all
inbound-record constituents to the resulting record, ensuring that
CalcFilter receives all required input fields in one record. This ap-
proach, however, does not overlap computations where it would be
possible: CalSteerVect does not require any input, and can therefore
begin its computation much earlier. To do this, the box is arranged
in parallel to the rest of the network and computation is triggered at
the earliest possible moment, i.e. when a record arrives at the first
box. The output of the box is then combined to a result record at
the latest possible stage, i.e. a synchrocell merges the box’s result to
the result of the remaining network. This created record contains all
required fields for CalcFilter. Fig. 6(a) illustrates these techniques.

The remaining networks implementing ’Filter Application’ and
"Thresholding’ use the same techniques; for brevity we refrain
from describing them in detail here. Instead, we show the (textual)
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(C) Net FilterCalculation
{input_3d} ->
Net Stimuli Box PulseComp | | Filter {array_4d filter}| | | sync Net FilterApplicatiion| | Net Threshold
. o {input_3d} -> q {array_ad_filter,
pliclutter_md_array}>L | {array_3d}-> oG o {array_4d_filter}, || array. signal 3d} b {sum_array_3d} |
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{input_3d} input__3d=input_3d

Box X2

{array__signal_3d}| | {sum_array_3d}| |-> {threshold_3d

{input__3d}->
{array_3d_signal}

Figure 6. (a) shows network ’FilterCalculation’; (b) shows network *Thresholding’; (c) shows the final MTI application.

S-NET implementation of network ’Thresholding’ in Fig. 5 and its
graphical representation in Fig. 6(b). The final step of the imple-
mentation phase is to combine all modules to form the MTI appli-
cation. The complete application network is shown in Fig. 6(c).

MTI-STAP, 31200 datapoints, 50 samples
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Figure 7. Runtime measurements comparing the original se-
quential C code with a Distributed S-NET coordination of C-
implemented boxes taken from the original code on a cluster of
2, 4 and 6 nodes

The measurements we present in Fig. 7 compare the original,
sequential C implementation with the S-NET implementation that

we have developed. Both programs were given 50 input samples
and for each set the total runtime was recorded. We have made use
of the static placement combinator to divide the top-level computa-
tional pipeline into 2, 4 and 6 sections, respectively. This requires
only a minimal change of the original S-NET code. In fact, the
high-level message passing approach of Distributed S-NET proves
indispensable when it comes to finding the right places where to
split the complex computational pipeline based on empirical evi-
dence rather than guessing. Any more low-level toolset would have
made the cost of implementing multiple distributions and compar-
ing their relative virtues prohibitive.

These experiments were run on a 6-node cluster where each
node contains two Intel PIII 1.4GHz CPUs and the nodes are con-
nected by a standard 100Mbit ethernet network. Further runtime
figures obtained by our MTI application on a 16-core shared mem-
ory compute server (not using Distributed S-NET) can be found
in [10].

6. Case Study: Client-Server

As a representative of a client-server application we use a very
simple dictionary-based password cracker. It takes a dictionary and
a number of Md5-encoded passwords as its input and produces the
corresponding decoded password for each entry that can be cracked
with the given dictionary. The cracking is done by encrypting words
of the dictionary one by one and comparing the resulting hash value



with the encoded password. We use the standard glibc function
crypt to perform the relevant computations.

net decrypt ({dict, crypt_word, <nodes>, <branches>}
-> {crypt_word, clear_word} | {crypt_word})
{
net counter ({} -> {<cnt>});

net balancer

connect [{<cnt>, <nodes>, <branches>}
-> {<node = node % nodes>,
<branch = (num / nodes) % branches>}];

box cracker ((crypt_word, dict)
-> (crypt_word, clear_word)
| (crypt_word));
}
connect counter .. balancer
(cracker ! <branch>) !@ <node>;

Figure 8. Distributed client-server style password cracker

Fig. 8 shows the complete Distributed S-NET implementation;
a graphical illustration is given in Fig. 9. We define a network
decrypt that expects records with two fields (dictionary and the
word to be decrypted) and two tags (the numbers of nodes and
the numbers of branches per node) and that yields records that
either consist of the encrypted password and its clear text version
on successful cracking or just the encrypted password if cracking
failed.

Figure 9. Tllustration of the network presented in Fig. 8

The decrypt network essentially is a three-step pipeline: a sub-
network counter adds a unique, increasing number to each record
that passes through, a subnetwork balancer takes this number to
compute both the node and the branch within that node based on the
total numbers of nodes and branches chosen externally, and finally
a box cracker that performs the main computational task. The
most interesting aspect of the network decrypt is the wrapping
of the cracker box within an indexed parallel replication combi-
nator to implement branching per node and again the wrapping of
that subnetwork within an indexed dynamic placement combinator
that maps computations across nodes. This is all code that is needed
to effectively use a two-level compute architecture made up from a
network of multi-core machines.

