
An introduction to

COMPLEX NUMBERS

Jan van de Craats

Last update: April 25, 2022



Illustrations and LATEX typesetting: Jan van de Craats

Prof. dr. J. van de Craats is professor emeritus in mathematics
at the University of Amsterdam

This is an English translation of chapters 1, 2 and 3 of
Jan van de Craats: Complexe getallen voor wiskunde D

Translated by the author.

Copyright c© 2017 Jan van de Craats

All rights reserved.

This text may be freely downloaded for educa-
tional purposes only from the author’s homepage:
https://staff.fnwi.uva.nl/j.vandecraats/.



How to use this book

This is an exercise book. Each chapter starts with exercises, printed on the left-
hand pages. Once you have finished an exercise, you can check your answer at
the end of the book. On the right-hand pages, the theory behind the exercises
is explained in a clear and concise manner. Use this information if and when
required.

Background knowledge may be obtained from:

Jan van de Craats en Rob Bosch: Basisboek wiskunde. Tweede editie
Pearson, Amsterdam, 2009, ISBN 978-90-430-1673-5 (in Dutch)

or from its English translation:

Jan van de Craats and Rob Bosch: All you need in maths!
Pearson, Amsterdam, 2014, ISBN 978-90-430-3285-8.

The Greek Alphabet

α A alpha
β B beta
γ Γ gamma
δ ∆ delta
ε E epsilon
ζ Z zeta
η H eta
ϑ Θ theta

ι I iota
κ K kappa
λ Λ lambda
µ M mu
ν N nu
ξ Ξ xi
o O omicron
π Π pi

ρ P rho
σ Σ sigma
τ T tau
υ Υ upsilon
ϕ Φ phi
χ X chi
ψ Ψ psi
ω Ω omega

source: https://staff.fnwi.uva.nl/j.vandecraats/
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1 Calculating with

complex numbers

In this chapter you learn how to calculate with complex num-
bers. They constitute a number system which is an extension of
the well-known real number system. You also learn how to rep-
resent complex numbers as points in the plane. But for complex
numbers we do not use the ordinary planar coordinates (x, y) but
a new notation instead: z = x + i y. Adding, subtracting, multi-
plying and dividing complex numbers then becomes a straight-
forward task in this notation.



1 Calculating with complex numbers

1.1 Calculate:
a. (3 i )2

b. (−3 i )2

c. −(4 i )2

d. (− i )3

e. i 4

1.2 Calculate:
a. ( 1

2

√
2 i )2

b. (− 1
3

√
6 i )2

c. ( 1
2

√
4 i )2

d. ( 2
3

√
3 i )2

e. (− 1
2

√
3 i )2

Write the following roots in the form r i where r is a positive real number. Exam-
ple:
√
−5 =

√
5 i . Give exact answers and simplify the roots as much as possible

(for instance, write 3
√

3 instead of
√

27).

1.3
a.
√
−3

b.
√
−9

c.
√
−8

d.
√
−25

e.
√
−15

1.4
a.
√
−33

b.
√
−49

c.
√
−48

d.
√
−45

e.
√
−75

Solve the following quadratic equations. Give eaxct answers and simplify roots
if possible.

1.5
a. x2 − 2x + 2 = 0
b. x2 + 4x + 5 = 0
c. x2 + 2x + 10 = 0
d. x2 − 6x + 10 = 0
e. x2 − 4x + 8 = 0

1.6
a. x2 − 12x + 40 = 0
b. x2 − 4x + 6 = 0
c. x2 + 2x + 4 = 0
d. x2 − 6x + 12 = 0
e. x2 + 8x + 20 = 0

The following exercise is a real challenge! If you get stuck, you may look at the solution
in the answer section at the end of the book. But first try to solve this exercise yourself!

1.7 In calculating with roots from negative numbers you have to be very careful,
as will be apparent from the following paradoxical ’derivation’:

−1 = (
√
−1)2 =

√
(−1)2 =

√
1 = 1.

Try to find the error(s)! In other words, which of the four equality signs is (or are)
unjustified, and why?

2
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Square roots of negative numbers

Square roots of negative numbers

In school, you learned that there doesn’t exist a number x for which x2 = −1.
Indeed, squares are never negative. But what if we imagine that there does exist
such a number? A number—we call it “ i ” (from imaginary)—for which

i 2 = −1

holds true? One could call such a number a square root of −1, so i =
√
−1.

Then also for other negative numbers a square root can be found if we apply
the ordinary rules of calculation. For example, 6 i is a square root of −36 since
(6 i )2 = 6 i × 6 i = 36× i 2 = 36× (−1) = −36. In a similar way, it can be shown
that
√
−13 =

√
13 i , or that

√
−12 =

√
12 i = 2

√
3 i (note that

√
12 =

√
4 · 3 =

2
√

3).

What we have done, is finding a solution of the equation x2 = −a, where a is
a positive number. We have discovered that

√
a i is a solution, but, of course,

also −
√

a i is a solution: (−
√

a i )2 = (−1)2(
√

a)2 i 2 = 1 · a · (−1) = −a. The
complete soltion of the equation x2 = −a therefore is x = ±

√
a i .

The abc-formula

If we have a number i for which i 2 = −1 holds, then we can solve any quadratic
equation, even if its discriminant is negative. For instance, take x2 + 2x + 5 = 0.
Indeed:

x2 + 2x + 5 = 0
(x + 1)2 + 4 = 0

(x + 1)2 = −4

yielding x + 1 = ±2 i so x = −1 + 2 i or x = −1− 2 i .

This boils down to applying the well-known abc-formula for solving quadratic
equations. The solutions of the quadratic equation ax2 + bx + c = 0 are given by

x1,2 =
−b±

√
b2 − 4ac

2a
.

If the discriminant b2 − 4ac is negative, then 4ac− b2 is positive, so
√

b2 − 4ac =√
(4ac− b2)(−1) =

√
4ac− b2 i . In the example above we had a = 1, b = 2,

c = 5 and b2 − 4ac = 22 − 4 · 1 · 5 = −16, so, indeed, x1,2 =
−2± 4 i

2
= −1± 2 i .

source: https://staff.fnwi.uva.nl/j.vandecraats/
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1 Calculating with complex numbers

Calculate the following complex numbers, draw them in the complex plane and
calculate their absolute value.

1.8
a. (1− 2 i ) + (3− 4 i )
b. 2 i − (4− 2 i )
c. (2− 2 i ) + (−1 + 2 i )
d. (4− 6 i )− (1− 3 i )
e. (2− i ) + (3− 2 i )

1.9
a. (1− 2 i )(3− 4 i )
b. 2 i (4− 2 i )
c. (2− 2 i )(2 + 2 i )
d. (1− 3 i )2

e. (2− i )2

1.10
a. i 3

b. i 4

c. i 5

d. i 10

e. i 2006

1.11
a. (− i )5

b. (2 i )3

c. (−2 i )7

d. (1 + i )3

e. (1− i )3

The complex numbers z for which Re(z) = 5 holds, constitute the vertical line
x = 5 in the complex plane. Draw the following lines in the complex plane.

1.12
a. Re(z) = 4
b. Re(z) = −3
c. Im(z) = 2
d. Im(z) = −2
e. Im(z) = Re(z)

1.13
a. Re(z) + Im(z) = 1
b. Re(z) = 2 Im(z)
c. Re(z)− 2 Im(z) = 1
d. Re(z) + Im(z) = 5
e. Re(z) + Im(z) = Re(z) −

Im(z)

The complex numbers z for which |z| = 5 holds, constitute the circle with radius
5 and center 0. Verify that the complex numbers z for which |z − 1| = 5 holds,
constitute the circle with radius 5 and center 1. Draw the following circles in the
complex plane and for each circle give its center and its radius.

