Homework 2

- 1. Give Kripke counter-models to:
 - (a) $\neg (p \land \neg q) \rightarrow (p \rightarrow q)$ [2pts]
 - (b) $\neg\neg(p\lor q)\to\neg\neg p\lor\neg\neg q$ [2pts]
 - (c) $\neg \neg p \lor (\neg \neg p \to p)$ [2pts]

Proofs are not needed.

2. Exercise 4 of the syllabus, on p 16:

Prove that persistency transfers to formulas (i.e., if $w \models \phi$ and wRv then $v \models \phi$, for all propositional formulas ϕ). [4pts]

3. Show directly, **without** using Theorem 30 ($\vdash_{\mathbf{CPC}} \phi$ iff $\vdash_{\mathbf{IPC}} \phi^n$), that $((\varphi \to \chi) \land (\psi \to \chi) \to (\varphi \lor \psi \to \chi))^n$ is provable in **IPC**.

You are allowed to use the following fact: $\vdash_{\mathbf{IPC}} \varphi^n \leftrightarrow \neg \neg \varphi^n$. [4pts]

- 4.* **Definition:**
 - φ is **negative** iff there is some ψ such that $\vdash_{\mathbf{IPC}} \varphi \leftrightarrow \neg \psi$
 - φ has the **down property** iff for each w which is not an end-point, if for all x with wRx and $w \neq x$ we have $x \models \varphi$, then $w \models \varphi$.

Show that φ is negative iff it has the down property. [4pts]