We leave out the definition of the counter network here for
brevity. Its implementation is similar to the merger network de-
fined in the following section. The balancer network is imple-
mented using a single S-NET filter box. Filters are S-NET-defined
boxes that do simple computations on the structure of records
(e.g. removing or duplicating fields) or on the values of tags (inte-
ger arithmetic and boolean algebra). For the illustration purposes of
this case study we use a simple round-robin load balancing scheme,
but of course more elaborate schemes can be thought of.

For evaluation of the runtime performance we use the same clus-
ter of dual-core nodes as in the previous section. Fig. fig:runtime-
cracker shows runtimes using different numbers of nodes in two
different settings: First, we repeatedly try to crack the same word,
which creates a very balanced workload. In the second experiment,
we use a sequence of randomly chosen words from the dictionary,
which results in a rather unbalanced workload. In essence, balanced
workload yields better performance, which is as expected. Still,
even with unbalanced workload this simple Distributed S-NET-
implemented scheme yields good results across a range of nodes.
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Figure 10. Runtime measurements for client-server style applica-
tion: password cracking. The upper graphic shows runtimes for
tasks of uniform computational complexity, whereas the lower
graphic shows runtimes for tasks of random complexity

7. Case Study: Domain Decomposition

As our third and last case study we investigate the suitability of
Distributed S-NET for domain decomposition models of computa-
tion. At the heart of our solution is pipeline consisting of a split-
ter that decomposes input data into a sequence of chunks, a solver
that applies some computation to an individual chunk and a merger
that rebuilds the output data by assembling a sequence of chunks.
Fig. 11 illustrates this idea as a Distributed S-NET program. The
main computational pipeline as described before is clearly exposed.
We use indexed dynamic placement to distribute the solver over a
number of nodes assuming that the solver dominates the computa-
tion.

The splitter is implemented as a single box that expects records
with three element: the data to be decomposed (data), some aux-
iliary data (aux) that is used in a read-only fashion, but may affect
the solver, and the number of nodes (<nodes). The box split splits
the data into chunks and outputs a stream of records in response
to each single input record. Each output record contains the un-
modified auxiliary data, an individual chunk of data, representing
an independent subcomputation and a tag <node> that determines



net domain_decomp
{
box split( (data, aux, <nodes>)
-> (chunk, aux, <node>, <cnt>)
| (chunk, aux, <node>));

box solve( (chunk, aux) -> (chunk));
net merge( {chunk, <cnt>} -> {data},
{chunk} -> {data});

} connect split solve!@<node> .. merge

Figure 11. Design of a simple domain decomposition model

net merge

{

box init ( (chunk, <cnt>) -> (accu, <cnt>));
box step ( (chunk, accu, <cnt>) -> (accu, <cnt>)
| (data));

} connect (init|[])

([1{chunk}, {accu}l] (step|[]))*{data}

Figure 12. Merger network for re-combining chunks

the node that is going to process this chunk. In addition, the very
first record output by the split box is additionally tagged with the
number of chunks produced (<cnt>). This tag will later be used in
the merge process.

The box solve represents the essential computation that pro-
cesses a chunk of data (potentially) making use of the auxiliary
data provided. We use the indexed dynamic placement combinator
to map these computations to different compute nodes.

Unlike the splitter and the solver, the merger cannot be imple-
mented by a single box. After all, it is supposed to combine a se-
quence of chunks into a single piece of data. This step requires
a network and the use of synchrocells. Our solution, as shown in
Fig. 12 assembles two more boxes: init and step. The former
turns a chunk into the final data representation ready to accom-
modate all further chunks (accu). Note that the splitter equips ex-
actly one chunk of each original data structure with the number of
chunks created (<cnt>). This tag ensures that only this chunk is
routed through the init box, whereas all other chunks circumvent
this box via a bypass channel.

The subsequent synchrocell recombines the accumulator with
the next chunk. Note that the various chunks may arrive in the
merger network in any order after their asynchronous processing
by different nodes. We assume that the chunks know their location
within the overall data structure. Pipelined with the synchrocell is a
parallel composition. After successful synchronisation, a record has
both an accu field and a chunk field. Accordingly, it is routed into
the step box. This box implements the recombination of the chunk
into the accumulator. By means of the <cnt> tag, the step box
keeps track of status of the accumulator. It either outputs the en-
hanced accumulator in conjunction with the counter (whose value
is decremented), or it outputs the final data. This distinction triggers
the dynamic serial replication (the star combinator): a finalised data
structure leaves the merger network, whereas an accumulator that
still waits for more chunks to absorb triggers a re-instantiation of
the synchrocell and the step box. In essence, the merger network
dynamically unfolds into an init box followed by a number of
synchrocells and step boxes equal to the number of chunks the
data was initially split into by the splitter box. As mentioned in
Section 2, a synchrocell synchronises exactly once and effectively
becomes an identity box thereafter (to be garbage collected by the
S-NET runtime system). This motivates the bypass of the step box
taken by chunks that pass the synchrocell untouched.