1.14
a. |z| = 4
b. |z− 1| = 3
c. |z− 2| = 2
d. |z− 3| = 1
e. |z + 1| = 5

1.15
a. |z + 3| = 4
b. |z− i | = 5
c. |z + 2 i | = 1
d. |z− 1− i | = 3
e. |z + 3− i | = 2

4
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The complex plane

The complex plane

In solving quadratic equations we have encountered numbers of the form a + b i .
They are called complex numbers. For instance −1 + 2 i or 3− 5 i . Such numbers
can be added as follows: (−1 + 2 i ) + (3− 5 i ) = 2− 3 i . Or subtracted as follows:
(−1 + 2 i )− (3− 5 i ) = −4 + 7 i . Or even multiplied:

(−1 + 2 i )(3− 5 i ) = −3 + 5 i + 6 i − 10 i 2 = −3 + 11 i + 10 = 7 + 11 i .
Just expand brackets and use that i 2 = −1.
A complex number a + b i is completely determined by the two real numbers a
and b. Real numbers may be thought of as points on a line, the real number line.
In a similar way, the complex numbers may be thought of as points in a plane,
the complex plane. In this plane first a coordinate system has to be chosen. The
complex number a + b i then corresponds to the point with coordinates (a, b):

2 + 5 i

-5 - 3 i

3 - 2 i

-4 + 2 i

α = a + b i

|α|

a

b i

1 2 30 5 6

i

- 1- 3- 5 - 2- 4- 6

2 i

5 i

6 i

- i

-2 i

-3 i

For the points on the x-axis we have b = 0. Instead of a + 0 i we then simply
write a. And for the points on the y-axis we have a = 0. Then we do not write
0 + b i but simply b i . And instead of 1 i , of course, we simply write i .

The x-axis from now on will be called the real axis and the numbers on it the real
numbers. The y-axis is called the imaginary axis and the numbers on it are called
the imaginary numbers. Complex numbers often are denoted by the letter z or by
Greek letters like α (alpha). We then write z = x + y i or α = a + b i .

If α = a + b i is a complex number, then a is called its real part, notation a =
Re(α), and b is called its imaginary part, notation b = Im(α). The imaginary part,
therefore, is a real number! The real number

√
a2 + b2 is called the absolute value

of α, notation |α|. Instead of absolute value one also often uses the word modulus.
The absolute value of α is the distance from α to the origin (by the Pythagorean
theorem). If α happens to be a real number, then |α| equals the ordinary absolute
value of α.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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1 Calculating with complex numbers

Calculate the following quotients of complex numbers, i.e., write each quotient
in the form a + b i with a and b real.

1.16

a.
1

3− 4 i

b.
3

4− 2 i

c.
2− 2 i
−1 + 2 i

d.
4− 6 i
1− 3 i

e.
2− i

3− 2 i

1.17

a.
1− 2 i
3 + 4 i

b.
2 i

1− 2 i

c.
1
i

d.
1− 3 i

i

e.
1 + i
1− i

1.18

a.
3 i

4 + 3 i

b.
3 + i

1− 2 i

c.
2− i
−1 + 2 i

d.
2− i

1 + 2 i

e.
1 + 2 i
2− i

1.19

a.
1− 2 i

4 i

b.
2− i

3 + 2 i

c.
1 + i

4 i

d.
2− i
− i

e.
1 + 3 i
3− i

6
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Multiplication and division

Multiplication and division

Multiplying complex numbers is done by expanding brackets and using that
i 2 = −1. In the previous section you already have seen an example of multi-
plying two complex numbers. It always goes like this:

(a1 + b1 i )(a2 + b2 i ) = a1a2 + a1b2 i + a2b1 i + b1b2 i 2

= (a1a2 − b1b2) + (a1b2 + a2b1) i .

Division is the inverse operation of multiplication. We will teach you a trick to
calculate the quotient of two complex numbers in a fast and simple manner. First
we give an example:

1− 2 i
2 + 3 i

=
(1− 2 i )(2− 3 i )
(2 + 3 i )(2− 3 i )

=
−4− 7 i

4− 6 i + 6 i − 9 i 2 =
−4− 7 i

13
= − 4

13
− 7

13
i .

In the third step we obtained in the denominator the real number 13, from which
we subsequently could easily calculate the quotient in the desired form a + b i .

The trick apparently consists of multiplying numerator
and denominator with the same complex number (which
doesn’t change the quotient). This number is the so-called
conjugated complex number of the denominator. The conju-
gated complex number of α = a + b i is the complex num-
ber a− b i , notation α. One gets α by flipping the sign of
the imaginary part of α.
The trick above works because it produces in the denomi-
nator a number of the form

αα = (a + b i )(a− b i ) = a2 − ab i + ab i − b2 i 2 = a2 + b2.

This is always a positive real number (except if a = b = 0,
but then we have α = 0, and also for complex numbers it
is impossible to divide by 0).

0 a

α

α
_

b i

-b i

|α|

|α
_
|

In the previous section we defined the absolute value |α| of α as |α| =
√

a2 + b2.
Consequently, we have αα = |α|2 and also |α| = |α|.
The only rules you should memorize on multiplication and division are:

To multiply complex numbers one should expand brackets using i 2 = −1.
To divide complex numbers one should multiply numerator and denomi-
nator by the conjugated complex number of the denominator and expand
brackets.

source: https://staff.fnwi.uva.nl/j.vandecraats/

7



1 Calculating with complex numbers

Summary

Complex numbers are numbers of the form α = a + b i , where a and b are real
numbers. Complex numbers can be represented as points in a plane in which a
coordinate system is chosen. The complex number α = a + b i then is the point
with coordinates (a, b).

Terminology and notations:

If α = a + b i then a is called the real part and b the imaginary part of α.
If α = a + b i then α = a− b i is called the conjugated complex number of α.
If α = a + b i then |α| =

√
a2 + b2 is called the absolute value or modulus of α. This

is a non-negative real number. It is the distance from the point α to the origin.

Instead of α = a + b i one sometimes writes α = a + i b. The imaginary part then
is written after the i instead of before the i .

Calculation rules:

Addition and subtraction (by coordinates):

α1 + α2 = (a1 + b1 i ) + (a2 + b2 i ) = (a1 + a2) + (b1 + b2) i
α1 − α2 = (a1 + b1 i )− (a2 + b2 i ) = (a1 − a2) + (b1 − b2) i .

Multiplication:

α1α2 = (a1 + b1 i )(a2 + b2 i ) = (a1a2 − b1b2) + (a1b2 + a2b1) i .

This is easy to memorize: expand brackets and use that i 2 = −1.
In particular: αα = (a + b i )(a− b i ) = a2 + b2, so αα = |α|2.

Division:

α1

α2
=

α1 α2

α2 α2
=

(a1 + b1 i )(a2 − b2 i )
(a2 + b2 i )(a2 − b2 i )

=
(a1a2 + b1b2) + (−a1b2 + a2b1) i

a22 + b2
2 =

a1a2 + b1b2

a22 + b2
2 +

−a1b2 + a2b1

a22 + b2
2 i .

This also is easy to memorize: multiply numerator and denominator by the con-
jugated complex number of the denominator and expand brackets.

For real numbers (i.e., complex numbers a + b i with b = 0) the calculation rules
are in agreement with the ordinary calculation rules for addition, subtraction,
multiplication and division of real numbers. Consequently, the complex number
system is an extension of the real number system. The real numbers are located
on the horizontal axis, which is also called the real axis. The vertical axis is called
the imaginary axis; the numbers on this axis are called imaginary numbers.

