Homework 4

- 1. In the following, assume that x is not a free variable of ψ . Which of the following statements are intuitionistically valid? (If yes, give a proof, if not, give a countermodel).
 - (a) $(\exists x \varphi(x) \to \psi) \to \forall x(\varphi(x) \to \psi)$
 - (b) $\forall x(\varphi(x) \to \psi) \to (\exists x \varphi(x) \to \psi)$
 - (c) $(\forall x \varphi(x) \to \psi) \to \exists x(\varphi(x) \to \psi)$
 - (d) $\exists x(\varphi(x) \to \psi) \to (\forall x \varphi(x) \to \psi)$ [4 pts]
- 2. (a) Show that the following is valid: If $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to (\chi \lor \theta)$, then $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \chi \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \theta \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \varphi$. [4 pts]
 - (b) Give an example such that the first two alernatives of (a) do not apply, but the last one does. [2 pts]
 - $$\begin{split} (\mathbf{c})^* \ \mathrm{Let} \ \alpha \ \mathrm{be} \ (\neg \phi \to \psi \lor \chi) \to (\neg \phi \to \psi) \lor (\neg \phi \to \chi) \ . \\ \mathrm{Show \ that, \ if} \vdash_{IPC} \alpha \to \beta \lor \gamma \ , \ \mathrm{then} \\ \vdash_{IPC} \alpha \to \beta \ \mathrm{or} \vdash_{IPC} \alpha \to \gamma . [2 \ \mathrm{pts}] \end{split}$$
- 3. (a) Let φ contain only \wedge, \vee and \rightarrow but no \neg and no \bot . Let \mathfrak{M} be any Kripke-model (for the language of φ). Extend the model \mathfrak{M} to \mathfrak{M}^+ by adding one more node x at the top above all the nodes of \mathfrak{M} , and making all the propositional variables of φ true in x.

Show that, for all the nodes w in \mathfrak{M} we have:

 $\mathfrak{M}, w \models \varphi$ iff $\mathfrak{M}^+, w \models \varphi$

(satisfaction in the old and new model is the same for φ). [4 pts]

(b) Let φ contain only \land , \lor and \rightarrow but no \neg and no \bot . Show that $\vdash_{\mathbf{IPC}} \varphi$ iff $\vdash_{\mathbf{KC}} \varphi$. (You may use what is claimed about completeness of **KC** in class.) [2 pts]