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Abstract

The purpose is to arrive at recognition of multicolored objects invariant to a substantial change in viewpoint, object
geometry and illumination. Assuming dichromatic reflectance and white illumination, it is shown that normalized color
rgb, saturation S and hue H, and the newly proposed color models c

1
c
2
c
3

and l
1
l
2
l
3

are all invariant to a change in
viewing direction, object geometry and illumination. Further, it is shown that hue H and l

1
l
2
l
3

are also invariant to
highlights. Finally, a change in spectral power distribution of the illumination is considered to propose a new color
constant color model m

1
m

2
m

3
. To evaluate the recognition accuracy differentiated for the various color models,

experiments have been carried out on a database consisting of 500 images taken from 3-D multicolored man-made
objects. The experimental results show that highest object recognition accuracy is achieved by l

1
l
2
l
3

and hue H followed
by c

1
c
2
c
3
, normalized color rgb and m

1
m

2
m

3
under the constraint of white illumination. Also, it is demonstrated that

recognition accuracy degrades substantially for all color features other than m
1
m

2
m

3
with a change in illumination

color. The recognition scheme and images are available within the PicToSeek and Pic2Seek systems on-line at: http:
//www.wins.uva.nl/research/isis/zomax/. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Color provides powerful information for object recog-
nition. A simple and effective recognition scheme is to
represent and match images on the basis of color histo-
grams as proposed by Swain and Ballard [1]. The work
makes a significant contribution in introducing color for
object recognition. However, it has the drawback that
when the illumination circumstances are not equal, the
object recognition accuracy degrades significantly. This
method is extended by Funt and Finlayson [2], based on
the retinex theory of Land [3], to make the method

*Corresponding author.

illumination independent by indexing on illumination-
invariant surface descriptors (color ratios) computed from
neighboring points. However, it is assumed that neighbor-
ing points have the same surface normal. Therefore, the
derived illumination-invariant surface descriptors are
negatively affected by rapid changes in surface orientation
of the object (i.e. the geometry of the object). Healey and
Slater [4] and Finlayson et al. [5] use illumination-invari-
ant moments of color distributions for object recognition.
These methods are sensitive to object occlusion and clut-
tering as the moments are defined as an integral property
on the object as one. In global methods, in general, oc-
cluded parts will disturb recognition. Slater and Healey
[6] circumvent this problem by computing the color fea-
tures from small object regions instead of the entire object.
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From the above observations, the choice which color
models to use does not only depend on their robustness
against varying illumination across the scene (e.g. mul-
tiple light sources with different spectral power distribu-
tions), but also on their robustness against changes in
surface orientation of the object (i.e. the geometry of the
object), and on their robustness against object occlusion
and cluttering. Furthermore, the color models should be
concise, discriminatory and robust to noise. Therefore, in
this paper, our aim is to analyze and evaluate various
color models to be used for the purpose of recognition of
multicolored objects according to the following criteria:

f Robustness to a change in viewing direction;
f robustness to a change in object geometry;
f robustness to a change in the direction of the illumina-

tion;
f robustness to a change in the intensity of the illumina-

tion;
f robustness to a change in the spectral power distribu-

tion (SPD) of the illumination.

Next to defining color models which have:

f High discriminative power;
f robustness to object occlusion and cluttering;
f robustness to noise in the images.

It can be expected that two or more of the above cri-
teria are interrelated. For example, Funt and Finlayson
[2] show that when illumination is controlled Swain’s
color-based recognition method performs better than
object recognition based on illumination-independent
image descriptors. However, Swain’s method is outper-
formed when illumination varies across the scene. Sup-
posedly, their is a tradeoff between the amount of
invariance and expressiveness of the color models. To
that end, our goal is to get more insight to decide which
color models to use under which imaging parameters.
This is useful for object recognition applications where
no constraints on the imaging process can be imposed as
well as for applications where one or more parameters of
the imaging process can be controlled such as for robots
and industrial inspection (e.g. controlled object position-
ing and lightning conditions). For such a case, color
models can be used for object recognition which are less
invariant (at least under the given imaging conditions),
but having higher discriminative power.

The paper is organized as follows. In Section 2, basic
color models are defined for completeness. In Section 3,
assuming white illumination and dichromatic reflectance,
we examine the effect of a change in viewpoint, surface
orientation, and illumination for the various color mod-
els. From the analysis, two new invariant color models
are proposed. Further, in Section 4, a change in spectral
power distribution (SPD) of the illumination is con-
sidered to propose a new color constant color model.

A summary of the theoretical results is given in Section 5.
In Section 6, experiments are carried out on an image
database of 500 images taken from 3-D multicolored
man-made objects. In Section 7, we conclude with a
guideline which color models to use under which imaging
conditions for both invariant and discriminatory object
recognition.

