
Chapter 4

Collapse of clouds

Figure 4.1: The empirical classification scheme for YSO
spectral energy distributions. A vertical line appears
at a wavelength of 2.2 µm for fiducial reference in each
panel. Class 0 and Class iii sources have distributions
whose widths are similar to single temperature black-
body functions. Class ii and Class i sources display in-
frared excess which produces energy distributions which
are broader than a single blackbody function (from Lada
1999).

The challenge of star formation lies in the vast
change of density and temperature that distin-
guishes molecular clouds — the matter from which
the stars form — and the star itself. To form a
star, we need to achieve an increase in density by
20 orders of magnitude and in temperature by 6
orders of magnitude. This is only possible through
the self-gravitational collapse of matter.

4.1 Spectral Energy Distribu-
tions (SEDs)

At this point, we introduce the concept of spec-
tral energy distributions (SEDs). Star formation
and especially the earliest collapse phases can of-
ten only be studied photometrically or at very low
spectral resolution (R < 10). Detailed line profiles
and/or velocity maps are often not available and
hence continuum radiation provides the only clue
to the nature of the young protostellar phases. Ob-
serving the star forming regions in multiple pho-
tometric bands ranging from the ultraviolet (U-
band) to infrared and even sub-mm wavelengths
allows us to reconstruct the total luminosity of
dense cores, young stellar objects and protoplane-
tary disks.

4.1.1 Lada classification

The shape of this energy distribution is closely re-
lated to the physical structure of the various ob-
jects. Embedded cores for example show a single-
peak energy distribution that can be approximated
by a single temperture black-body (Fig. 4.1). This
is due to the optically thick nature of these objects where all received radiation has been re-processed by the
gas and dust of the envelope. A star+disk system in later evolutionary phases displays a clear double peak
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Table 4.1: Table with flux conversions.
To → Sν Fν Fλ fE fλ

From ↓ Jy erg/cm2/s/Hz erg/cm2/s/Å erg/cm2/s/eV erg/cm2/s/Å
Sν Sν 10−23

Snu 3.00× 10−5
Snu/λ

2 1.51× 103
Sν/E 1.51× 103

Sν/λ

Fν 1023
Fν Fν 3.00× 1018

Fν/λ
2 1.51× 1026

Fν/E 1.51× 1026
Fν/λ

Fλ 3.34× 104
λ

2
Fλ 3.34× 10−19

λ
2
Fλ Fλ 4.06× 106

λ
3
Fν 5.03× 107

λFλ

fE 6.63× 10−4
EfE 6.63× 10−27

EfE 1.29× 10−10
E

3
fE fE 8.07× 10−2

E
2
fE

fλ 6.63× 104
λFλ 6.63× 10−27

λFλ 1.99× 10−8
fλ/λ 8.07× 10−2

λ
2
fλ fλ

structure, with the stellar black-body peaking at optical wavelength and the cooler protoplanetary disk at
infrared wavelengths (see also Fig. 1.16 in chapter 1). The stellar emission is still partly re-absorbed and
scattered by the surrounding circumstellar material (disk and possibly envelope), causing veiling of the star
in the UV. The energy removed in this way is reprocessed by the gas and dust in the envelope and re-emitted
in the IR.

4.1.2 Characterization

Generally, the SED is shown as the energy density νFν or λFλ emitted as a function of frequency ν or
wavelength λ. Here, the units can differ vastly and all combinations of units are possible in the literature,
leading to significant confusion and making the comparison of results often difficult to impossible. Table 4.1
shows examples of some of the most frequently used units and their conversion factors.

Figure 4.2: The value of α is plotted versus Tbol for each source with well-determined values. The color
code is based on the Lada class of each source, as dened by α, with Class i plotted as red, flat as green,
Class ii as blue, and Class iii as purple. Filled circles indicate sources associated with envelopes as traced by
millimeter continuum emission, while plus signs indicate sources with no such associations. The right panel
shows α

� and T
�
bol calculated after corrections for extinction were applied. The vertical dashed lines show the

boundaries between classes, as defined by Chen et al. (1995). Figure and caption taken from Evans (2009).
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Figure 4.3: Sketch of the inside-out collapse scenario. The expansion wave travels outwards at a speed cs.

