Informal proofs

We like you to give proofs in general as informal proofs, not as formal derivations in natural deduction or Hilbert type axiom systems.

Example. Informal proof of $\neg(\varphi \lor \psi) \rightarrow \neg \varphi \land \neg \psi$.

Assume $\neg(\varphi \lor \psi)$. Now also assume φ . This gives $\varphi \lor \psi$, a contradiction. So, $\neg \varphi$. Similarly, assuming ψ gives a contradiction. So, $\neg \psi$. From $\neg \varphi$ and $\neg \psi$, $\neg \varphi \land \neg \psi$ [Note that in an informal proof we stop here.]

This is of course connected on the one hand to a formal derivation in natural deduction, on the other hand to an explanation of the validity of $\neg(\varphi \lor \psi) \rightarrow \neg \varphi \land \neg \psi$ according to the BHK-interpretation.

Explanation of the validity of $\neg(\varphi \lor \psi) \rightarrow \neg \varphi \land \neg \psi$ according to the BHK-interpretation.

We have to give a method that, given a proof of $\neg(\varphi \lor \psi)$, produces a proof of $\neg \varphi \land \neg \psi$.

The latter consists of a proof of $\neg \varphi$ and a proof of $\neg \psi$ plus the conclusion. So, it will suffice to give methods to produce proofs of $\neg \varphi$ and $\neg \psi$, given a proof of $\neg(\varphi \lor \psi)$. Those two methods can then be combined to a method to obtain a proof of $\neg \varphi \land \neg \psi$. We give the method to produce a proof of $\neg \varphi$. For $\neg \psi$ it is completely analogous. A proof of $\neg \varphi$ is a method to produce a contradiction, given a proof of φ . This means that we have to give a method that, given proofs of $\neg(\varphi \lor \psi)$ and φ produces a contradiction. A proof of φ can be transformed into a proof of $\varphi \lor \psi$ by just adding the conclusion $\varphi \lor \psi$. Combining this with the proof of $\neg(\varphi \lor \psi)$, which is a method to obtain a contradiction, given a proof of $\varphi \lor \psi$, this makes for a method that, given proofs of $\neg(\varphi \lor \psi)$ and φ , produces a contradiction, which is what we needed.