2. Basic color definitions

Commonly used well-known color spaces include: (for
display and printing processes) RGB, CM½; (for televi-
sion and video) ½IQ, ½º»; (standard set of primary
colors) X½Z; (uncorrelated features) I

1
I
2
I
3
; (normalized

color) rgb, xyz; (perceptual uniform spaces) º*»*¼*,
¸*a*b*, ¸uv; and (for humans) HSI. Although, the num-
ber of existing color spaces is large, a number of these
color models are correlated to intensity I: ½, ¸* and ¼*;
are linear combinations of RGB: CM½, X½Z and I

1
I
2
I
3
;

or normalized with respect to intensity rgb: IQ, xyz, º»,
º*»*, a*b*, uv. Therefore, in this paper, we concentrate
on the following standard, essentially different, color fea-
tures: intensity I, RGB, normalized color rgb, hue H and
saturation S.

In the sequel, we need to be precise on the definitions
of intensity I, RGB, normalized color rgb, saturation S,
and hue H. To that end, in this section, we offer a quick
overview of well-known facts from color theory.

Let R, G and B, obtained by a color camera, represent
the 3-D sensor space

C"P
j
p(j) f

C
(j) dj (1)

for C3(R, G, B), where p(j) is the radiance spectrum and
f
C
( j ) are the three color filter transmission functions.
To represent the RGB-sensor space, a cube can be

defined on the R, G, and B axes. White is produced when
all three primary colors are at M, where M is the max-
imum light intensity, say M"255. The main diagonal-
axis connecting the black and white corners defines the
intensity

I(R, G, B)"R#G#B. (2)

All points in a plane perpendicular to the grey axis of the
color cube have the same intensity. The plane through
the color cube at points R"G"B"M is one such
plane. This plane cuts out an equilateral triangle which is
the standard rgb chromaticity triangle

r(R, G, B)"
R

R#G#B
, (3)

g(R, G, B)"
G

R#G#B
, (4)
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b(R, G, B)"
B

R#G#B
. (5)

The transformation from RGB used here to describe the
color impression hue H is given by

H(R, G, B)"arctan A
J3(G!B)

(R!G)#(R!B)B (6)

and saturation S measuring the relative white content of
a color as having a particular hue by

S(R, G, B)"1!
min(R, G, B)

R#G#B
. (7)

In this way, all color features can be calculated from the
original R, G, B values from the corresponding red, green,
and blue images provided by the color camera.

3. Reflectance with white illumination

3.1. ¹he reflection model

Consider an image of an infinitesimal surface patch of
an inhomogeneous dielectric object. Using the red, green
and blue sensors with spectral sensitivities given by f

R
(j),

f
G
(j) and f

B
(j), respectively, to obtain an image of the

surface patch illuminated by a SPD of the incident light
denoted by e(j), the measured sensor values is given by
Shafer [7]

C"m
b
(n, s) P

j
f
C
(j)e(j)c

b
(j) dj

#m
s
(n, s, v)P

j
f
C
(j)e(j)c

s
(j) dj (8)

for C"MR, G, BN giving the Cth sensor response. Fur-
ther, c

b
(j) and c

s
(j) are the surface albedo and Fresnel

reflectance respectively. j denotes the wavelength, n is the
surface patch normal, s is the direction of the illumina-
tion source, and v is the direction of the viewer. Geomet-
ric terms m

b
and m

s
denote the geometric dependencies

on the body and surface reflection component, respec-
tively.

Considering the neutral interface reflection (NIR)
model (assuming that c

s
(j) has a constant value indepen-

dent of the wavelength) and white illumination (equal
energy density for all wavelengths within the visible spec-
trum), then e(j)"e and c

s
(j)"c

s
, and hence being con-

stants. Then, we put forward that the measured sensor
values are given by

C
w
"em

b
(n, s)k

C
#em

s
(n, s, v)c

s P
j

f
C
(j) dj (9)

for C
w
3MR

w
, G

w
, B

w
N giving the red, green and blue

sensor response under the assumption of a white light
source. Further,

k
C
"P

j
f
C
(j)c

b
(j) dj (10)

is the compact formulation depending on the sensors and
the surface albedo only.

If the integrated white condition holds (as we assume
throughout the paper)

P
j

f
R
(j) dj"P

j
f
G
(j) dj"P

j
f
B
(j) dj"f (11)

we propose that the reflection from inhomogeneous di-
electric materials under white illumination is given by

C
w
"em

b
(n, s)k

C
#em

s
(n, s, v)c

s
f. (12)

In the next section, this reflection model is used to study
and analyze the RGB- subspace on which colors will be
projected coming from the same uniformly colored sur-
face.

3.2. Photometric color invariant features for Matte,
Dull surfaces

Consider the body reflection term of Eq. (12)

C
b
"em

b
(n, s)k

C
(13)

for C
b
3MR

b
, G

b
, B

b
N giving the red, green and blue sensor

response of a infinitesimal matte surface patch under the
assumption of a white light source.

