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Abstract—An effective object recognition scheme is to represent and match

images on the basis of histograms derived from photometric color invariants. A

drawback, however, is that certain color invariant values become very unstable in

the presence of sensor noise. To suppress the effect of noise for unstable color

invariant values, in this paper, histograms are computed by variable kernel density

estimators. To apply variable kernel density estimation in a principled way, models

are proposed for the propagation of sensor noise through color invariant variables.

As a result, the associated uncertainty is obtained for each color invariant value.

The associated uncertainty is used to derive the parameterization of the variable

kernel for the purpose of robust histogram construction. It is empirically verified

that the proposed density estimator compares favorably to traditional histogram

schemes for the purpose of object recognition.

Index Terms—Object recognition, color invariants, noise robustness, histogram

construction, noise propagation, kernel density estimation, matching.
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1 INTRODUCTION

COLOR is a powerful information cue for object recognition. To
provide object recognition robust against confounding imaging
conditions (e.g., illumination, shading, highlights, and interreflec-
tions), color histograms are usually computed from photometric
color invariants [1], [2], [3], [4], [5]. For example, illumination-
independent color ratios have been proposed by Funt and
Finlayson [1] and Nayar and Bolle [6]. Further, for the dichromatic
reflection model, Gevers and Smeulders [2] showed that normal-
ized color rgb (c1c2c3) is to a large extent invariant to a change in
camera viewpoint, object pose, and the direction and intensity of
the incident light. In addition, the hue color space H (l1l2l3) is
insensitive to highlights under the restriction of white illumination
or a white-balanced camera.

Although color invariance is essential for robust color-based

object recognition, the corresponding color transformations used to

compute these color invariants bring with them several serious

drawbacks, since these transformations are singular at some sensor

values and unstable at many others. In fact, color ratios, rgb, and

the c1c2c3 color space become unstable near the black point while

hueH and l1l2l3 are (very) unstable near the achromatic axis [2]. As

a consequence, a small perturbation of sensor values will cause a

large jump in the transformed values. Traditionally, the effect of

noise blow-up at unstable color invariant values is simply ignored

or suppressed by ad hoc color thresholding. For instance, during

histogram construction, all sensor values along the achromatic axis

could be discarded by eliminating all sensor values having a

saturation and intensity value smaller than 5 percent of the total

range. Inevitably, more elaborated computational methods are

required to construct robust histograms from color invariants.
Therefore, in this paper, a more principled method is proposed

to suppress the effect of noise during histogram construction from

color invariants. To achieve this, variable kernel density estimation

is employed to construct color invariant histograms. To apply

variable kernel density estimation in a proper way, computational

methods are presented for the propagation of sensor noise through

color invariant transformations. As a result, the associated

uncertainty is known for each color invariant value. The associated

uncertainty is used to derive the optimal parameterization of the

variable kernel used during histogram construction.
This paper is organized as follows: In Section 2, related work is

reviewed. A theoretical model is presented in Section 3 to derive

the uncertainty for each color invariant value. In Section 4, the

optimal kernel parameterization is proposed and incorporated in

the variable kernel density estimator. Then, in Section 5, experi-

ments are conducted in which the computed uncertainty in the

transformed color values is empirically compared to the actual

uncertainty. Finally, in the context of color-based object recogni-

tion, the variable kernel density estimator is compared to

traditional histogram matching.

2 PREVIOUS WORK

It is known from Kender [7] that normalized color rgb is undefined

at the black point (R ¼ G ¼ B ¼ 0), and that hue H is undefined at

the entire achromatic axis (R ¼ G ¼ B). Moreover, rgb and H

become very unstable at these singularities, where a small

perturbation in the RGB-values (e.g., due to sensor noise) will

cause a large jump in the transformed values. Traditionally, this

effect of noise blow-up is suppressed by ad hoc thresholding of the

transformed values. Ohta [8] considers only RGB-values if the

intensity is larger than 30 (on a range of 256 values), and rejects

hue values if the saturation times the intensity is less than nine.

