Homework 3

Note: In general, try to do syntactic proofs informally, not by doing natural deductions.

1. Show that KC can be axiomatized by its axioms for atomic formulas only (i.e., we get the same logic if we only add the sentences $\neg p \vee \neg \neg p$ for all propositional letters p). [5 pts]
2. Falsify $[[r \rightarrow(((p \rightarrow q) \rightarrow p) \rightarrow p)] \rightarrow r] \rightarrow r$ on the linear frame of 3 elements. [4 pts]
3.* Show that the three following axiomatizations of $\mathbf{L C}$ are equivalent (without using completeness):
(a) IPC $+(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$
(b) IPC $+(\phi \rightarrow \psi \vee \chi) \rightarrow(\phi \rightarrow \psi) \vee(\phi \rightarrow \chi)$
(c) IPC $+[((\phi \rightarrow \psi) \rightarrow \psi) \wedge((\psi \rightarrow \phi) \rightarrow \phi)] \rightarrow \phi \vee \psi .^{1}[5 \mathrm{pts}]$
3. Show that the canonical frame of $\mathbf{K C}$ satisfies the property defined by KC:
$\forall x, y, z(x R y \wedge x R z \exists w(y R w \wedge z R w))$
and that therefore [explain!] KC is complete with respect to directed frames:
$\forall y, z \exists w(y R w \wedge z R w) .[4 \mathrm{pts}]$
[^0]
[^0]: ${ }^{1}$ Note that in the syllabus there is an error in the third axiomatization.