Generally, an IR slope parameter αIR is defined as

αIR = −d(νFν)
dν

, (4.1)

in the wavelength region between 2.2 µm and several 10 µm. Typical values for αIR are larger than 0 for
Class i objects, −2 < αIR < 0 for Class ii sources and < −2 for Class iii sources. Another way of classifying
young stellar objects (YSOs) is by their ”bolometric temperature” which is the temperature of a black body
with the same mean frequency as the SED of the YSO. Fig. 4.2 shows the results from the Spitzer Legacy
Program c2d (Cores to Disks, PI: Evans). The statistics, i.e. the number of objects in each class, give an
indication of the duration of the different phases of pre-main-sequence evolution. The extinction corrected
estimated median lifetimes (or half-times) of Class 0 and i are 0.1, 0.44 Myr, respectively.

With the recent advent of large amounts of Spitzer SEDs, the onset of the IR excess νonset (or λonset)
is used as a second parameter. It is defined as the wavelength where the measured fluxes start to be
larger than the pure photospheric value. This parameter proved extremely useful in subclassifying the
rather inhomegenous Class ii sources, star+disk systems. We come back to this later when we discuss the
observational appearance of protoplanetary disks in Chapter 11.

4.2 Shu inside-out collapse

The hydrodynamical collapse of a non-isotropic sphere is highly non-homologous. The central parts of a
gravitationally unstable sphere collapse faster than the outer parts. If we assume that the central parts of
the core have higher densities than the outer parts, the free-fall time tff , which scales with ρ

−1/2, decreases
towards the center. This means that the central parts collapse faster than the outer parts and the outer
shells subsequently loose their pressure support, while the mass and hence the gravitational attraction inside
such a shell does not change. The information of the ’lost pressure support’ travels outwards as a wave with
the sound speed cs.

Frank Shu developed in his seminal paper from 1977 the so-called ’inside-out’ collapse scenario and a
self-similar dimensionless solution to the problem. Later numerical hydrodynamical simulations confirmed
mainly four distinct phases:

1. Free-fall phase: The collapse is approximately isothermal and the timescale is the free-fall timescale.
Efficient cooling is provided by molecular hydrogen and thermal radiation from dust grains (IR). The
next two phase are adiabatic collapse phases, because the inner parts of the core becomes optically
thick and thus cannot cool as efficient any more.

2. First core phase: The first stable core of a few AU in size forms. At temperatures in excess
of 1000 K, dust grains evaporate removing them as an opacity source. Once the temperature reaches
2000 K, molecular hydrogen dissociates and a second collapse phase starts. This is because the equation

43



of state changes (adiabatic exponent) and thus gravity cannot be counterbalanced any more by the
internal pressure.

3. Opacity phase: The second collapse is halted once the density is high enough (> 10−2 g cm−3)
to provide a significant hydrogen ionization fraction, which changes the equation of state once again
to a more favorite adiabatic exponent. Several more collapse phases can follow corresponding to the
ionization of He and more massive atoms. At the end of phase 3, we are left with a core mass of
∼ 0.01 M⊙.

4. Accretion phase: The last phase is characterized by the entire core being optically thick and overall
accretion. In this last phase, the protoplanetary disk forms. Actually, most of the material is accreted
onto the star through this disk in the late collapse phase. It is also in this phase that the protostar
becomes first visible in the infrared. Low mass stars (MStar < 2 M⊙) finish their accretion and thus
become exposed before they reach the main-sequence. They continue then to contract until their
central temperature becomes high enough for hydrogen burning to start. More massive stars often
reach the hydrogen burning limit and thus the main-sequence before the accretion phase ends.