8
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2 The geometry of

complex calculations

In the first section of this chapter you will learn how to view com-
plex numbers as vectors. The sum and the difference of two com-
plex numbers then are easily represented in a geometric setting.
It is also easy to describe circles in this way. Next you will learn
a new notation for complex numbers, the (r, ϕ)-notation, which
is related to polar coordinates. With this notation, the calcula-
tion rules for multiplication and division of complex numbers
will get a geometric interpretation in which a famous formula of
Leonhard Euler plays an important role. We close this chapter by
introducing the complex exponential function e z, the complex
sine function sin z and the complex cosine function cos z.



2 The geometry of complex calculations

2.1 In each of the following exercises two complex numbers α and β are given.
Calculate the complex number that corresponds to the vector with initial point α
and endpoint β. Always check your answer with a drawing.

a. α = i , β = −2 i
b. α = 1− i , β = −2
c. α = −2 + 3 i , β = 1− 2 i
d. α = 4, β = −4
e. α = 8 i , β = 8 i

2.2 For each of the previous exercises draw the vector corresponding to the com-
plex number α + β. Take the origin as initial point.

2.3 Determine the equation of the following circles and write each in the form

zz− αz− αz + αα− r2 = 0
Example: The equation of the circle with center 1 + i and radius 2 is
(z− (1 + i ))(z− (1− i )) = 4 which upon expanding brackets yields

zz− (1− i )z− (1 + i )z− 2 = 0.

a. The circle with center i and radius 3
b. The circle with center 1− i and radius

√
2

c. The circle with center 1 and radius 1
d. The circle with center −2 + i and radius 2
e. The circle with center 1− 2 i and radius 1

Not every equation which at first sight looks like a circle equation represents a circle. For
instance, take zz = −1. This does not represent a circle, since the left-hand side is greater
than or equal to 0 for each complex number z. Therefore, there are no complex numbers z
satisfying this equation.

2.4 Investigate which of the following equations represents a circle. If so, then
determine its center and radius.

a. zz− i z + i z = 0
b. zz + (1 + i )z + (1− i )z = 2
c. zz + 2 i z− 2 i z + 4 = 0
d. zz + 2z + 2z + 5 = 0
e. zz + (2− i )z + (2 + i )z− 1 = 0

10
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Complex numbers as vectors

Complex numbers as vectors

A vector in the plane can be represented by an arrow pointing from an initial
point to an end point. Parallel arrows with the same direction and the same size
represent the same vector.

In the complex plane, to each complex number α a vector
may be associated by drawing an arrow from the origin
to the point α. This vector then also can be represented
by an arrow pointing from an arbitrary point β to the
point α + β, since the points α + β, β, 0, and α form a
parallelogram (parallelogram construction of α + β).

α

β

α + β

0

The vector representation is convenient to picture the dif-
ference β− α of two complex numbers α and β:

β− α is the vector (arrow) pointing from α to β.

Note that to find the complex number β− α as a point in
the complex plane, you have to start the arrow at the ori-
gin. Example: α = 1+ 2 i , β = −1+ i so β− α = −2− i .

α

β

β − α

0

The vector representation is also convenient in working
with circles. If C is a circle with center α and radius r then
for each point z on C we have

|z− α| = r.

Thus, the absolute value of z− α equals r, in other words,
the arrow pointing from α to z has length r.

α
0

z
C

In the figure above we have taken α = −1 + i and r = 3. Therefore, that circle is
given by |z− (−1 + i )| = 3 so |z + 1− i | = 3.

Sometimes it is also convenient not to work with the absolute value, but to use
|w|2 = ww (see page 7) with w = z− α. Then the equation of the circle C with
center α and radius r can be written as

(z− α)(z− α) = r2.

The circle above therefore is given by (z + 1− i )(z + 1 + i ) = 9, or, upon ex-
panding brackets,

zz + (1− i )z + (1 + i )z− 7 = 0.

The unit circle, the circle with center 0 and radius 1, is given by

zz = 1.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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2 The geometry of complex calculations

For some angles (given in radians) the sine and the
cosine have a well-known exact value. For exam-
ple, cos 1

6 π = 1
2

√
3, sin 1

6 π = 1
2 and cos 1

4 π =

sin 1
4 π = 1

2

√
2. This means that the points α and

β in the drawing to the right have nice exact rectan-
gular coordinates, namely α = ( 1

2

√
3, 1

2 ) and β =

( 1
2

√
2, 1

2

√
2). Writing α and β as complex numbers,

we therefore get

α =
1
2

√
3 +

1
2

i and β =
1
2

√
2 +

1
2

√
2 i .

0 1

i

 α
 β

1_
6 π

1_
4
π

In the next exercises all given points are located on the unit circle. Draw these
points and give their argument (in radians) in the form ϕ + 2kπ (where k is an
arbitrary integer). Example: arg i = 1

2 π + 2kπ.

2.5
a. − i
b. −1
c. 1
d. − 1

2

√
2 + 1

2

√
2 i

e. 1
2 + 1

2

√
3 i

2.6
a. 1

2

√
2− 1

2

√
2 i

b. 1
2

√
3− 1

2 i

c. − 1
2

√
2− 1

2

√
2 i

d. − 1
2

√
3 + 1

2 i

e. 1
2 −

1
2

√
3 i

Multiplication or division of complex numbers on the unit circle is done by adding
or subtracting their arguments (see the explanation on the next page). Use this in
the next exercises. Therefore, find solutions in a geometric way; not by expanding
brackets!

2.7
a. ( 1

2

√
2 + 1

2

√
2 i )2

b. ( 1
2

√
2− 1

2

√
2 i )3

c. (− 1
2

√
3 + 1

2 i )3

d. (− 1
2

√
3− 1

2 i )5

e. ( 1
2

√
3− 1

2 i )( 1
2

√
2− 1

2

√
2 i )2

2.8
a. (− i )/( 1

2

√
3 + 1

2 i )

b. ( 1
2

√
2− 1

2

√
2 i )2/( 1

2

√
3 + 1

2 i )

c. (− 1
2

√
2 − 1

2

√
2 i )/( 1

2

√
3 +

1
2 i )3

d. ( 1
2

√
3− 1

2 i )6/( 1
2

√
3 + 1

2 i )

e. ( 1
2 +

1
2

√
3 i )3/( 1

2

√
2− 1

2

√
2 i )3

12
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Complex numbers on the unit circle

Complex numbers on the unit circle

Each point on the unit circle (the circle with radius 1 and the origin as its cen-
ter) has rectangular coordinates of the form (cos ϕ, sin ϕ). Here, ϕ is the angle
from the positive x-axis to the radius vector, the vector pointing from the ori-
gin to the given point (ϕ is de Greekse letter ‘phi’). We always measure angles
counterclockwise in radians (180◦ equals π radians). Angles are determined up
to integer multiples of 2π.

Written as a complex number, a point on the
unit circle therefore takes the form

z = cos ϕ + i sin ϕ.

Then, indeed, we have

| cos ϕ+ i sin ϕ| =
√

cos2 ϕ + sin2 ϕ =
√

1 = 1.

The angle ϕ is called the argument of z, no-
tation ϕ = arg(z). The argument is deter-
mined up to integer multiples of 2π.