According to the body reflection term, the color de-
pends on k

C
(i.e. sensors and surface albedo) and the bright-

ness on illumination intensity e and object geometry
m

b
(n, s). If a matte surface region, which is homogeneous-

ly colored (i.e. with fixed albedo), contains a variety of
surface normals, then the set of measured colors will
generate an elongated color cluster in RGB-sensor space,
where the direction of the streak is determined by k

C
and

its extent by the variations of surface normals n with
respect to the illumination direction s. As a consequence,
a uniformly colored surface which is curved (i.e. varying
surface orientation) gives rise to a broad variance of RGB
values. The same argument holds for intensity I.

In contrast, rgb is insensitive to surface orientation,
illumination direction and illumination intensity math-
ematically specified by substituting Eq. (13) in Eqs.
(3)— (5)

r(R
b
, G

b
, B

b
)"

em
b
(n, s)k

R
em

b
(n, s)(k

R
#k

G
#k

B
)

"

k
R

k
R
#k

G
#k

B

, (14)
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g(R
b
, G

b
, B

b
)"

em
b
(n, s)k

G
em

b
(n, s) (k

R
#k

G
#k

B
)

"

k
G

k
R
#k

G
#k

B

, (15)

b(R
b
, G

b
, B

b
)"

em
b
(n, s)k

B
em

b
(n, s) (k

R
#k

G
#k

B
)

"

k
B

k
R
#k

G
#k

B

, (16)

factoring out dependencies on illumination e and object
geometry m

b
(n, s) and hence only dependent on the sen-

sors and the surface albedo.
Because S corresponds to the radial distance from the

color to the main diagonal in the RGB-color space, S is
an invariant for matte, dull surfaces illuminated by white
light cf. Eqs. (13) and (7)

S(R
b
, G

b
, B

b
)

"1!
min(em

b
(n, s)k

R
, em

b
(n, s)k

G
, em

b
(n, s)k

B
)

em
b
(n, s) (k

R
#k

G
#k

B
)

"1!
min(k

R
, k

G
, k

B
)

(k
R
#k

G
#k

B
)
, (17)

only dependent on the sensors and the surface albedo.
Similarly, H is an invariant for matte, dull surfaces

illuminated by white light cf. Eqs. (13) and (6)

H(R
b
, G

b
, B

b
)

"arctan A
J3em

b
(n, s)(k

G
!k

B
)

em
b
(n, s) ((k

R
!k

G
)#(k

R
!k

B
))B

"arctan A
J3(k

G
!k

B
)

(k
R
!k

G
)#(k

R
!k

B
)B . (18)

In fact, any expression defining colors on the same linear
color cluster spanned by the body reflection vector in
RGB-space is an invariant for the dichromatic reflection
model with white illumination. To that end, we put
forward the following invariant color model

c
1
"arctan A

R

maxMG, BNB , (19)

c
2
"arctan A

G

maxMR, BNB , (20)

c
3
"arctan A

B

maxMR, GNB , (21)

denoting the angles of the body reflection vector and
consequently being invariants for matte, dull objects cf.
Eqs. (13) and (19)— (21)

c
1
(R

b
, G

b
, B

b
)"arctan A

em
b
(n, s)k

R
maxMem

b
(n, s)k

G
, em

b
(n, s)k

B
NB

"arctan A
k
R

maxMk
G
, k

B
NB , (22)

c
2
(R

b
, G

b
, B

b
)"arctan A

em
b
(n, s)k

G
maxMem

b
(n, s)k

R
, em

b
(n, s)k

B
NB

"arctan A
k
G

maxMk
R
, k

B
NB , (23)

c
3
(R

b
, G

b
, B

b
)"arctan A

em
b
(n, s)k

B
maxMem

b
(n, s)k

R
, em

b
(n, s)k

G
NB

"arctan A
k
B

maxMk
R
, k

G
NB , (24)

only dependent on the sensors and the surface albedo.
Obviously, in practice, the assumption of objects com-

posed of matte, dull surfaces is not always realistic. To
that end, the effect of surface reflection (highlights) is
discussed in the following section.

3.3. Photometric color invariant features for both Matte
and Shiny surfaces

Consider the surface reflection term of Eq. (12)

C
s
"em

s
(n, s, v)c

s
f (25)

for C
s
3MR

s
, G

s
, B

s
N giving the red, green and blue sensor

response for a highlighted infinitesimal surface patch
with white illumination.

Note that under the given conditions, the color of
highlights is not related to the color of the surface on
which they appear, but only on the color of the light
source. Thus, for the white light source, the set of mea-
sured colors from a highlighted surface region is on the
grey axis of the RGB-color space. The extent of the streak
depends on the roughness of the object surface. Very
shiny object regions generate color clusters which are
spread out over the entire grey axis. For rough surfaces,
the extent will be small.