4.2.1 Hydrodynamical equations

The basic hydrodynamical equations describing a collapsing dark core are

Mass conservation : ∂Mr
∂t

+ u
∂Mr
∂r

= 0,
∂Mr
∂r

= 4πr
2
ρ (4.2)

Momentum conservation : ∂u

∂t
+ u

∂u

∂r
= − c

2
s
ρ

∂ρ

∂r
− GMr

r2 (4.3)

Energy equation : ∂Lr
∂Mr

= −∂Uin
∂t
− P

∂(ρ−1)
∂t

(4.4)

Here, r is the radial coordinate, Mr the mass inside a radius r, u the infall velocity, cs the sound speed,
ρ the density, G the gravitational constant, Lr the total energy flux through the surface that includes the
mass Mr, and Uin the internal energy. The energy flow through the surface can be derived from the basic
concepts of energy transport through radiation (see e.g. Kutner, chapter 9.4.2)

Lr =
16πσSBr

2
T

3

3κR

∂T

∂r
, (4.5)

where κR is the Rosseland mean opacity (gives the fraction of radiation absorbed per cm), and σSB the
Stefan-Boltzmann constant.

Following Shu (1977), we can understand the inside-out collapse also as an outward traveling expansion
wave (see Fig. 4.3). If we now define a new variable that travels with the expansion wave,

x =
r

cst
, (4.6)

we can make the following ’Ansatz’ for the density, mass and velocity solution using the ’to be determined’
functions α(x),m(x) and v(x)

ρ(r, t) =
α(x)

4πGt2
, Mr =

c
3
s
t

G
m(x), u(r, t) = csv(x) (4.7)

You can find the details of the derivation of these functions in the original paper by Shu. Fig. 4.4 shows the
time evolution of the collapse until the expansion wave reaches the initial outer boundary. The inner part of
the density profile is determined by the free-fall collapse. For x� 1, hence r � cst, the density and velocity
in the free-fall region can be described as

ρ(r, t) =
c
3/2
s

17.96 G

1√
t

1
r3/2

, u(r, t) =

�
2GM∗(t)

r
. (4.8)
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Figure 4.4: Left: Density as a function of radial coordinate for the inside-out collapse of a 0.96 M⊙ core with
an initial velocity of 0.2 km/s. The initial radius of the outer boundary is indicated by the dashed line. The
different profiles correspond to t = 1, 2, 4, 8× 1012 s (3.2, 6.3, 12.7, 25.4× 104 yr). Right: The corresponding
velocity profiles. The plots are in cgs units.

The accretion rate Ṁ = ∂Mr(0,t)
∂t

follows from Eq.(4.7)

Ṁ = 0.975
c
3
s

G
(4.9)

and is constant. This implies that the stellar mass grows linear with time.
As we move outwards in the solution, we encounter a transition region, where matter starts to fall

towards the center. The kink in the profile indicates the position of the expansion wavefront (always at
x = 1). Outside that point, we see an isothermal sphere solution with ρ ∼ r

−2.

4.2.2 Instabilities

The adiabatic index Γ is used to describe the relation between the pressure P and the volume V of a gas
during an adiabatic compression or expansion. For such a process, PV

Γ is a constant. This means that for
a small adiabatic change in volume and pressure, we can write

Γ
dV

V
+

dP

P
= 0 (4.10)

V dP = −ΓPdV

and hence

d(PV ) = PdV + V dP (4.11)
= −(Γ− 1)PdV
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During an adiabatic collapse, there is no heat transfer and so the change in internal energy Uin of the
system can be written as

dUin = −PdV =
1

Γ− 1
d(PV ) . (4.12)

Hence, for a constant adiabatic index Γ, the relation

Uin =
1

Γ− 1
PV (4.13)

holds. For a system in virial equilibrium, the average pressure < P > can be written as one third of the
density of stored gravitational energy

< P >= −1
3

UG

V
. (4.14)

For a self-gravitating gas in hydrostatic equilibrium, we can thus write

−1
3

UG

V
= (Γ− 1)

Uin

V
(4.15)

3(Γ− 1)Uin + UG = 0

The total energy is
Utot = Uin + UG = (4− 3Γ)Uin , (4.16)

and the system is bound or stable if Utot < 0, hence if Γ > 4/3.
On the other hand, Eq.(4.5) indicates that Γ < 5/3. This is the limit for radiative energy transport. If

Γ were larger, the system would become instable to convection and energy transport could happen that way
as well.