0 1

i

cos ϕ

i sin ϕ cos ϕ + i sin ϕ

ϕ

What happens if two such numbers, for example z1 = cos ϕ1 + i sin ϕ1 and z2 =
cos ϕ2 + i sin ϕ2 are multiplied? Then

z1z2 = (cos ϕ1 + i sin ϕ1)(cos ϕ2 + i sin ϕ2)

= (cos ϕ1 cos ϕ2 − sin ϕ1 sin ϕ2) + i (cos ϕ1 sin ϕ2 + sin ϕ1 cos ϕ2)

But according to well-known trigonometric rules, we have

cos ϕ1 cos ϕ2 − sin ϕ1 sin ϕ2 = cos(ϕ1 + ϕ2) and
cos ϕ1 sin ϕ2 + sin ϕ1 cos ϕ2 = sin(ϕ1 + ϕ2)

so
z1z2 = cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2).

Therefore, this again is a a number on the unit circle, with as its argument the sum
ϕ1 + ϕ2 of the arguments of z1 and z2, so we have:

The product z1z2 of two complex numbers on the unit circle again is a
number on the unit circle. Its argument is the sum arg(z1) + arg(z2)
of the arguments of z1 and z2.

Similarly, for the quotient of two such complex numbers, we have:

The quotient
z1

z2
of two complex numbers on the unit circle again is a

number on the unit circle. Its argument is the difference arg(z1) −
arg(z2) of the arguments of z1 and z2.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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2 The geometry of complex calculations

By substituting ϕ = π in Euler’s formula on the next page, we get:

e π i = cos π + i sin π = −1 + i 0 = −1

so
e π i + 1 = 0.

This also is a famous formula by Euler. It combines the five most important con-
stants in mathematics, e , π, i , 1 and 0.

Calculate:

2.9
a. e−π i

b. e 2π i

c. e
1
2 π i

d. e 3π i

e. e 4π i

2.10
a. e−

3
2 π i

b. e
2
3 π i

c. e
5
2 π i

d. e−
13
6 π i

e. e 2006π i

2.11

a. e−π i e
2
3 π i

b. e 3π i e−2π i

c. e
1
3 π i e−π i

d.
e

1
2 π i

e
3
2 π i

e.
e−

1
4 π i

e
3
4 π i

2.12

a.
e−

3
4 π i

e
3
4 π i

b.
e

2
3 π i

e
1
6 π i

c. e
5
2 π i e 3π i

d.
e

7
6 π i

e
2
3 π i

e.
e π i

e 4π i
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Formulas of Euler

Formulas of Euler

In the eighteenth century the great mathematician Leonhard Euler proved the
formula

e i ϕ = cos ϕ + i sin ϕ.

We will not explain Euler’s proof here,
but rather present his formula as a defi-
nition, or, if you like, an abridged notation.
Instead of cos ϕ + i sin ϕ, from now on
we will write e i ϕ (or e ϕ i ). Note, how-
ever, that this doesn’t involve the well-
known real exponential function, since
the exponent i ϕ is not a real number but
an imaginary number. And, of course,
there is more to it: later we will define
the function e z for arbitrary complex
numbers z (see page 19).

0 1

i

cos ϕ

i sin ϕ e iϕ = cos ϕ + i sin ϕ

ϕ

In the previous section we showed that

(cos ϕ1 + i sin ϕ1)(cos ϕ2 + i sin ϕ2) = cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2).

In the new notation, this looks much more familiar:

e i ϕ1 e i ϕ2 = e i (ϕ1+ϕ2).

Just as for real exponential functions, we have in this case: in multiplying imaginary
powers of e , the exponents must be added. And, of course, also:

e i ϕ1

e i ϕ2
= e i (ϕ1−ϕ2).

In dividing imaginary powers of e , the exponents must be subtracted.

Substituting −ϕ for ϕ in Euler’s formula above, yields

e− i ϕ = cos(−ϕ) + i sin(−ϕ) = cos ϕ− i sin ϕ.

Adding the two formulas, we get e i ϕ + e− i ϕ = 2 cos ϕ, i.e.

cos ϕ =
e i ϕ + e− i ϕ

2
.

Subtracting the two formulas, we get e i ϕ − e− i ϕ = 2 i sin ϕ, i.e.

sin ϕ =
e i ϕ − e− i ϕ

2 i
.

Also these two famous formulas were found by Euler.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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2 The geometry of complex calculations

Write the following complex numbers in (r, ϕ) notation. Use the arctangent func-
tion (inverse tangent function) on a calculator. Use radians and give your answers
rounded to 4 decimals.

2.13
a. 1 + 2 i
b. 4− 2 i
c. 2− 3 i
d. −2− 3 i
e. −3

2.14
a. 2 + i
b. 2− i
c. − i
d. −5 + i
e. −3 i

2.15 Write the next complex num-
bers in x + i y notation. Use a
calculator and give your answers
rounded to 4 decimals.

a. 2e 2 i

b. 3e− i

c. 0.2e 0.3 i

d. 1.2e 2.5 i

e. e 3.1415 i

2.16 Take z = 3e−2 i . Write the fol-
lowing numbers in (r, ϕ) notation:

a. z
b. z2

c. (z)5

d.
1
z

e. zn (integer n)

2.17 Let be given the complex numbers z1 = 2e 5 i and z2 = 3e−2 i . Show, using
the (r, ϕ) notation, that

a. z1z2 = z1 z2

b.
(

z1

z2

)
=

z1

z2

2.18 Using the (r, ϕ) notation, show that in general for all complex numbers
z1 = r1 e i ϕ1 and z2 = r2 e i ϕ2 we have

a. z1z2 = z1 z2

b.
(

z1

z2

)
=

z1

z2

Hint: use the same method as in the previous exercise, but this time with letters
instead of numbers.
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The (r, ϕ) notation for complex numbers

The (r, ϕ) notation for complex numbers

Each complex number z = x + i y can be written in the form

z = r(cos ϕ + i sin ϕ)

where r = |z| =
√

x2 + y2 is the absolute value of z, and ϕ = arg(z) is the
argument of z, i.e., the angle from the positive x-axis to the radius vector (the
vector from the origin to the point z). Then x = r cos ϕ and y = r sin ϕ.

The abridged notation from the previous
section yields

z = r e i ϕ.

This is called the (r, ϕ) notation or polar
notation (since it is related to polar coor-
dinates).
The (r, ϕ) notation is very convenient for
multiplication and division:

z1z2 = r1 e i ϕ1 r2 e i ϕ2 = r1r2 e i (ϕ1+ϕ2)

z1

z2
=

r1 e i ϕ1

r2 e i ϕ2
=

r1

r2
e i (ϕ1−ϕ2).

0 1

i r

e iϕ

ϕ

x

i y z = x + i y = r e iϕ

For multiplying complex numbers the absolute values are multiplied and the arguments
are added. For dividing complex numbers the absolute values are divided and the argu-
ments are subtracted.

The relations between x, y, r and ϕ are

x = r cos ϕ, y = r sin ϕ

r =
√

x2 + y2, tan ϕ =
y
x

.

Using these relations, the notation z = x + i y of a complex number z can be
converted to the (r, ϕ) notation z = r e i ϕ and vice versa. There are, however,
some subtle intricacies in determining ϕ if x and y are given. In the first place,
ϕ is not defined if x = y = 0. Furthermore, if x = 0, y > 0 then ϕ = π

2 ,
and if x = 0, y < 0 then ϕ = −π

2 . In all other cases ϕ can be calculated using
the arctangent function (the inverse tangent function). Note, however that the
arctangent function always produces a value between −π

2 and π
2 . For complex

numbers z = x + i y in the left half plane (i.e., with x < 0) you have to add π:

ϕ = arctan
y
x
+ 2kπ if x > 0 and ϕ = arctan

y
x
+ π + 2kπ if x < 0.