For a given point on a surface, the contribution of the
body reflection component C

b
and surface reflection

component C
s
are added cf. Eq. (12). Hence, the measured

colors of a uniformly colored region must be on the
triangular color plane in the RGB-space spanned by the
two reflection components.

Because H is a function of the angle between the main
diagonal and the color point in RGB-sensor space, all
possible colors of the same (shiny) surface region (i.e. with
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l
1
(R

w
, G

w
, G

w
)"

(R
w
!G

w
)2

(R
w
!G

w
)2#(R

w
!B

w
)2#(G

w
!B

w
)2

"

(em
b
(n, s)(k

R
!k

G
))2

(em
b
(n, s)(k

R
!k

G
))2#(em

b
(n, s)(k

R
!k

B
))2#(em

b
(n, s)(k

G
!k

B
))2

"

(k
R
!k

G
)2

(k
R
!k

G
)2#(k

R
!k

B
)2#(k

G
!k

B
)2

, (30)

fixed albedo) have to be of the same hue as follows from
substituting Eq. (12) into Eq. (6)

H(R
w
, G

w
, G

w
)"arctan A

J3(G
w
!B

w
)

(R
w
!G

w
)#(R

w
!B

w
)B

"arctan A
J3em

b
(n, s)(k

G
!k

B
)

em
b
(n, s)((k

R
!k

G
)#(k

R
!k

B
))B

"arctan A
J3(k

G
!k

B
)

(k
R
!k

G
)#(k

R
!k

B
)B , (26)

factoring out dependencies on illumination e, object
geometry m

b
(n, s), viewpoint m

s
(n, s, v), and specular

reflection coefficient c
s

and hence only dependent
on the sensors and the surface albedo. Note that
R

w
"em

b
(n, s)k

R
#em

s
(n, s, v)c

s
f, G

w
"em

b
(n, s)k

G
#

em
s
(n, s, v)c

s
f, and B

w
"em

b
(n, s)k

B
#em

s
(n, s, v)c

s
f.

Obviously, other color features depend on the contri-
bution of the surface reflection component and hence are
sensitive to highlights.

In fact, any expression defining colors on the same
linear triangular color plane, spanned by the two reflec-
tion components in RGB-color space, are invariants for
the dichromatic reflection model with white illumination.

To that end, a new color model l
1
l
2
l
3

is proposed
uniquely determining the direction of the triangular color
plane in RGB-space

l
1
"

(R!G)2

(R!G)2#(R!B)2#(G!B)2
, (27)

l
2
"

(R!B)2

(R!G)2#(R!B)2#(G!B)2
, (28)

l
3
"

(G!B)2

(R!G)2#(R!B)2#(G!B)2
, (29)

the set of normalized color differences which is,
similar to H, a photometric color invariant for matte as
well as for shiny surfaces which follows from substituting
Eq. (12) into Eqs. (27)— (29), which for l

1
results in

only dependent on the sensors and the surface albedo.
Equal arguments hold for l

2
and l

3
.

4. Reflectance with colored illumination

4.1. The reflection model

We consider the body reflection term of the dichro-
matic reflection model

C
c
"m

b
(n, s) P

j
f
C
(j)e (j)c

b
(j) dj (31)

for C"MR, G, BN, where C
c
"MR

c
, G

c
, B

c
N gives the red,

green and blue sensor response of a matte infinitesimal
surface patch of an inhomogeneous dielectric object
under unknown spectral power distribution of the
illumination.

Suppose that the sensor sensitivities of the color
camera are narrow band with spectral responses
approximated by delta functions f

C
(j)"d (j!j

C
), then

the measured sensor values are

C
c
"m

b
(n, s)e (j

C
)c

b
(j

C
). (32)

By simply filling in C
c
in the color model equations given

in Section 2, it can be easily seen that all color model
values change with a change in illumination color. To
that end, a new color constant color model is proposed in
the next section.

4.2. Color constant color feature for Matte, Dull surfaces

Existing color constancy methods require specific
a priori information about the observed scene (e.g. the
placement of calibration patches of known spectral re-
flectance in the scene) which will not be feasible in practi-
cal situations [8,9,3], for example. To circumvent these
problems, Funt and Finlayson [2] propose simple and
effective illumination-independent color ratios for the
purpose of object recognition. However, it is assumed
that the neighboring points, from which the color ratios
are computed, have the same surface normal. Therefore,
the method depends on varying surface orientation of the
object (i.e. the geometry of the objects) affecting negative-
ly the recognition performance. To this end, we propose

a new color constant color ratio not only independent of
the illumination color but also discounting the object’s
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geometry

m(Cx
Ç1
, Cx

È1
, Cx

Ç2
, Cx

È2
)"

Cx
Ç1
Cx

È2
Cx

È1
C x

Ç2

, C
1
OC

2
, (33)

expressing the color ratio between two neighboring im-
age locations, for C

1
, C

2
3MR, G, BN where x

1
and x

2
de-

note the image locations of the two neighboring pixels.
Note that the set MR, G, BN must be colors from narrow-
band sensor filters and that they are used in defining the
color ratio because they are immediately available from
a color camera, but any other set of narrow-band colors
derived from the visible spectrum will do as well.