Figure 4.5: Left: The adiabatic index (Γ1 is called the first adiabatic index,
�

∂ ln P

∂ ln ρ

�

ad
) as a function

of temperature. The arrows mark the onset of specific physical processes that change the index most
dramatically causing instability in the nearly formed stellar core (figure and caption from Schulz 2005).
Right: The Rosseland mean opacity κR as a function of temperature taken from the same calculation as
the adiabatic index. It shows the behaviour of opacity parallel to the changes in the adiabatic index and
thus how it can counter drifts into instability regions (figure and caption from Schulz 2005). Comment: The
leftmost three arrows should be labelled with H2 instead of H.

Fig. 4.5 shows on the left the adiabatic index as a function of temperature T . With increasing tempera-
ture, the molecules in the gas get first excited, and then they dissociate (H2 at ∼ 2000 K1). Above a critical
temperature, which is density dependent, the gas becomes more and more ionized. The figure was computed
for a gas density of 10−14 g cm−3. With changing density, the depth and heights of these peaks and valleys
in Γ changes.

1
Under conditions of thermodynamic equilibrium, the dissociation constant K(H2) is related to the partial pressure of the

atomic constituent p(H) and p(H2) through K(H2) = p2
(H)/p(H2). The dissociation constant K depends only on temperature.

At 2000 K, K(H2) = 3.45 dyn/cm
2
.
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4.2.3 Opacities

The right side of Fig. 4.5 shows the gas opacities as a function of temperature T corresponding to the change
in adiabatic index shown in the left side of Fig. 4.5. The opacity is needed to prevent too much energy
from leaking out. This enables the temperature and thus the pressure in the core to build up and hence
hydrostatic equilibrium to be established. To calculate the Rosseland mean opacity for a certain gas mixture,
we need to know the individual opacities for more than 60 million atomic, molecular transitions from neutral
and ionized stages. This has largely been enabled by the nuclear bomb experiments after the second world
war. Later astrophysics benefitted from this data and the largest projects were the Opacity Project (OP)
and the Opacity Project at Livermore (OPAL).

The Rosseland opacity shown here contains also grain opacities at low temperature (typical condensation
temperatures of grains are around 1300 K). At low temperatures and densities, changes in the opacity are due
to the melting of grains ice mantles and later grain evaporation. The next changes arise from the ionization
of alkali metals and then the dissociation of H2.

Instabilities that are caused by rapid changes in opacity in connection with increasing temperature
and density are called ’secular’ instabilities. If κR increases upon adiabatic compression, we call these
instabilities ’vibrational’ instabilities. They are more complex than the dynamical instability that arises
from the adiabatic index only.

4.2.4 Rotating collapse

Figure 4.6: Sketch of an inside-out collapse including
rotation. The outer envelope stays spherical and the
inner region is affected by the rotation. The radius di-
viding these two zones is the centrifugal radius rc (or
here denoted as Rc). Inside the centrifugal radius, an
equatorial accretion disk forms.

The previously sketched picture of a spherical
inside-out collapse (gravity versus pressure) can-
not explain a series of observational phenomena
that accompany star formation. These are for ex-
ample the presence of protoplanetary disks, jets
and outflows. While magnetic fields or rotation
will not prevent the collapse, they will change the
way matter flows and accretes.

We now briefly consider the impact of rotation
on the protostellar collapse. Since the cloud re-
mains hydrodynamical stable for a long time, we
can assume that it rotates as a solid body. Also,
we assume that the cloud rotates slowly, so that
the centrifugal force is initially very small and the
early stages of collapse are almost radial. In this
limit, we can distinguish between an outer enve-
lope which stays almost spherical and an inner re-
gion that gets distorted due to rotation and forms
an equatorial accretion disk (Fig. 4.6).

Depending on the specific angular momentum
of a gas parcel, it will either be able to accrete
onto the protostellar core (very low specific angu-
lar momentum) or accrete onto the equatorial disk
at some radius corresponding to its specific angular momentum. The maximum possible distance from the
star at which such a gas parcel can end up is called the centrifugal radius rc. This is also the quantity
limiting the inner region and thus the size of the accretion disk. In the following paragraphs we will derive
this quantity from simple principles.