Healey [9] rejects rgb-values when the RGB-values fall within the

sphere of radius 4� centered at the origin of the RGB space.
A more elaborated approach is given by Burns and Berns [10],

analyzing the error propagation through the CIE L�a�b� color

space. The goal was to estimate the influence of the mean, variance,

and covariance of the CIE L�a�b� colors under the influence of

noise. Further, Shafarenko et al. [11] use an adaptive filter for noise

reduction in the CIE L�u�v� space prior to 3D color histogram

construction. In fact, the filter width is steered based on the

covariance matrix of the noise distribution in the CIE L�u�v� space.
As opposed to previous work, the aim of this paper is to use

kernel density estimation (see, e.g., [12], [13]) to construct robust

color invariant histograms for the purpose of object recognition.

Kernel density estimators form an alternative to histograms as

density estimators. The novelty of this paper is to propose a

mathematical framework to variable kernel density estimation

based on noise propagation through color invariants. In this way,

the associated uncertainty is computed for each color invariant

value which is used to steer the kernel sizes. Although the method

is suited for different color invariants (e.g., color ratios, c1c2c3,

l1l2l3, etc.) or color transformations in general, in this paper, we

focus on normalized color rgb, opponent color o1o2, and hue � as

these color spaces are widely in use in computer vision tasks.

3 NOISE PROPAGATION THROUGH COLOR INVARIANTS

In Section 3.1, we review on the photometric color invariant,

properties of the color models. Then, in Section 3.2, models are

proposed for the propagation of sensor noise through these color

invariant models.

3.1 Photometric Color Invariance

The reflection from inhomogeneous dielectric materials under

white, spectrally smooth illumination or a white-balanced camera

is given by [2], [14]
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!k ¼ GBð~nn;~ssÞE
Z
�

Bð�ÞFkð�Þd�þGSð~nn;~ss;~vvÞESF; ð1Þ

for k 2 fR;G;Bg giving the red, green, and blue sensor response of

an infinitesimal matte surface patch under the assumption of a

white or spectrally smooth light source. Spectral sensitivities are

given by FRð�Þ, FGð�Þ, and FBð�Þ, respectively, where � denotes

the wavelength. We assume that the integration white conditions

holds, i.e.,
R
� FRð�Þd� ¼

R
� FGð�Þd� ¼

R
� FBð�Þd� ¼ F . Bð�Þ is the

surface albedo. Further, E denotes the white light source and S is

the Fresnel reflectance. These are constant over the wavelengths

assuming white or spectrally smooth illumination (i.e., approxi-

mately equal/smooth energy density for all wavelengths within

the visible spectrum) and the neutral interface reflection (NIR)

model (i.e., Sð�Þ has a constant value independent of the

wavelength). Consequently, we have Eð�Þ ¼ E and Sð�Þ ¼ S.

Further, ~nn is the surface patch normal, ~ss is the direction of the

illumination source, and ~vv is the direction of the viewer. Finally,

geometric terms GB and GS denote the geometric dependencies on

the body and surface reflection component.
Based on the measured RGB-values, the normalized color rg is

computed by:

r ¼ R=ðRþGþBÞ ð2Þ
g ¼ G=ðRþGþBÞ: ð3Þ

rg is a color invariant for matte surfaces by substituting the body

reflection term of (1) in (2) [2]:

rð!R; !G; !BÞ ¼ R
� Bð�ÞFRð�Þd�R

�Bð�ÞFRð�Þd�þ
R
� Bð�ÞFGð�Þd�þ

R
� Bð�ÞFBð�Þd�

;
ð4Þ

factoring out dependencies on illumination and object geometry

and, hence, only dependent on the sensors and the surface albedo.
Further, we focus on the opponent color space defined by:

o1ðR;G;BÞ ¼ ðR�GÞ=2 ð5Þ

o2ðR;G;BÞ ¼ 2B� R�G

4
: ð6Þ

The opponent color space is well-known and has its fundamentals

in human perception. The opponent color space o1o2 is indepen-

dent of highlights (assuming the NIR model) as follows from

substituting (1) in (5) and (6):

o1ð!R; !G; !BÞ ¼ðGBð~nn;~ssÞE
Z
�

Bð�ÞFRð�Þd��

GBð~nn;~ssÞE
Z
�

Bð�ÞFGð�Þd�Þ=2:
ð7Þ

Equal argument holds for o2. Note that o1o2 is still dependent on

GBð~nn;~ssÞ and E and, consequently, being sensitive to object

geometry and shading.
The hue � is computed as

� ¼ arctan

ffiffiffi
3

p
ðG�BÞ

ðR�GÞ þ ðR�BÞ

� �
; ð8Þ

also insensitive to illumination, object geometry, and highlights by

substituting the reflection term of (1) in (8) [2]:

�ð!R; !G; !BÞ ¼

arctan

� ffiffiffi
3

p
ðð
R
� Bð�ÞFGð�Þd��

R
� Bð�ÞFBð�Þd�Þ

ð2
R
� Bð�ÞFRð�Þd��

R
� Bð�ÞFGð�Þd��

R
� Bð�ÞFGð�Þd�Þ

�
:

ð9Þ

3.2 Noise Propagation

Additive Gaussian noise is widely used to model thermal noise

and is the limiting behavior of photon counting noise and film

grain noise. Therefore, in this paper, we assume that sensor noise is

normally distributed.
Then, for an indirect measurement, the true value of a

measurand u is related to its N arguments, denoted by uj, as

follows:

u ¼ qðu1; u2; � � � ; uN Þ: ð10Þ

Assume that the estimate ûu of the measurand u can be obtained by

substitution of ûuj for uj. Then, when ûu1; � � � ; ûuN are measured with

corresponding standard deviations �ûu1 ; � � � ; �ûuN , we obtain [15]

ûu ¼ qðûu1; � � � ; ûuNÞ: ð11Þ

It is known that the approximation of a given function can be

written in the form of Taylor series. For N ¼ 2 (to simplify

calculation), the Taylor series with respect to noise is given by

qðûu1; ûu2Þ ¼qðu1; u2Þ þ
@

@u1
E1 þ

@

@u2
E2

� �
qðu1; u2Þ þ � � �

þ 1

m!

@

@u1
E1 þ

@

@u2
E2

� �m

qðu1; u2Þ þ Rmþ1;

ð12Þ

where ûu1 ¼ u1 þ E1, ûu2 ¼ u2 þ E2 (E1 and E2 are the errors of ûu1 and

ûu2), and Rmþ1 is the remainder term. Further, @q=@ûuj is the partial

derivative of q with respect to ûuj.
As the general form of the error of an indirect measurement is

E ¼ ûu� u ¼ qðûu1; ûu2Þ � qðu1; u2Þ; ð13Þ

we obtain in terms of the Taylor series the following:

E ¼ @

@u1
E1 þ

@

@u2
E2

� �
qðu1; u2Þ þ � � �

þ 1

m!

@

@u1
E1 þ

@

@u2
E2

� �m

qðu1; u2Þ þRmþ1:

ð14Þ

In general, only the first linear term is used to compute the error

E ¼ @q

@u1
E1 þ

@q

@u2
E2: ð15Þ

Then, for N arguments, it follows that if the uncertainties in

ûu1; � � � ; ûuN are independent, random, and relatively small, the

predicted uncertainty in q is given by [15]

�q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

@q

@ûui
�ûui

� �2

;

vuut ð16Þ

the so-called squares-root sum method. Although (16) is deduced

for random errors, it is used as an universal formula for various

kinds of errors.
Substitution of (2) and (3) in (16) gives the uncertainty for the

normalized coordinates

�r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð�2B þ �2GÞ þ ðGþ BÞ2�2R

ðRþGþBÞ4

s

�g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ð�2B þ �2RÞ þ ðRþBÞ2�2G

ðRþGþ BÞ4

s
:

ð17Þ

Assuming normally distributed random quantities, the standard

way to calculate the standard deviations �R, �G, and �B is to

compute the mean and variance estimates derived from homo-

geneously colored surface patches in an image under controlled

imaging conditions. From the analytical study of (17), it can be
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derived that normalized color becomes unstable around the black

point R ¼ G ¼ B ¼ 0.
The uncertainties of o1 and o2 are given by

�o1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2G þ �2R

q
�o2 ¼

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2B þ �2

G þ �2R

q
;

ð18Þ

which are the same (stable) at all RGB points.
Substitution of (8) in (16) gives the uncertainty for the hue

�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

ðB�GÞ2�2R þ ðB�RÞ2�2G þ ðR�GÞ2�2B
ðR2 þG2 þB2 � RG�RB�GBÞ2

s
; ð19Þ

which is unstable at low intensity and saturation (i.e., the gray axis

R ¼ G ¼ B).
In conclusion, it can be analytically derived that normalized

color is unstable at low intensity. Hue is unstable at low intensity

and saturation. Opponent color is relatively stable at all RGB

values.

4 HISTOGRAM CONSTRUCTION BY VARIABLE KERNEL

DENSITY ESTIMATION

A density function f gives a description of the distribution of the

measured data. A well-known density estimator is the histogram.

The (one-dimensional) histogram is defined as

f̂fðxÞ ¼ 1

nh
ðnumber of Xi in the same bin as xÞ; ð20Þ

where n is the number of pixels with value Xi in the image, h is the

bin width, and x is the range of the data. Two choices have to be

made when constructing a histogram. First, the bin-width

parameter needs to be chosen. Second, the position of the bin

edges needs to be established. Both choices affect the resulting

estimation.
Alternatively, the kernel density estimator is insensitive to the

placement of the bin edges

f̂fðxÞ ¼ 1

nh

Xn
i¼1

K
x�Xi

h

� �
: ð21Þ

Here, kernel K is a function satisfying
R
KðxÞdx ¼ 1. In the variable

kernel density estimator, the single h is replaced by n values

�ðXiÞ; i ¼ 1; � � � ; n. This estimator is of the form

f̂fðxÞ ¼ 1

n

Xn
i¼1

1

�ðXiÞ
K

x�Xi

�ðXiÞ

� �
: ð22Þ

The kernel centered on Xi has associated with it its own scale

parameter �ðXiÞ, thus allowing different degrees of smoothing. To

use variable kernel density estimators for color images, we let the

scale parameter be a function of the RGB-values and the color

space transform. We are now left with the problem of determining

the scale and shape of the kernel.
Assuming normally distributed noise, the distribution is

approximated well by the Gauss distribution [15]

KðxÞ ¼ 1ffiffiffiffiffiffi
2�

p exp
�x2

2 : ð23Þ

Then, the variable kernel method estimating the univariate,

directional hue density is as follows:

f̂fð�Þ ¼ 1

n

Xn
i¼1

��1
�i
K

ð�� �iÞ mod ð�Þ
��i

� �
; ð24Þ

where �� is derived according to (19), with corresponding value �.
The variable kernel method for the bivariate normalized rg

kernel is given by:

f̂fðr; gÞ ¼ 1

n

Xn
i¼1

��1
ri
K

r� ri
�ri

� �
��1
gi
K

g� gi
�gi

� �
; ð25Þ

where �r; �g are derived according to (17). Similarly, the variable
kernel method for the bivariate normalized o1o2 kernel is given by:

f̂fðo1; o2Þ ¼
1

n

Xn
i¼1

��1
o1i
K

o1 � o1i
�o1i

 !
��1
o2i
K

o2 � o2i
�o2i

 !
; ð26Þ

where �o1 and �o2 are derived according to (18).
In conclusion, to reduce the effect of sensor noise during

density estimation, we use variable kernels where the normal
distribution defines the shape of the kernel. Further, kernel sizes
are steered by the amount of uncertainty of the color invariant
values.