If we assume that the color of the illumination is
locally constant (at least over the two neighboring
locations from which the ratio is computed, i.e.
ex

Ç (j)"ex
È (j)) the color ratio is independent of the illu-

mination intensity and color, and also to a change in
viewpoint, object geometry, and illumination direction as
shown by substituting Eq. (32) into Eq. (33)

m(cx
1

1
, cx

2
1
, cx

1
2
, cx

2
2
)

"

(mx
Çb
(n, s)ex

Ç (jCÇ
)cx

Çb
(j

CÇ
)) (mx

Èb
(n, s)ex

È (jCÈ
)cx

Èb
(j

CÈ
))

(mx
Èb
(n, s)ex

È (jCÇ
)cx

Èb
(j

CÇ
)) (mx

Çb
(n, s)ex

Ç (jCÈ
)cx

Çb
(j

CÈ
))

"

cx
Çb
(j

CÇ
)cx

Èb
(j

CÈ
)

cx
Èb
(j

CÇ
)cx

Çb
(j

CÈ
)
, (34)

factoring out dependencies on object geometry and illu-
mination direction mx

Çb
(n, s) and mx

Èb
(n, s), and illumina-

tion ex
Ç and ex

È as ex
Ç (jCÇ

)"ex
È (jCÇ

) and ex
Ç (jCÈ

)"
ex

È (jCÈ
), and hence only dependent on the ratio of surface

albedos, where x
1

and x
2

are two neighboring locations
on the object’s surface not necessarily of the same ori-
entation.

Note that the color ratio does not require any specific
a priori information about the observed scene, as the
color model is an illumination-invariant surface descrip-
tor based on the ratio of surface albedos rather than the
recovering of the actual surface albedo itself. Also, the
intensity and spectral power distribution of the illumina-
tion is allowed to vary across the scene (e.g. multiple light
sources with different SPDs), and a certain amount of
object occlusion and cluttering is tolerated due to the
local computation of the color ratio. The color model is
not restricted to Mondrian worlds where the scenes are
flat, but any 3-D real-world scene is suited as the color
model can cope with varying surface orientations of
objects. Further note that the color ratio is insensitive to
a change in surface orientation, illumination direction
and intensity for matte objects under white light, but
without the constraint of narrow-band filters, as follows
from substituting Eq. (13) into Eq. (33):

(ex
Çm

x
Çb
(n, s)kx

ÇCÇ
) (ex

Èm
x
Èb
(n, s)kx

ÈCÈ
)

(ex
Èm

x
Èb
(n, s)kx

ÈCÇ
) (ex

Çm
x
Çb
(n, s)kx

ÇCÈ
)
"

kx
ÇCÇ
kx

ÈCÈ
kx

ÈCÇ
kx

ÇCÈ

, (35)

only dependent on the sensors and the surface albedo.

Having three color components of two locations, color
ratios obtained from a RGB-color image are

m
1
"

Rx
ÇG

x
È

Rx
ÈG

x
Ç
, (36)

m
2
"

Rx
ÇB

x
È

Rx
ÈB

x
Ç
, (37)

m
3
"

Gx
ÇB

x
È

Gx
ÈB

x
Ç
. (38)

For the ease of exposition, we concentrate on m
1

based
on the RG-color bands in the following discussion. With-
out loss of generality, all results derived for m

1
will also

hold for m
2

and m
3
.

Taking the natural logarithm of both sides of Eq. (33)
results for m

1
in

lnm
1
(Rx

Ç, R
x
È, G

x
Ç, G

x
È)"ln A

Rx
ÇG

x
È

Rx
ÈG

x
ÇB

"lnRx
Ç#ln Gx

È!ln Rx
È!lnGx

Ç

"ln A
Rx

Ç

Gx
ÇB!ln A

Rx
È

Gx
ÈB . (39)

Hence, the color ratios can be seen as differences at two
neighboring locations x

1
and x

2
in the image domain of

the logarithm of R/G

d
mÇ

(x
1
, x

2
)"Aln A

R

GBB
x
Ç
!AlnA

R

GBB
x
È. (40)

By taking these differences in a particular direction be-
tween neighboring pixels, the finite-difference differenti-
ation is obtained of the logarithm of image R/G which is
independent of the illumination color, and also a change
in viewpoint, the object geometry, and illumination
intensity. We have taken the gradient magnitude by
applying Canny’s edge detector (derivative of the Gaus-
sian with p"1.0) on image ln(R/G) with non-maximum
suppression in a standard way to obtain gradient magni-
tudes at local edge maxima denoted by G

mÇ
(x), where the

Gaussian smoothing suppresses the sensitivity of the
color ratios to noise. The results obtained so far for
m