If we study the trajectory of a fluid element during the infall, we can assume that the protostar + disk
mass is a point source and that the only gravity and rotation play a role. Under these circumstances, the
fluid element will have a bound elliptical orbit (the conic section corresponding to a negative energy — hence
an ellipse or circle; unbound orbits have conic sections corresponding to a parabola or hyperbola). However,
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since the inital energy is small compared to the energy it has when it reaches the equatorial plane, we can
approximate it reasonably well by a parabola (zero-energy or unbound orbit; parabola open to the left —
along x-axis — focus at (0,0))

r =
req

1 + cos Ψ
, (4.17)

where the coordinates and quantities are introduced in Fig. 4.7. If the fluid element would reach rmin, the
maximum orbital velocity would be

v
2
max =

2GM∗
rmin

, (4.18)

Figure 4.7: Sketch of a parabolic orbit in rotating infall.
A fluid element with polar coordinates (r, Ψ) falls in and
hits the equatorial disk at a radius req. In the absence
of the disk, the fluid element would have reached the
smaller distance rmin before swinging back out again.

where M∗ is the mass of the protostar + disk.
However, the fluid element will never reach that
part of the trajectory since it collides with the
forming disk at Ψ = 90o. The specific angular
momentum can be written as

j
2 = r

2
minv

2
max = 2GM∗rmin . (4.19)

Since the fluid element reaches rmin at Ψ = 0,
Eq.(4.17) implies that rmin = rc/2. Therefore, we
can write the radius at which the fluid element
reaches the plane as

req =
j
2

GM∗
. (4.20)

Now we can express the specific angular momentum in terms of the initial quantities Ω0 (angular velocity)
and θ0 (inclination of orbital plane with respect to the rotation axis, θ0 = 90o is the midplane)

j = R
2Ω0 sin θ0 = c

2
s
t
2Ω0 sin θ0 , (4.21)

where R is the distance from the center at which the fluid element starts its collapse (position of the
rarefaction wave at time t — its speed is cs and hence R = cst). The angular momentum is larger for higher
values of θ0 and has a maximum at θ0 = 90o (the centrifugal radius). Inserting this into Eq.(4.20) and using
the expression found for the core mass Mr(t) in Sect. 4.2.1, we can rewrite req as

req =
cst

3Ω2
0 sin θ

2
0

m0
. (4.22)

For θ0 = 90o, req is the centrifugal radius of the disk

rc ≈ 7.33 AU
�

cs

0.35 km/s

� �
Ω

10−14 s−1

�2 �
t

105 yr

�3

. (4.23)

For the latter expression, we assumed that m0 ∼ 1 (see Sect. 4.2.1). The value Ω = 10−14 s−1 is close to
typical observed values of a few times 10−14 - 10−13 s−1. This gives us also an estimate of the initial size
of the accretion disk. We will later see that the size of this initial disk grows in the later stages of star
formation due to e.g. angular momentum transport (viscous spreading of the disk).

4.2.5 Collapse in the presence of a magnetic field

An additional complexity is introduced by the presence of a magnetic field. Typical values in molecular
clouds are small, of the order of a few 10 µG. We consider here for simplicity the non-rotating case. The
magnetic field causes an additional pressure component that can counterbalance the collapse of the core.
In the case of a poloidal magnetic field (Fig. 4.8), the outward moving expansion wave (Sect. 4.2.1) travels
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faster parallel to the magnetic field lines. Even though the gas flow itself slows down in the presence of a
magnetic field, the expansion wave travels faster, resulting in an almost unchanged mass accretion rate Ṁ .

In analogy to the previous section, we can now define a magnetic centrifugal radius

rb = kbG
2/3

B
4/3
0 c

−1/3
s

t
7/3 (4.24)

≈ 540 AU
�

B0

30 µG

�4/3 �
cs

0.35 km/s

�−1/3 �
t

105 yr

�7/3

, (4.25)

where kb = 0.12 (from numerical calculations). Typically, rb is 1-2 orders of magnitude larger than rc.
Fig. 4.9 illustrates the collapse environment roughly 2 × 105 yr after the onset of collapse (left) and at the
end of the free-fall phase (right). This figure illustrates the formation of a pseudo-disk (caused by magnetic
forces deflecting the infalling gas towards the equatorial plane) that has in the end a size of ∼ 1000 AU. We
can picture the much smaller centrifugally supported disk inside the thick line (labelled ’inside solution’).
Hence, we can imagine that the inner accretion disk is fed by the outer magnetically stabilized pseudo-disk.