Recall that the argument is determined up to integer multiples of 2π.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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2 The geometry of complex calculations

Write the following complex numbers in the notation x + i y. Use a calculator
and give your answers rounded to 4 decimals.

2.19
a. e 2+2 i

b. e 3− i

c. e 0.2+0.3 i

d. e 1.2+2.5 i

e. e−0.5+3.14 i

2.20
a. e−3+ i

b. e 3−0.5 i

c. e−2−3 i

d. e−1+5 i

e. e 0.8+3 i

2.21
a. cos( i )
b. cos(π + i )
c. sin(−2 i )
d. sin(−2− 3 i )
e. sin(4π − 2− 3 i )

In the next exercise you will be exploring the complex function w = e z using the fig-
ure below. It is not easy to ‘graph’ complex functions, since both z and w are complex
numbers, situated in a complex plane. To picture a ‘graph’ of such a function, a four-
dimensional space would be needed. Instead, we draw two complex planes, one z-plane
and one w-plane, and indicate corresponding z-values and w-values in some way. Below,
we already have given it a start.

z-plane

0

2π i

w = e z

0 1

w-plane

2.22

a. Verify that the vertical segment 0 ≤ y ≤ 2π of the y-axis in the z-plane is
mapped onto the unit circle in the w-plane in the indicated way.

b. The images of z = 0 and z = 2π i in the w-plane are not drawn completely
correct. What is wrong, and why are they drawn in this way?

c. In the blue strip in the z-plane a number of horizontal lines have been
drawn. Find their images in the w-plane.

d. Does there exist a point z that is mapped onto the origin in the w-plane? If
so, find it, if not, explain why such a z doesn’t exist.

e. Determine the images in the w-plane of the vertical segments x = 1, 0 ≤
y ≤ 2π and x = −1, 0 ≤ y ≤ 2π in the z-plane.

f. What is the image of the full y-axis?
g. Calculate all points z that are mapped onto w = i in the w-plane.
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The complex functions e z, cos z and sin z

The complex functions e z, cos z and sin z

The real exponential function e x is well-known, and we have learned in former
sections that

e i y = cos y + i sin y.

This means that we know the function e z for all z values that are purely real and
all z values that are purely imaginary. For arbitrary complex numbers z = x + i y
we now define

e z = e x e i y.

With this definition we have e z1+z2 = e z1e z2 for all complex numbers z1 and z2
since

e z1+z2 = e (x1+x2)+ i (y1+y2) = e x1+x2 e i (y1+y2) = e x1 e x2 e i y1 e i y2

= e x1 e i y1 e x2 e i y2 = e x1+ i y1 e x2+ i y2 = e z1 e z2 .

For all integer real numbers k we have e 2kπ i = 1, so

e z+2kπ i = e z e 2kπ i = e z.

In other words: the function e z is periodic with period 2π i . Furthermore, we have
|e z| = e x and arg(e z) = y + 2kπ since e x e i y is no else than the polar notation
for e z with r = e x.

Using Euler’s formulas we define the cosine function and the sine function for
arbitrary complex numbers z as follows:

cos z =
e i z + e− i z

2
and sin z =

e i z − e− i z

2 i
.

From the fact that e z is periodic with period 2π i it follows that the cosine and
the sine functions are periodic with period 2π, just as expected:

cos(z + 2kπ) = cos z and sin(z + 2kπ) = sin z for all integers k.

Without proof or further explanations we mention that the functions e z, cos z and
sin z are also differentiable and that the well-known differentiation rules also hold
in the complex case. For example, we have

d
dz

(e z) = e z

in other words: the function e z equals its own derivative. Also the following well-
known formulas keep valid for the complex sine and cosine functions:

d
dz

(cos z) = − sin z and
d
dz

(sin z) = cos z.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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2 The geometry of complex calculations

Summary

Complex numbers may be viewed as vectors: the complex number α corresponds
to the vector (arrow) pointing from the origin to the point α in the complex plane.
Arrows with the same size and direction represent the same vector. Addition of
complex numbers corresponds to vector addition (parallelogram construction).

The complex number β− α corresponds to the vector pointing from α to β.

The circle with center α and radius r is given by the equation

(z− α)(z− α) = r2.

Euler’s formulas:

e i ϕ = cos ϕ + i sin ϕ

cos ϕ =
e i ϕ + e− i ϕ

2
sin ϕ =

e i ϕ − e− i ϕ

2 i
.

The (r, ϕ) notation (polar notation) of a complex number z = x + i y is z = r e i ϕ,
where r = |z| =

√
x2 + y2 and x = r cos ϕ, y = r sin ϕ.

The number r is called the absolute value or modulus of z, and ϕ is called the ar-
gument of z, notation ϕ = arg(z). The argument is measured in radians. It is
determined up to integer multiples of 2π.

If x 6= 0 then tan ϕ = y/x and ϕ can be calculated as follows from x and y:

if x > 0 then ϕ = arctan
y
x
+ 2kπ

if x < 0 then ϕ = arctan
y
x
+ π + 2kπ.

In multiplying complex numbers the absolute values are multiplied and the arguments are
added. In dividing complex numbers the absolute values are divided and the arguments
are subtracted.

The complex exponential function e z:

e z = e x+ i y = e x e i y = e x (cos y + i sin y).

Then |e z| = e x and arg (e z) = y + 2kπ. The complex exponential function is
periodic with period 2π i .

The complex cosine function and the complex sine function:

cos z =
e i z + e− i z

2
sin z =

e i z − e− i z

2 i
.

The complex cosine and sine functions are periodic with period 2π.
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3 Roots and
polynomials

In this chapter you will meet complex roots and complex poly-
nomials. You will learn that each complex number has exactly n
complex nth roots, and, moreover, that these roots in the complex
plane are the vertices of a regular n-gon with the origin as its cen-
ter. Next, you will learn about complex polynomials and com-
plex polynomial equations. According to the Fundamental Theo-
rem of Algebra each polynomial equation of degree n has exactly n
solutions, provided they are counted with appropriate multiplic-
ity. Finally you will learn that each polynomial with real num-
bers as coefficients can be written as the product of real linear
factors and real quadratic factors with a negative discriminant.



3 Roots and polynomials

Write all nth roots in the following exercises in the (r, ϕ) notation (for each nth

root there are n possibilities). Give exact answers or answers rounded to four
decimals. In each case show in a drawing that the nth roots form the vertices of a
regular n-gon with the origin as its center.

As an example we have drawn the seven 7th roots 7
√

α where α = 1.7 + 1.5 i . Then
|α| ≈ 2.2672 and arg(α) ≈ 0.7230+ 2kπ so | 7

√
α| = 7

√
|α| ≈ 1.1240 and arg( 7

√
α) =

1
7 arg(α) ≈ 0.1033 + 2kπ

7 , hence

7
√

α ≈ 1.1240 e (0.1033+ 2kπ
7 ) i for k = 0, 1, . . . , 6

0 1

α

3.1
a. 3
√

i

b. 3
√
− i

c. 3
√

1

d. 3
√

8

e. 3
√

8 i

3.2
a. 3
√

1 + i

b. 3
√
−27

c. 3
√
−27 i

d. 3
√

1
2 −

1
2

√
3 i

e. 2
√

4

3.3
a. 4
√
−1

b. 4
√
− i

c. 5
√

1

d. 4
√

3− 4 i

e. 6
√

6 i

3.4
a. 4
√

1− i

b. 5
√
−32

c. 4
√

81 i

d. 7
√

2 i

e. 3
√

3 + 3 i
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What is a complex nth root?