1
hold also for m

2
and m

3
, yielding a 3-tuple (G

mÇ
(x),

G
mÈ

(x), G
mÊ

(x)) denoting gradient magnitude at local edge
maxima in images ln(R/G), ln(R/B) and ln(G/B), respec-
tively. For pixels on a uniformly colored region (i.e. with
fixed surface albedo), in theory, all three components will
be zero whereas at least one the three components will be
non-zero for pixels on locations where two regions of
distinct surface albedo meet.
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Fig. 1. Overview of the various color models and their invariance to various imaging conditions.#denotes invariant and!denotes
sensitivity of the color model to the imaging condition.

Fig. 2. Left: 16 images which are included in the image database of 500 images. The images are representative for the images in the
database. Right: Corresponding images from the query set.

5. Summary of the theoretical results

In conclusion, assuming dichromatic reflection and
white illumination, normalized color rgb, saturation S
and hue H, and the newly proposed color models c

1
c
2
c
3
,

l
1
l
2
l
3

and m
1
m

2
m

3
are all invariant to the viewing direc-

tion, object geometry and illumination. Further, hue
H and l

1
l
2
l
3

are also invariant to highlights. m
1
m

2
m

3
is

independent of the illumination color and inter-reflec-
tions (i.e. objects receiving reflected light from other ob-
jects) under the assumption of narrow-band filters. These
results are summarized in Fig. 1.

To evaluate photometric color invariant object recog-
nition, in practice, in the next section, the various color
models are evaluated and compared on an image
database of 500 images taken from 3-D multicolored
man-made objects.

6. Color-based object recognition: experiments

In the experiments, we focus on object recognition
by histogram matching for comparison reasons in the
literature. Obviously, transforming RGB to one of the
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Fig. 3. The discriminative power of the histogram matching process differentiated for the various color features plotted against the
ranking j. The cumulative percentileX forH

lÇlÈ lÊ
, H

H
, H

cÇcÈcÊ
,H

rgb
,H

mÇmÈmÊ
,H

S
, andH

RGB
is given byX

lÇlÈlÊ
,X

H
,X

cÇcÈcÊ
,X

rgb
, X

mÇmÈmÊ
,

X
S

and X
RGB

, respectively.

invariant color models can be performed as a preprocess-
ing step by other matching techniques.

This section is organized as follows. First, in Section
6.1, the experimental setup is given. The experimental
results are given in Section 6.2.

6.1. Experimental setup

The following section is outlined as follows. First, the
data sets on which the experiments will be conducted
are described in Section 6.1.1. Error measures are given
in Section 6.1.2. Histogram formation and similarity
measure are given in Section 6.1.3.

6.1.1. Datasets
The database consists of N

1
"500 reference images of

multicolored 3-D domestic objects, tools, toys, etc. Ob-
jects were recorded in isolation (one per image) with the
aid of the SONY XC-003P CCD color camera (3 chips)
and the Matrox magic color frame grabber. Objects were
recorded against a white cardboard background. Two
light sources of average day-light color are used to illu-
minate the objects in the scene. A second, independent set
(the test set) of recordings was made of randomly chosen
objects already in the database. These objects, N

2
"70 in

number, were recorded again one per image with a new,
arbitrary position and orientation with respect to the
camera, some recorded upside down, some rotated, some
at different distances.

In Fig. 2, 16 images from the image database of 500
images are shown on the left. Corresponding images
coming from the query set are shown on the right.

More information about color-based object recogni-
tion can be found in [10]. The image database and the

performance of the recognition scheme can be experi-
enced within the PicToSeek and Pic2Seek systems on-
line at http: //www.wins.uva.nl/research/isis/zomax/.

6.1.2. Error measures
For a measure of match quality, let rank rQ

i
denote

the position of the correct match for test image Q
i
,

i"1,2 , N
2
, in the ordered list of N

1
match values. The

rank rQ
i

ranges from r"1 from a perfect match to
r"N

1
for the worst possible match.

Then, for one experiment, the average ranking percen-
tile is defined by

rN"A
1

N
2

NÈ+
i/1

N
1
!rQ

i

N
1
!1 B 100%. (41)

The cumulative percentile of test images producing
a rank smaller or equal to j is defined as

X( j )"A
1

N
2

j
+
k/1

g(rQ
i
"k)B 100%, (42)

where g reads as the number of test images having rank k.