Figure 4.8: Sketch of the poloidal magnetic field during
the protostellar collapse.

Another characteristic scale is the radius rm at
which magnetic and thermal pressure are equal

B
2
0

8π
∼ ρc

2
s

. (4.26)

At the begin of the collapse, we can approximate
the density profile as that of an isothermal sphere
(see Sect. 4.2.1)

ρ =
c
2
2

2πGr2
. (4.27)

Inserting this in Eq.(4.26) yields

B
2
0

8π
=

c
4
s

2πGr2
(4.28)

rm =
2c

2
s

B0

√
G

. (4.29)

Figure 4.9: Illustration of a collapse of a magnetic spherical, isothermal sphere at about 2×105 yr (left) and
at the end of the free-fall phase (right). The solid lines are contours of equal density, the dashed lines are
magnetic field lines, the thick arrows show the velocity field. The horizontal and vertical axis are in AU.
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4.3 Line profiles

Figure 4.10: Sketch of the line profile formation in a collapsing
core.

If spectrally resolved, line profiles carry in-
formation on the gas motion along the line
of sight, its absolute values and signs. The
characteristic emission profile of the pro-
tostellar collapse phase is an asymmetric
double-peaked line. We can understand
the formation of this profile from a sim-
ple sketch of the radial density and tem-
perature profile of the core and its veloc-
ity structure. For that, Fig. 4.10 illustrates
how the profile is composed if we assume
that the collapse can be approximated by
a series of uniform gas density and temper-
ature shells. The central shells have higher
densities and temperatures compared to the
outer shells (see top panel). The layers in
front of the protostar produce redshifted
emission, while the ones behind the proto-
star produce blueshifted emission (the red
and blue arrows indicate the infall motion
of the shells - middle panel). An important
pre-requisite for observing such a collapse
signature is that the line is optically thick.
An optically thin line is symmetric and thus
indistinguishable from a normal emission line without infall/outflow. The line profile can be broken up into
velocity bins corresponding to the individual layers. The layer responsible for most of the emission in a
velocity bin is indicated by its number. The degree of radiation leaking into neighboring velocity bins is
given by the turbulent velocity field (σ). If the line is optically thick, absorption turns the line profile asym-
metric as outer cooler gas shells in the redshifted wing can partially absorb emission from the hotter shells
that are closer to the protostar. This is not the case for the blueshifted wing, because in that case, the gas
temperature increases towards the observer (hotter inner shells are closer to us than the cool outer shells).
In the optically thin case, we do not encounter absorption and hence the profile stays symmetric.

Figure 4.11: Variation of infall asymmetry (a) with peak optical depth τ0 and (b) with infall speed Vin (from
Myers et al. 1996). (c) illustrates the definition of various line parameters.
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Figure 4.12: Spectral profiles of dense gas tracer lines in
the starless core L1544 (Tafalla et al. 1998).

Fig. 4.11 illustrates this for a series of models
with varying optical depth and infall velocities. In
a radiative transfer model of two uniform layers
with velocity dispersion σ and approach speed Vin,
the line profile is symmetric for τ0 < 1, but its
peak skews to the blue as τ increases beyond 1.
For Vin < σ and increasing τ0, the profile has two
peaks, with increasing ratio of blue to red peak
intensity. As Vin increases for fixed τ0 > 1, the
blue-red intensity ratio increases until the red peak
disappears into a red shoulder. The right panel of
Fig. 4.11 illustrates the definition of a set of line
parameters used to estimate the infall speed from
the line profile

Vin ≈
σ

2

vred − vblue
ln

�
1 + eTBD/TD

1 + eTRD/TD

�
(4.30)

The infall line asymmetry is not limited to the cen-
tral velocities. The asymmetry can occur in the
line wings as long as the emission stays optically
thick.

Fig. 4.12 illustrates the infall line profiles in
the starless core L1544 (Trafalla et al. 1998). The
lines vary from the high optical depth HCO+ 1-0
line with strong infall asymmetry to the low optical
depth C34S 2-1 line without infall asymmetry.
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