What is a complex nth root?

We already know that
√
−1 = i , since i 2 = −1. Or rather we should say that√

−1 = ± i , since also (− i )2 = −1. But what about 3
√
−1? It must be a complex

number z satisfying z3 = −1. Do we know such a number? Sure: z = −1 is a
solution, since (−1)3 = −1. But also z = e

1
3 π i is a solution, since

z3 =
(

e
1
3 π i
)3

= e 3( 1
3 π i ) = e π i = −1.

And, of course, also z = e−
1
3 π i is a solution, since z3 = e−π i = −1.

Thus, we have found three complex numbers
z for which z3 = −1 holds. All three may
claim to be 3

√
−1. But unlike for real square

roots, which by convention are always taken
nonnegative, in working with complex num-
bers one doesn’t make a choice on the ‘pre-
ferred’ value of a complex root. As will be
shown later, preferred choices for complex
nth roots are not desirable. Therefore, if we
write, e.g. 3

√
−1, then it should be clear from

the context which of the three possible val-
ues is meant.

0 1-1

i
e 1_

3 π i

e - 1_3 π i

2_
3 π

The radius vectors of the three cube roots of −1 include angles of 2
3 π. The roots

themselves are the vertices of an equilateral triangle with the origin as its center.
Why this is the case, becomes clear when we look more in detail at the way we
have defined 3

√
−1.

We are looking for complex numbers z = r e i ϕ for which z3 = −1 holds. But
z3 =

(
r e i ϕ

)3
= r3e 3 i ϕ, which should be equal to −1. Since | − 1| = 1 and

arg(−1) = π + 2kπ we should have r3 = 1 and 3ϕ = π + 2kπ. It follows that
r = 1 (since r is a nonnegative real number) and ϕ = 1

3 π + 2
3 kπ. For k = 0, k = 1

and k = 2 we get

z = e
1
3 π i , z = e π i = −1, z = e

5
3 π i = e−

1
3 π i .

For any integer value of k we always get one of these three values. Indeed, the
argument increases by 2

3 π each time k increases by 1, and after three steps you are
back on the initial value. This holds in general for the cube roots of an arbitrary
complex number α 6= 0: in all cases one finds three cube roots, and their radius
vectors include angles of 2

3 π.

More generally, for any positive integer n:

Each complex number α = r e i ϕ with r = |α| > 0 has exactly n nth roots, namely

n
√

α = n
√

r e ( 1
n ϕ+ 2kπ

n ) i for k = 0, 1, . . . , n− 1.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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3 Roots and polynomials

z-plane

-1 0 1

i

w = √
−
z

w-plane

-1 0 1

i

z-plane

-1 0 1

i

w = √
3−
z

w-plane

-1 0 1 = √
3−
1

√
3−
1

√
3−
1

z-plane

-1 0 1

i

w = √
3−
z

w-plane

-1 0 1 = √
3−
1

i
√
3−
1

√
3−
1
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Why complex roots are multi-valued

Why complex roots are multi-valued

In the previous section we defined the nth root of a complex number α as follows:

n
√

α = n
√

r e ( 1
n ϕ+ 2kπ

n ) i for k = 0, 1, . . . , n− 1

so (unless α = 0) there are exactly n distinct possibilities for such a root. For the
usual square root of a positive real number, for instance

√
4, there are in principle

2 possibilities, namely 2 and −2, but for real numbers we use the convention that
for
√

4 always the positive root is taken, so
√

4 = 2. Then the other root is −
√

4.

Why don’t we have a similar convention for complex roots? For instance: always
take the root with a minimum nonnegative argument? The reason is that such
a convention would cause much trouble in working with complex functions in
which complex roots are involved.

For instance, take the function w =
√

z. A ‘graph’ of this function is not easy to
draw, since both the z-values and the w-values are located in a complex plane, so
a graph should require four dimensions. Instead, we draw two complex planes
next to each other: a z-plane and a w-plane as in the top figure on the previous
page. Consider the root function w =

√
z on a ring shaped domain around the

origin in the z-plane. Let z follow a path in the z-plane starting at 1 and describing
the unit circle in the counterclockwise sense. If we choose

√
1 = 1 at the starting

point then
√

w also describes the unit circle, starting at w = 1, but with half speed,
since

w =
√

z =
√

e i ϕ =
(

e i ϕ
)1/2

= e
1
2 i ϕ.

After one complete turn around the origin in the z-plane, w =
√

z has described
only a half turn in the w-plane, so w =

√
z has arrived at the other root, in other

words, we would have
√

1 = −1. If there would be a fixed convention for the
meaning of

√
z, then somewhere underway we should have jumped from one

root to the other, which is much troublesome.

The same occurs for each path in the z-plane that winds once around the origin:
you always end at the other ‘branch’ of the square root. The origin therefore is
called a branching point of the root function.

For higher roots a similar phenomenon happens. The middle and bottom figures
on the previous page illustrate the function w = 3

√
z. We have indicated how a

path along the unit circle in the z-plane that turns once around the origin pro-
duces in the w-plane a path from 3

√
1 = 1 to 3

√
1 = e 2π i /3 (for a counterclockwise

turn) or to 3
√

1 = e−2π i /3 (for a clockwise turn). Here, also, a fixed convention
on the meaning of 3

√
z would cause much trouble.

Therefore, a notation like n
√

z always indicates one of the n possible nth roots of z,
but from the context it should be made clear which root is meant.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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3 Roots and polynomials

Determine a quadratic polynomial of the form p(z) = z2 + α1z + α0 which has
the numbers z1 and z2 as zeroes, where

3.5
a. z1 = 1, z2 = −1
b. z1 = 1, z2 = 5
c. z1 = 1, z2 = i
d. z1 = i , z2 = −2 i
e. z1 = 1 + i , z2 = 1− i

3.6
a. z1 = 0, z2 = − i
b. z1 = 1, z2 = 2
c. z1 = 0, z2 = −2 i
d. z1 = 1 + 2 i , z2 = 1− 2 i
e. z1 = 1 + i , z2 = −1 + i

Determine a cubic polynomial of the form p(z) = z3 + α2z2 + α1z+ α0 with zeroes
z1, z2 and z3, where

3.7
a. z1 = 1, z2 = −1, z3 = 0
b. z1 = i , z2 = − i , z3 = 0
c. z1 = i , z2 = − i , z3 = 1
d. z1 = i , z2 = 2 i , z3 = 3 i
e. z1 = 1, z2 = −1, z3 = i

3.8
a. z1 = 1, z2 = 2, z3 = 3
b. z1 = 1 + i , z2 = 1− i , z3 = 1
c. z1 = 1, z2 = 0, z3 = 2
d. z1 = i , z2 = 0, z3 = 1
e. z1 = i , z2 = − i , z3 = 2 i
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On nth roots and nth-degree polynomials

On nth roots and nth-degree polynomials

We have seen that there are three cube roots of −1, namely −1, e
1
3 π i and e−

1
3 π i .

For simplicity we write ρ = e
1
3 π i and ρ = e−

1
3 π i (ρ is the Greek letter ‘rho’).

Therefore, the three roots are −1, ρ and ρ.

The cube roots of −1 are the complex num-
bers z for which z3 = −1, in other words,
they are the solutions of the cubic equation

z3 + 1 = 0.

Or, put it still differently, they are the zeroes
of the cubic polynomial z3 + 1. But consider
the equation

(z− (−1))(z− ρ)(z− ρ) = 0

It is obvious that its solutions are also equal
to−1, ρ and ρ. Would the left-hand side per-
haps be equal to z3 + 1 ?