6.1.3. Similarity measure and histogram formation
Histograms are constructed on the basis of different

color features representing the distribution of discrete
color feature values in an n-dimensional color feature
space, where n"3 for RGB, rgb, l

1
l
2
l
3
, c

1
c
2
c
3

and
m

1
m

2
m

3
, and n"1 for I, S and H. During histogram

construction, all pixels in a color image are discarded
with a local saturation and intensity smaller than 5% of
the total range. Consequently, the white cardboard back-
ground as well as the grey, white, dark or nearly colorless
parts of objects as recorded in the color image will not be

460 T. Gevers, A.W.M. Smeulders / Pattern Recognition 32 (1999) 453–464



Fig. 4. The discriminative power of the histogram matching process differentiated for the various color features plotted against the
illumination intensity represented by variation as expressed by the factor a. The average percentile rN for H

lÇlÈlÊ
, H

H
, H

cÇcÈcÊ
, H

rgb
,

H
mÇmÈmÊ

, H
S
, H

RGB
and H

I
is given by rN

lÇlÈlÊ
, rN

H
, rN

cÇcÈcÊ
, rN

rgb
, rN

mÇmÈmÊ
, rN

S
, rN

RGB
and rN

I
, respectively.

Fig. 5. Four of the 10 objects with spatially varying illumination.

Fig. 6. Ranking statistics of matching the 10 images with spa-
tially varying illumination against the database of 500 images.

considered in the matching process. For comparison rea-
sons in the literature, in this paper, the histogram sim-
ilarity function is expressed by histogram intersection [1].

Histogram axes are partitioned uniformly with fixed
intervals. The resolution on the axes follows from the
amount of noise and computational efficiency consider-
ations. We determined the appropriate bin size for our
application empirically. This has been achieved by vary-
ing the same number of bins on the axes over
q3M2, 4, 8, 16, 32, 64, 128, 256N and chose the smallest
q for which the number of bins is kept small for computa-
tional efficiency and large for recognition accuracy. The
results show (not presented here) that the number of bins
was of little influence on the recognition accuracy when
the number of bins ranges from q"32 to 256 for all color
spaces. Therefore, the histogram bin size used during
histogram formation is q"32 in the following. For each
test and reference image, 3-D histograms are created for
the RGB, l

1
l
2
l
3
, rgb and c

1
c
2
c
3

color space denoted by
H

RGB
, H

lÇlÈ lÊ
, H

rgb
and H

cÇcÈcÊ
, respectively. Further-

more, 1-D histograms are created for I, S and H denoted
by H

I
, H

S
, and H

H
.

Assuming a uniform distribution of the RGB colors
implies, however, a non-uniform distribution of color
ratios m

1
, m

2
and m

3
and corresponding G

mÇ
(x), G

mÈ
(x),

and G
mÊ

(x) denoting the gradient magnitude at local edge
maxima in images ln(R/G), ln(R/B) and ln(G/B), respec-
tively. Unfortunately, we observed from the reference
images in the datasets that RGB colors are non-uniform-
ly distributed and hence a theoretical model of the prob-
ability distribution of ratios is not feasible. To that end,
an experimental probability distribution is generated by
computing G

mÇ
(x), G

mÈ
(x), and G

mÊ
(x) for the 500 images

in the image database. According to the experimentally
determined probability distribution (not shown here), we
partition the gradient magnitude axes finely near 0 and
sparsely when reaching maximum by their projection
onto the log axis. In this way, a 3-dimensional histogram
is created for G

mÇ
(x), G

mÈ
(x), and G

mÊ
(x) denoted by

H
mÇmÈmÊ

.
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Fig. 7. The discriminative power of the histogram matching process differentiated for the various color features plotted against the
change b in the color composition of the illumination spectrum. The average percentile rN for H

lÇlÈlÊ
, H

H
, H

cÇcÈcÊ
, H

mÇmÈmÊ
, H

S
and

H
RGB

is given by rN
lÇlÈlÊ

, rN
H
, rN

cÇcÈcÊ
, rN

mÇmÈmÊ
, rN

S
and rN

RGB
, respectively.

Fig. 8. Overview of which color models to use under which imaging conditions#denotes controlled and!denotes uncontrolled
imaging condition.

6.2. Experimental results

6.2.1. Results with white illumination
In this section, we report on the recognition accuracy

of the matching process for N
2
"70 test images and

N
1
"500 reference images for the various color features.

As stated, white lighting is used during the recording of
the reference images in the image database and the inde-
pendent test set. However, the objects were recorded with
a new, arbitrary position and orientation with respect to
camera. In Fig. 3 accumulated ranking percentile is
shown for the various color features.

From the results of Fig. 3 we can observe that the
discriminative power of l

1
l
2
l
3
, H followed by c

1
c
2
c
3
, rgb

and m
1
m

2
m

3
is higher than the other color models

achieving a probability of, respectively, 97, 96, 94, 92 and
89 perfect matches out of 100. Saturation S provides
significantly worse recognition accuracy. As expected, the
discriminative power of RGB has the worst performance
due to its sensitivity to varying viewing directions and
object positionings.