5 EXPERIMENTS

In this section, the performance of the proposed variable kernel
density estimator will be evaluated. First, the accuracy of noise
propagation is empirically verified. Then, the kernel density
estimation is experimentally compared to traditional histogram
schemes in the context of color based object recognition. For the
experiments, the hue range is defined from 0� to 360� over a
1� interval. The normalized color range is defined from 0 to 255units
over 1 unit intervals. The images are obtained using a Sony XC-003P
color camera and Matrox Corona framegrabber.

5.1 Propagation of Uncertainties

The aim of this experiment is to empirically verify the validity of the
proposed model of noise propagation through color invariant
formulae. For nonlinear functions, such as rg and �, the estimation
could be slightly biased, since only the first term of the Taylor series
are taken to approximate the uncertainty, see (15) in Section 3.2.
Further, although the Sony XC-003P color camera have narrow-
band filters, they may still overlap partially, introducing correlation
between tristimulus value measurements. To test this, the predicted
uncertainty �� of the hue space is computed first for each color pixel
according to (19). Then, the measured (actual) uncertainty is
computed as the standard deviation of hue values recorded 10 times
for nine different colors, i.e., the experiment is conducted on nine
different homogeneously colored sheets of paper material. Sheet
number 1 has a bright red color, number 2 is red colored, 3 is yellow,
4 is light green, 5 is green, 6 is cyan, 7 is darkblue, 8 is blue, and 9 is
purple. The predicted and actual uncertainties are shown in Fig. 1.
From this experiment, we obtain that the difference between the
predicted (computed by (19)) and measured hue values is
0:07� � 0:03�, which is well below 1 percent of the hue range.
Further, the experiment is repeated for normalized colors where the
uncertainty is computed according to (17). The difference obtained
between the predicted and measured normalized red values was
0:4� 0:2 and, for the green values, we obtained 0:2� 0:1. This is
again well below 1 percent of the normalized color range. The
experiment shows that the predicted uncertainties compare
favorably to the measured (actual) uncertainties.

5.2 Color-Based Object Recognition

In this section, we consider object recognition on the basis of color
invariant histograms. Therefore, in Section 5.2.1, the data set and
performance measure are discussed. Then, in Sections 5.2.2 and
5.2.3, we compare traditional histogram-based object construction
with our variable kernel density estimation in the context of object
recognition.
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5.2.1 Data Set and Performance Measure

For comparison reasons, the same data set used by [2], [16], has

been taken to conduct the experiments. In Fig. 2, various images

from the image database are shown. These images are recorded by

the SONY XC-003P CCD color camera and the Matrox Magic Color

frame grabber. Two light sources of average daylight color are

used to illuminate the objects in the scene. The database consists of

N1 ¼ 500 target images taken from colored objects, tools, toys, food

cans, art artifacts, etc. Objects were recorded in isolation (one per

image), i.e., 500 images are recorded from 500 different objects. The

size of the images are 256� 256 with 8 bits per color. The images

show a considerable amount of shadows, shading, and highlights.

A second, independent set (the query set) of N2 ¼ 70 query or test

recordings was made of randomly chosen objects already in the

database. These objects were recorded again one per image with a

new, arbitrary position and orientation with respect to the camera,

some recorded upside down, some rotated, and some at different

distances.

Then, for each image, traditional histograms (c.f. (20)) and
histograms based on variable density estimation are constructed
on the basis of the rg and �-space. For the histograms, we have
determined the appropriate bin size for our application empiri-
cally by varying the number of bins on the axes over
q 2 f2; 4; 8; 16; 32; 64; 128; 256g. The results show (not presented
here) that the number of bins was of little influence on the
retrieval accuracy when the number of bins ranges from q ¼ 32
and up. Therefore, the color histogram bin size for each axis used
during histogram formation is q ¼ 32.