0 1-1

i
 ρ = e 1_

3 π i

 ρ
_
 = e - 1_3 π i

Expanding brackets yields:

(z− (−1))(z− ρ)(z− ρ) = (z + 1)(z2 − (ρ + ρ)z + ρρ).

But ρ = 1
2 + 1

2

√
3 i so ρ + ρ = 1 and ρρ = 1 (verify this!), hence, indeed

(z+ 1)(z2− (ρ+ ρ)z+ ρρ) = (z+ 1)(z2− z+ 1) = z3− z2 + z+ z2− z+ 1 = z3 + 1.

What we have seen in this particular case, is also true in general:

If an nth-degree polynomial

p(z) = zn + αn−1zn−1 + · · ·+ α1z + α0

has n distinct zeroes z1, z2, . . ., zn, then p(z) can be written as

p(z) = (z− z1)(z− z2) · · · (z− zn).

In the given example we had n = 3, p(z) = z3 + 1 and z1 = −1, z2 = ρ, z3 = ρ.

In the previous section we determined the nth roots of a complex number α. The
corresponding polynomial then always has the form p(z) = zn− α. We have seen
that, indeed, it always has n zeroes (the nth roots of α), except in the trivial case
α = 0. What happens in general for nth-degree polynomials, will be treated in the
next section.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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3 Roots and polynomials

3.9 In each of the next exercises a polynomial p(z) and a number α are given.
Verify in each case that p(α) = 0, and determine the polynomial q(z) for which
p(z) = (z− α)q(z) holds.

a. p(z) = z4 − z3 − 2z2, α = −1
b. p(z) = z4 − z3 + 3z2 − 3z, α = 1
c. p(z) = z5 − i z4 − z + i , α = i
d. p(z) = z4 − 4z3 + 5z2 − 4z + 4, α = 2
e. p(z) = z4 − 1, α = − i
f. p(z) = z4 + 2z2 + 1, α = i

Hint: you could solve the previous exercises by systematically trying, but those
who know long division, will see that this is also a fast and easy method for the
division of polynomials. As an example we present the long division correspond-
ing to the case p(z) = 3z4 − 7z3 + 3z2 − z− 2 and α = 2. Substitution shows that
α = 2 is a zero, i.e., p(2) = 0. The following long division yields the quotient
polynomial q(z) = 3z3 − z2 + z + 1.

z− 2
/

3z4 − 7z3 + 3z2 − z− 2
∖

3z3 − z2 + z + 1

3z4 − 6z3

− z3 + 3z2

− z3 + 2z2

z2 − z
z2 − 2z

z− 2
z− 2

0

3.10 Determine in each of the previous exercises the multiplicity of the zero α
and subsequently find the other zeroes of p(z).
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The Fundamental Theorem of Algebra

Before continuing, we first give a formal definition of the term polynomial and
some related concepts.

Definition: A polynomial is a function of the form p(z) = αnzn +
αn−1zn−1 + · · ·+ α1z + α0. The complex numbers αn, αn−1, . . ., α1,
α0 are called the coefficients, and the complex number z is called the
variable. We always suppose that αn 6= 0 (since otherwise the term
αnzn can be omitted). The other coefficients, however, may be zero.
The number n is called the degree of the polynomial.

For each complex number z the polynomial yields a complex number p(z) as its
function value. If for a certain z0 we have p(z0) = 0 then z0 is called a zero of the
polynomial. The number z0 then is a solution of the equation

αnzn + αn−1zn−1 + · · ·+ α1z + α0 = 0.

Such an equation is called an nth-degree equation. Instead of a solution of the equa-
tion one also often uses the term a root of the equation, even if in the notation of
such solutions no root signs are used.

For each nth-degree polynomial p(z) with n > 1 the following theorem holds.

Factor theorem: If z0 is a zero of p(z), then there exists a polynomial
q(z) such that p(z) = (z− z0)q(z). Therefore it is possible to split off a
factor (z− z0) from p(z).

A first-degree polynomial is also called a linear polynomial; the corresponding
equation is also called a linear equation. A second-degree equation is also called
a quadratic equation. Quadratic equations can be solved by means of the abc-
formula.

Complex quadratic equations always have two complex solutions z1 and z2. The
corresponding polynomial p(z) = α2z2 + α1z + α0 then can be written as p(z) =
α2(z− z1)(z− z2). If the discriminant α2

1 − 4α2α0 is zero, then z1 and z2 coincide
and we have p(z) = α2(z− z1)

2.

In general for complex nth-degree polynomials the following theorem holds. It is
known as the fundamental theorem of algebra and it was proved for the first time by
C.F. Gauss in the beginning of the nineteenth century.

Fundamental Theorem of Algebra: For each nth-degree polynomial
p(z) = αnzn + αn−1zn−1 + · · · + α1z + α0 with n ≥ 1 there are n
complex numbers z1, . . ., zn such that p(z) = αn(z− z1) . . . (z− zn).

The numbers z1, . . ., zn are the zeroes of p(z). They need not be distinct. If a zero
occurs k times, it is called a k-fold zero and k is called the multiplicity of the zero.
Each nth-degree polynomial with n ≥ 1 therefore has exactly n complex zeroes
when counted with their multiplicity.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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3 Roots and polynomials

3.11 Split the following real polynomials in real linear factors and real quadratic
factors with a negative discriminant.
(Hint: if you don’t see such a factorization immediately, then first look for a zero and use
the factor theorem.)

a. z3 + 1
b. z3 − 1
c. z4 − 1
d. z3 + 27
e. z4 + 2z2 + 1
f. z4 − 2z2 + 1

3.12 Let n be an odd integer and suppose that

p(x) = xn + an−1xn−1 + · · ·+ a1x + a0

is a real nth-degree polynomial. Even without using complex numbers it can be
proven that p(x) has at least one real zero, namely by writing p(x) in the form

p(x) = xn
(

1 +
an−1

x
+ · · ·+ a1

xn−1 +
a0

xn

)
and compare the behavior of p(x) for big positive and big negative x-values. Give
such a proof.

On solving nth-degree equations
For quadratic equations the solutions can be found by using the abc-formula. Also for
cubic and quartic equations such exact formulas exist, but they are much more compli-
cated; we don’t treat them here.
For nth-degree equations with n ≥ 5, however, no such algebraic methods exist to find
all solutions. In such cases one has to turn to numerical approximation methods. The
fundamental theorem of algebra guarantees that there are always n solutions (counted with
multiplicity), but the theorem doesn’t provide a general method for finding them!

30

Jan van de Craats: Complex numbers,



Real polynomials

Real polynomials

If all coefficients of a polynomial are real numbers, it is called a real polynomial.
Then it is of the form

p(z) = anzn + an−1zn−1 + · · ·+ a1z + a0

for certain real numbers an, . . . a0. As always, we suppose that an 6= 0. A real
polynomial of degree n ≥ 1 also has n complex zeroes (counted with multiplic-
ity), but they need not be real. For instance, p(z) = z2 + 1 has no real zeroes. It is
clear, however, that a real polynomial always has at most n real zeroes. Since real
polynomials occur in many applications, we will deduce some special properties.

Theorem: If z0 = x0 + i y0 is a non-real zero of a real polynomial
p(z) = anzn + · · · + a0 (so y0 6= 0) then also the conjugated complex
number z0 = x0 − i y0 is a zero of p(z).

The proof, which is very simple, relies on three properties which follow immedi-
ately from the definition of conjugated complex number:

1. If a is a real number, then a = a.
2. For each α and β we have α + β = α + β.
3. For each α and β we have αβ = α β.

It follows that, in particular, zk = (z)k for each positive integer k.