6.2.2. The effect of a change in the illumination intensity
The effect of a change in the illumination intensity is

equal to the multiplication of each RGB-color by a uni-
form scalar factor a. In theory, we have shown that only
RGB and I-color features are sensitive to changes in the
illumination intensity. To measure the sensitivity of dif-
ferent color features, in practice, RGB-images of the test
set are multiplied by a constant factor varying over
a3M0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5N. The discrim-
inative power of the histogram matching process differ-
entiated for the various color features plotted against
illumination intensity is shown in Fig. 4.

As expected, RGB and I-color features depend on the
illumination intensity. The further illumination intensity
deviates from the original value (i.e. a"1), the worse
discriminative power is achieved. Note that objects are
recognized randomly for rN"50. Furthermore, all other
color feature are fairly independent under varying inten-
sity of the illumination.

To test recognition accuracy for real images under
varying illumination intensity, an independent test set of
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recordings was made by randomly chosen 10 objects
already in the database of 500 images. These objects were
recorded again with the same pose but with spatially
varying illumination intensity, see Fig. 5.

Then these 10 images were matched against the
database of 500 images. From Fig. 6 is can be observed
that the discriminative power of c

1
c
2
c
3

and rgb (with
9 perfect matches out of 10) with respect to l

1
l
2
l
3
and H is

similar or even better due to minor amount of highlights
in the test set. Further, m

1
m

2
m

3
shows very high match-

ing accuracy, whereas S, RGB and I provide very poor
matching accuracy under spatially varying illumination.

6.2.3. The effect of a change in the illumination color
Based on the coefficient rule or von Kries model, the

change in the illumination color is approximated by
a 3]3 diagonal matrix among the sensor bands and is
equal to the multiplication of each RGB-color band by
an independent scalar factor [3,11]. Note that the diag-
onal model of illumination change holds exactly in the
case of narrow-band sensors. In theory, all color features
except color ratio m

1
m

2
m

3
are sensitive to changes in the

illumination color. To measure the sensitivity of the
various color feature, in practice, with respect to a change
in the color of the illumination, the R, G and B-images of
the test set are multiplied by a factor b

1
"b, b

2
"1 and

b
3
"2!b, respectively (i.e. b

1
R, b

2
G and b

3
B) by vary-

ing b over M0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5N. The dis-
criminative power of the histogram matching process
differentiated for the various color features plotted
against the illumination color is shown in Fig. 7. For
b(1 the color is bluish whereas reddish for b'1.

As expected, only the color ratio m
1
m

2
m

3
is insensitive

to a change in illumination color. From Fig. 7 we can
observe that color features l

1
l
2
l
3
, H, c

1
c
2
c
3

and rgb
which achieved highest recognition accuracy under white
illumination, see Figs. 3, 4 and 6, are highly sensitive to
a change in illumination color followed by S and RGB.
Even for a slight change in the illumination color, their
recognition potential degrades drastically.

7. Discussion

From the experimental results it is concluded that,
under the assumption of a white light source, the dis-
criminative power of l

1
l
2
l
3
, H followed by c

1
c
2
c
3
, rgb

and m
1
m

2
m

3
is approximately the same. Saturation S

provides significantly worse recognition accuracy. The
discriminative power of RGB has the worst performance
due to its sensitivity to varying imaging conditions.
When no constraints are imposed on the illumination,
the proposed color ratio m

1
m

2
m

3
is most appropriate.

Based on both the reported theory and the experimental
results, we now present a schema which color models to
use under which imaging conditions to achieve both

invariant and discriminatory object recognition, see
Fig. 8.

The schema is useful for object recognition applica-
tions where no constraints on the imaging process can be
imposed as well as for applications where one or more
parameters of the imaging process can be controlled such
as for robots and industrial inspection (e.g. controlled
object positioning and lightning).

For such a case, color models can be used for object
recognition which are less invariant (at least under the
given imaging parameters), but having higher dis-
criminative power. For example, an inspection task for
which lighting is controlled, but not the exact position
of the object (on the conveyer belt), color model l

1
l
2
l
3

is most appropriate for the inspection task at hand.
In addition, when the object does not produce a signifi-
cant amount of highlights, then c

1
c
2
c
3

or rgb should be
taken.

8. Conclusion

In this paper, new color models have been proposed
which are analyzed in theory and evaluated in
practice for the purpose of recognition of multicolored
objects invariant to a substantial change in viewpoint,
object geometry and illumination.

In conclusion, RGB is most appropriate for multi-
colored object recognition when all imaging conditions
are controlled. Without the presence of highlights and
under the constraint of white illumination, c

1
c
2
c
3

and
normalized color rgb are most appropriate. When images
are also contaminated by highlights, l

1
l
2
l
3

or H should
be taken for the job at hand. When no constraints are
imposed on the SPD of the illumination, m

1
m

2
m

3
is most

appropriate.
We concluded by presenting a schema on which color

models to use under which imaging conditions to achieve
on both invariant and discriminatory recognition of
multicolored objects.
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