Homework 5

- 1. Show that **IQC** has the disjunction property. [Warning: this exercise is easy but not completely trivial] [4 pts]
- 2. Let τ_n be the sentence $\exists x_1 \dots x_n (\bigwedge (x_i \neq x_j) \land \forall z (z = x_1 \lor \dots \lor z = x_n))$ expressing that there are exactly *n* elements.
 - Show, reasoning without using Kripke models, that $\tau_n \vdash \forall x(\varphi \lor \psi(x)) \rightarrow \varphi \lor \forall x \psi(x), x \text{ not free in } \varphi$. [3 pts]
 - Show using Kripke models that $\tau_n \vdash \forall x \neg \neg \varphi(x) \rightarrow \neg \neg \forall x \varphi(x).$ [3 pts]
- 3. Show that $\forall x \neg \neg \varphi(x) \rightarrow \neg \neg \forall x \varphi(x)$ is valid on all frames with a finite number of worlds. [4 pts]
- 4. Show that $\mathbf{HA} \vdash \forall x \forall y (x.y = y.x)$. You will need to prove two lemmas. [4 pts]