For a measure of match quality, let rank rQi denote the position
of the correct match for test image Qi, i ¼ 1; . . . ; N2, in the ordered
list of N1 match values. The rank rQi ranges from r ¼ 1 from a
perfect match to r ¼ N1 for the worst possible match.

Then, for one experiment, the average ranking percentile is
defined by:

r ¼ 1

N2

XN2

i¼1

N1 � rQi

N1 � 1

 !
100%: ð27Þ

In the remaining sections, we study the performance of the
variable kernel estimator with respect to noise for the 70 test
images and 500 target images. For comparison reasons in the
literature, matching is based on histogram intersection [3].

5.2.2 Robustness Against Noise: Simulated Data

The effect of noise is produced by adding independent zero-mean
additive Gaussian noise with � 2 f2; 4; 8; 16; 32; 64g to the query
images. In Fig. 3, two images are shown generating together
10 images by adding noise with � 2 f8; 16; 32; 64; 128g.

We concentrate on the quality of the recognition rate with
respect to different noise levels. To compare traditional histogram
matching with histogram matching based on the proposed kernel
density estimator, we have constructed four different histograms.
First, no thresholding has been performed. This histogram
construction scheme does not cope with unstable color invariant
values. Hence, all color invariant values are equally weighted in
the histogram, as used by [3]. The color histogram without
thresholding is denoted by H�1 based on the hue � color model
and Hrg1 for the rg color model. Second, we have discarded rg and
� values when the intensity was below 5 percent of the total range
as proposed by [2], [8]. For this histogram construction scheme, we
denote H�2 based on � and Hrg2 derived from rg. Third, rg and hue
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Fig. 1. Analysis of the theoretically predicted uncertainty versus the actual

uncertainty of the hue. The squares correspond to actual standard deviations of

the hue, and the error bars correspond to the predicted standard deviations.

Fig. 2. Various images which are included in the image database of 500 images. The images are representative for the images in the database. Objects were recorded in

isolation (one per image).

Fig. 3. Two images generating together 10 images by adding noise with � 2 f8; 16; 32; 64; 128g.



values were discarded during histogram construction when the
intensity and saturation were within the range of 4� centered at the
origin of the RGB space, used by [9], yielding H�3 and Hrg3 .
Finally, the histogram based on the proposed variable kernel
density estimator is given by H�4 and Hrg4 .

A drawback of constructing histograms based on kernel density
estimation, compared to traditional histogram construction
schemes, is that the method is more computational expensive.
The time to compute a traditional histogram for an image of 256�
256 pixels is on average 0.2 seconds on a Ultra 10 Sparc station. The
time required to construct a histogram based on kernel density
estimation is on average 2.2 seconds (a factor of eleven) on a Ultra
10 Sparc station. Note that histograms, for images in the data set,
are constructed offline. Online execution time includes the
construction of the histogram for the query image, and the
matching based on the histogram intersection. The storage
complexity, based on the number of bins (� ¼ 32 and
rg ¼ 32 x 32), is the same for the different histogram construction
schemes. The influence of noise differentiated by the various
histogram construction schemes, shown in Fig. 4, based on the hue
color model, reveals that kernel density estimation outperforms the
ad hoc thresholding schemes. In fact, the histogram intersection
based on kernel density estimation gives good results up to
considerable amounts of noise (� ¼ 64). Further, the thresholded
histogram construction schemes always give higher recognition
accuracy than no thresholding at all. Further, on the basis of the rg

color model, the impact of noise differentiated by the various
histogram construction schemes is shown in Fig. 5. Again, the
kernel density estimator provides higher recognition accuracy than
the ad hoc thresholding schemes. However, the thresholding
schemes give similar recognition accuracy than no thresholding at
all. This is due to the fact that normalized color becomes unstable
around the black point. Hence, thresholding on saturation does not
affect the instability of rg. In contrast, Hrg3 also eliminates low
intensity values. Is seems that eliminating dark regions does not
affect the recognition rate significantly. Finally, from the experi-
mental results of Figs. 4 and 5, it can be concluded that, globally,

rg-based object recognition gives slightly worse recognition

accuracy than recognition based on �.

