1 Exercises Radon transform part 1

Exercise 1.1. (a) Use the Fourier slice theorem to prove the formula for the Radon transform of $\partial_{x}^{\alpha} f$

$$
R_{\theta} \partial_{x}^{\alpha} f=\theta^{\alpha} \partial_{s}^{|\alpha|} R_{\theta} f
$$

(b) prove the formula for the Radon transform of the convolution $f * g$

$$
R_{\theta}(f * g)=R_{\theta} f * R_{\theta} g
$$

Exercise 1.2. In this exercise we consider the Radon transform of radial functions in $n=2$ dimensions.
(a) The α-Abel transform is defined as

$$
A_{\alpha} g(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{\infty} \frac{g(s)}{(s-t)^{1-\alpha}} d s
$$

Use the formula

$$
\int_{x}^{s} \frac{d t}{(t-x)^{\alpha}(s-t)^{1-\alpha}}=\Gamma(\alpha) \Gamma(1-\alpha)
$$

to show that, for sufficiently smooth g, we have have

$$
\left(-\partial_{x} A_{1-\alpha} \circ A_{\alpha}\right) g=g,
$$

i.e. we have a left-inverse for A_{α}.
(b) Suppose $f(x)=F(|x|)$ and $\tilde{F}(r)=F(\sqrt{r})$. Show that for such $f, R f$ is independent of θ and can be written as

$$
R f(s)=\sqrt{\pi} A_{1 / 2} \tilde{F}\left(s^{2}\right)
$$

(c) Derive an inversion formula for the Radon transform for radial functions.

Exercise 1.3. (a) Assume $f(x)$ is of the form

$$
\begin{equation*}
f(x)=F(|x|)\left(\frac{x_{1}+i x_{2}}{|x|}\right)^{m}, \quad x \neq 0 \tag{1}
\end{equation*}
$$

Show that in polar coordinates (r, ϕ) with $x_{1}=r \cos \phi, x_{2}=r \sin \phi$ the right hand side of this equation becomes $F(r) e^{i m \phi}$.
(b) Suppose that f is given by (1). Show that $g=R f$ can be written in the form

$$
\begin{equation*}
g(\theta, s)=G(s)\left(\theta_{1}+i \theta_{2}\right)^{m} \tag{2}
\end{equation*}
$$

(c) Suppose that $g(\theta, s)$ can be written in the form (2). Show that $h=R^{\#} g$ can be written in similar form as (1), i.e.

$$
h(x)=H(|x|)\left(\frac{x_{1}+i x_{2}}{|x|}\right)^{m} .
$$

(In [1, pp. 25-30] the map $F \mapsto G$ is studied and an alternative inversion formula for the Radon transform is given.)

References

[1] F. Natterer. The mathematics of computerized tomography, volume 32 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1986 original.