The domain decomposition pattern laid out in Fig. 11 maps
chunks to nodes in static way, and we generally assume that the

net domain_decomp_dynamic
{
box split( (data, aux, <nodes>)
-> (chunk, aux, <node>, <cnt>)
| (chunk, aux, <node>)
| (chunk, aux));
net compute

{

box solve( (chunk, aux) -> (chunk));
net split
connect [{chunk, <node>} -> {chunk};{<node>}];
} connect (((solve..split) !@ <node> | [])
( [l{chunk},{<node>}[] | []))*{chunk};
net merge ( {chunk, <cnt>} -> {data}
{chunk} -> {data});

} connect split compute .. merge

Figure 13. Domain decomposition model with dynamic load bal-
ancing

number of chunks equals the number of nodes to be used in the
computation, although that is not required technically. This scheme
is likely to yield suboptimal performance if the computational
complexity of processing individual chunks diverges or the com-
pute nodes employed are heterogeneous. Fortunately, the high-level
message passing approach of Distributed S-NET makes it fairly
easy to extend the static mapping towards a dynamic, availability-
driven mapping of M chunks to N compute nodes with M > N. Our
solution is shown in Fig. 13.

Both the static and the dynamic domain decomposition patterns
have been used to implement a distributed ray tracer [12]. Ray
tracing is a fairly common technique to render a 2-dimensional
image from a scene description by tracing paths of light back from
the eye of an imaginary observer through pixels in an image plane
to a source of light [13]. Given a scene description each pixel in the
plane can be computed in isolation. This perfectly fits the domain
decomposition model with the scene description as auxiliary read-
only data and the chunks being subsections of the image to be
computed.
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M S-Net Static 941.87 402.75 217.97 158.58 132.66
S-Net Dynamic 953.18 228.52 119.77 76.39 61.84
MPI 401.8 211.77 139 105.61 87.01

Figure 14. Runtimes of a Distributed S-NET-parallelised ray
tracer with C-implemented boxes compared with a hand-coded
MPI-implementation using identical sequential building blocks

Experiments comparing both approaches sketched out before
with a C implementation that was manually parallelised using MPI
led to the results shown in Fig. 14. Note that all three implemen-
tations share the same computationally relevant code to allow for
a reasonably fair comparison. We use the same workstation cluster
as in the previous experiments. We always run two MPI tasks per
node to compensate the fact that Distributed S-NET programs auto-
matically exploit per-node parallelism. The runtimes on one single
node clearly show the overhead added by the S-NET when com-
pared to the MPI implementation. However, from only two nodes



onwards the overheads quickly amortise. Furthermore, the dynamic
load distribution scheme clearly pays off with superior parallel per-
formance. More details on ray tracing with Distributed S-NET can
be found in [12].

8. Related Work

The coordination aspect of the proposed stream processing lan-
guage is related to a large body of work in so-called data-driven
coordination, see [14] for a survey of this area. An early, layered
approach that, like S-NET, treats coordination and computation
as strictly orthogonal concerns is Linda [15]. As S-NET, Linda is
not a “complete” programming language as such, as it exclusively
administers process creation and the coordination of computation
which is implemented in a separate language. Implementations of
the Linda model can be found for many programming languages,
see [16, 17, 18] for a non-exhaustive selection. Unlike in S-NET
with its stream based communication model, communication in
Linda uses a shared tuple space which allows processes to inter-
act with each other by adding, reading and removing data tuples
from this shared space.

Another early source to mention is the language SISAL [19],
which pioneered high-performance functional array processing
with stream communication. SISAL was not intended as a coordi-
nation language, though, and no attempt at the separation of com-
munication and computation was made in it. Still it is important to
acknowledge the stream variables of SISAL as an early example of
task decomposition using streams.

Also functionally based is the language Hume [20]. Hume’s
conceptual design is not that of a pure coordination language, but
a fully-featured programming language, primarily aimed at em-
bedded and real-time systems. Programming in Hume follows a
layered approach. Values and functions are defined in a fully-
functional expression language, and interaction between functions
is defined in a coordination language. The finite-state machine
based coordination language connects any desired amount of in-
bound and outbound “wires” to a function to allow for interac-
tion between the components (i.e. the functions) of a program.
Originating from Hume’s primary domain and the related neces-
sity for space- and time bound analysis [21], the expression lan-
guage is an inherent part of the system and cannot be freely chosen
as in S-NET. For the same reason, dynamically evolving network
structures as are possible in S-NET using serial and parallel repli-
cation, are not expressible in Hume.