5.2.3 Robustness Against Noise: Realistic Data

To measure the sensitivity of different histogram construction

schemes with respect to varying SNR, 10 objects were randomly

chosen from the image dataset. Then, each object has been

recorded again under a global change in illumination intensity

(i.e., dimming the light source) generating images with

SNR 2 f24; 12; 6; 3g, see Fig. 6. These low-intensity images can be

seen as images of snap shot quality, a good representation of views

from everyday life as it appears in home video, the news, and

consumer digital photography in general. Matching based on the

tradition histogram construction scheme, computed for rg, is

denoted by HrgT , and for �, we obtain H�T . For fair comparison,

thresholding has been applied on the images (not on the query

image) and consequently rg-values and � are discarded when the

intensity was below 5 percent of the total range. The kernel density

estimation, based on rg, is denoted by HrgK , and for �, we have

H�K . The discriminative power of the histogram matching process

based on rg and � differentiated for the different histogram

construction methods plotted against the amount of SNR is shown

in Fig. 7.
For 24 < SNR < 48, the results show a rapid decrease in the

performance of the traditional method as opposed the kernel

density estimation. For these SNR’s, the kernel density estimation

outperforms the traditional histogram construction scheme. For

SNR < 12, the performance of both methods decrease in the same

way, where the performance of the kernel density estimation

remains slightly higher than the traditional histogram matching.

This is due to quantization errors for very low intensity pixels

which disturb the underlying Gaussian noise model. In fact,

quantization errors are caused by reducing the image intensity and

consequently limiting the range of RGB color values from which

the color invariants are computed. To this end, only a reduced

number of different color invariant values can be generated for
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Fig. 4. The discriminative power of the matching process differentiated for the

various histogram construction schemes based on � with respect to noise. The

average percentile r for histogram H�1 , H�2 , H�3 , and H�4 is given by rH�1
, rH�2

,

rH�3
, and rH�4

, respectively.

Fig. 5. The discriminative power of the matching process differentiated for the

various histogram construction schemes based on rg with respect to noise. The

average percentile r for histogramHrg1 ,Hrg2 ,Hrg3 , andHrg4 is given by rHrg1
, rHrg2

,

rHrg3
, and rHrg4

, respectively.

Fig. 6. Two objects under varying illumination intensity generating each four images with SNR 2 f24; 12; 6; 3g.



which the assumption of a Gaussian noise model is not valid

anymore.
In conclusion, the kernel density estimator outperforms the

traditional histogram method up to considerable amounts of noise

(SNR ¼ 12). However, for very low-intensity images (SNR < 12),

due to quantization errors, the kernel density estimation behaves

the same as traditional histogram methods.

6 CONCLUSION

In this paper, variable kernel density estimation is used to

construct robust color invariant histograms. The variable kernel

density estimation is derived from a theoretical framework for

noise propagation through color invariants. In this way, the

associated uncertainty is computed for each color invariant value,

which is used to steer the kernel sizes. From the theoretical and

experimental result, we conclude that kernel density estimator

overcome the problem of ad hoc thresholding at unstable color

invariants. Further, our method is less sensitive to Gaussian noise

than traditional histogram construction schemes. A drawback of

the variable kernel method compared to traditional histogram

construction is that the method is computationally more expensive.
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Fig. 7. The discriminative power of the matching process, differentiated for the

traditional histogram and kernel density estimation scheme, based on rg and � with

respect to SNR.