We also cite the work on the language Eden [22] as related
to our effort, since it is based on the concept of stream commu-
nication. Here streams are lazy lists produced by processes de-
fined in Haskell using a process abstraction and explicitly instan-
tiated, which are coordinated using a functional-style coordination
language. Also, like S-NET, Eden defines a connection topology
for the processing entities; it however deploys the processes com-
pletely dynamically and even allows completely dynamic channels.
Eden has no provision for subtyping and does not integrate topol-
ogy with types.

Another recent advancement in coordination technology is
Reo [23]. The focus of the language Reo is on streams, but it con-
cerns itself primarily with issues of channel and component mobil-
ity, and it does not exploit static connectivity and type-theoretical
tools for network analysis.

Thematically closely related to the presented distributed run-
time system of S-NET is the data-flow coordination language
FASAN [24]. FASAN, like S-NET aims at turning regular com-
putational functions into asynchronous stream processing compo-
nents. It neither achieves nor particularly aims at a thorough sepa-
ration of concerns between computation and coordination. FASAN
creates a streaming network essentially through the data flow graph

of a function call tree. It applies a Petri net semantics, i.e. a func-
tion becomes activated when it receives one data item on each input
channel (i.e. argument) and yields exactly one data item on each
output channel.

S-NET shares the underlying concept of stream processing with
a number of so-called synchronous languages, such as Esterel [25]
or Streamlt [26]. However, the underlying concepts — synchronous
versus asynchronous stream processing — and again the separation
of concerns between computing and coordination, which as such
is not found in Esterel or Streamlt, make the approaches quite
different in practice.

Outside the domain of high-level programming languages we
acknowledge integrated problem solving environments for scien-
tific computing, e.g. SciRun [27]. These are graphical environments
that allow the construction of simple data flow style applications
based on standard component models for distributed computing.
They show a surprising similarity with graphical representations of
S-NET, the difference being that we use graphical notation merely
for the sake of illustration for a component network itself described
as data flow program, whereas integrated problem solving environ-
ments take graphics first and generally lack the foundations of a
programming language based solution.

9. Conclusion

We extended the S-NET data flow coordination language by two
new network combinators in order to support distributed mem-
ory architectures with inter-node communication based on mes-
sage passing. These are the static placement combinator and the
dynamic indexed placement combinator. They allow programmers
to partition an S-NET network over several compute nodes. As a
result the runtime system deals with two levels of concurrency:
coarse-grained concurrency on the level of compute nodes using
distributed memory communication and fine-grained concurrency
within each node using shared memory communication managed
by our existing runtime system [7].

The main challenges addressed by the implementation are the
dynamic construction of the S-NET network runtime representa-
tion spanning over several nodes, routing of records between the
nodes and data management problems caused by the separation
of the network into multiple distinct address spaces. In effect, the
Distributed S-NET runtime system alone takes care of the neces-
sary marshalling and unmarshalling of data whenever records pass
node boundaries. Expensive superfluous data transfers are effec-
tively avoided through a software COMA memory that fetches data
on demand from the node that has the latest version of some data
to the node node that needs to process that data next.

Three case studies demonstrate the suitability of Distributed
S-NET to write real-world distributed applications: pipelined sig-
nal processing (moving target indication), client-server (password
cracking) and domain decomposition (ray tracing). While message
passing programming on the (system) level of MPI (or PVM) is
commonly considered as very difficult, writing distributed applica-
tion with Distributed S-NET requires minimal programming effort
and, nevertheless, achieves more than satisfactory performance re-
sults. Furthermore, the ease of programming invites for conducting
experiments to explore the (normally) vast design space of distribu-
tion strategies. For example, the choice of static network sections
in the MTI application or the dynamic scheduling version of the
ray tracer only become feasible because Distributed S-NET greatly
facilitates such experimentation. The sheer programming effort the
same experiments would take with MPI for message passing and
distributed program organisation quickly prohibit or very much re-
strict design space exploration.

An interesting area of future research is the combination of Dis-
tributed S-NET with the ongoing research on reconfiguration and



self-adaptivity described in S-NET [28]. In conjunction, the two
lines of research add further expressiveness to S-NET: distributions
of networks across distributed memory environments can dynami-
cally be changed either through external events (reconfiguration) or
internal observation (self-adaptivity).
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