Proof of the theorem: Let z0 = x0 + i y0 be a zero of p(z), so p(z0) = 0. Then
p(z0) = an(z0)

n + an−1(z0)
n−1 + · · ·+ a1z0 + a0

= an zn
0 + an−1 zn−1

0 + · · ·+ a1 z0 + a0

= anzn
0 + an−1zn−1

0 + · · ·+ a1z0 + a0 = p(z0) = 0 = 0.

If in the complex factorization p(z) = an(z− z1) . . . (z− zn) a factor (z− zk) oc-
curs for which zk = xk + i yk is not real, then there must also be a factor (z− zk).
Combining these factors and expanding brackets yields:

(z− zk)(z− zk) = z2 − (zk + zk)z + zkzk = z2 − 2xkz + x2
k + y2

k .

This is a real quadratic polynomial with discriminant 4x2
k − 4(x2

k + y2
k) = −4y2

k .
It is negative, as expected. Splitting off that quadratic factor yields a real polyno-
mial of degree n− 2, on which the same recipe can be applied, and so on. Thus,
we have also proved the following theorem:

Theorem: Each real polynomial can be written as a product of real lin-
ear factors and real quadratic factors with a negative discriminant.

As a consequence the degree of any real polynomial without real zeroes must be
even. It follows that each real polynomial of odd degree has at least one real zero.

source: https://staff.fnwi.uva.nl/j.vandecraats/
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3 Roots and polynomials

Symmary

The nth-roots of a complex number α = r e i ϕ are defined as follows

n
√

α = n
√

r e ( 1
n ϕ+ 2kπ

n ) i for k = 0, 1, . . . , n− 1.

If α 6= 0 then there are exactly n possibilities. The n roots then are the vertices of
a regular n-gon with the origin as its center.

A polynomial is a function of the form

p(z) = αnzn + αn−1zn−1 + · · ·+ α1z + α0 (with αn 6= 0).

The complex numbers αn, αn−1, . . ., α1, α0 are called the coefficients, and the com-
plex number z is called the variable. The number n is called the degree of the
polynomial. If p(z0) = 0 for a certain complex number z0, then z0 is called a zero
of p(z).

Factor theorem: If a polynomial p(z) of degree n > 1 has a zero z0, then there
exists a polynomial q(z) for which p(z) = (z− z0)q(z). Therefore, it is possible to
split off a factor (z− z0) from p(z).

Fundamental Theorem of Algebra: For each nth-degree polynomial

p(z) = αnzn + αn−1zn−1 + · · ·+ α1z + α0

of degree n ≥ 1 there are n complex numbers z1, . . ., zn such that

p(z) = αn(z− z1) . . . (z− zn).

The numbers z1, . . ., zn are the zeroes of p(z), in other words, they are the solutions
of the nth-degree equation p(z) = 0.

The zeroes need not be distinct. If a zero occurs k times in the factorization above,
then it is called a k-fold zero; k is called the multiplicity of the zero. Each nth-degree
polynomial with n ≥ 1 therefore has exactly n complex zeroes if counted with
their multiplicity.

Theorem: Each real polynomial can be written as the product of real linear poly-
nomials and real quadratic polynomials with a negative discriminant.

As a consequence, we have:
1. The degree of any real polynomial without real zeroes must be even.
2. Each real polynomial with an odd degree has at least one real zero.
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Answers to the exercises

1. Calculating with complex numbers

1.1 a. −9 b. −9 c. 16 d. i e. 1

1.2 a. − 1
2 b. − 2

3 c. −1 d. − 4
3 e. − 3

4

1.3 a.
√

3 i b. 3 i c. 2
√

2 i d. 5 i e.
√

15 i

1.4 a.
√

33 i b. 7 i c. 4
√

3 i d. 3
√

5 i e. 5
√

3 i

1.5 a. 1± i b. −2± i c. −1± 3 i d. 3± i e. 2± 2 i

1.6 a. 6± 2 i b. 2±
√

2 i c. −1±
√

3 i d. 3±
√

3 i e. −4± 2 i

1.7 The first, third and fourth equality signs are correct; the first one by the definition of√
−1 as a number for which the square equals −1, and the fourth one by the definition of√
1 as the positive real number for which the square equals 1. The third equality sign is

true because (−1)2 = 1. Hence, the second equality sign cannot be true. Apparently it
isn’t true for negative real numbers a that

√
a2 = (

√
a)2 (this rule is true if a ≥ 0).

For the following exercises we only give the answer and its absolute value. Make a
drawing for yourself.

1.8 a. 4− 6 i , 2
√

13 b. −4 + 4 i , 4
√

2 c. 1, 1 d. 3− 3 i , 3
√

2 e. 5− 3 i ,
√

34

1.9 a. −5− 10 i , 5
√

5 b. 4 + 8 i , 4
√

5 c. 8, 8 d. −8− 6 i , 10 e. 3− 4 i , 5

1.10 a. − i , 1 b. 1, 1 c. i , 1 d. −1, 1 e. −1, 1

1.11 a. − i , 1 b. −8 i , 8 c. 128 i , 128 d. −2 + 2 i , 2
√

2 e. −2− 2 i , 2
√

2

For the following exercises we only give the lines as an equation in xy-coordinates. Make
a drawing for yourself.

1.12 a. x = 4 b. x = −3 c. y = 2 d. y = −2 e. x = y

1.13 a. x + y = 1 b. x = 2y c. x− 2y = 1 d. x + y = 5 e. y = 0

For the following exercises we only give the center and the radius, separated by a comma.

1.14 a. 0, 4 b. 1, 3 c. 2, 2 d. 3, 1 e. −1, 5

1.15 a. −3, 4 b. i , 5 c. −2 i , 1 d. 1 + i , 3 e. −3 + i , 2

1.16 a. 3
25 + 4

25 i b. 3
5 + 3

10 i c. − 6
5 −

2
5 i d. 11

5 + 3
5 i e. 8

13 + 1
13 i

source: https://staff.fnwi.uva.nl/j.vandecraats/
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1.17 a. − 1
5 −

2
5 i b. − 4

5 + 2
5 i c. − i d. −3− i e. i

1.18 a. 9
25 + 12

25 i b. 1
5 + 7

5 i c. − 4
5 −

3
5 i d. − i e. i

1.19 a. − 1
2 −

1
4 i b. 4

13 −
7

13 i c. 1
4 −

1
4 i d. 1 + 2 i e. i

2. The geometry of complex calculations

2.1 a. −3 i b. −3 + i c. 3− 5 i d. −8 e. 0

2.2 Left to the reader.

2.3 a. zz + i z− i z− 8 = 0 b. zz− (1 + i )z− (1− i )z = 0 c. zz− z− z = 0
d. zz + (2 + i )z + (2− i )z + 1 = 0 e. zz− (1 + 2 i )z− (1− 2 i )z + 4 = 0

2.4 a. (z + i )(z− i ) = 1, center − i , radius 1
b. (z + (1− i ))(z + (1 + i )) = 4, center −1 + i , radius 2
c. (z− 2 i )(z + 2 i ) = 0, center 2 i , radius 0
d. (z + 2)(z + 2) = −1, no circle
e. (z + (2 + i ))(z + (2− i )) = 6, center −2− i , radius

√
6

For the following two exercises we only give the arguments.

2.5 a. −π
2 + 2kπ b. π + 2kπ c. 2kπ d. 3π

4 + 2kπ e. π
3 + 2kπ

2.6 a. −π
4 + 2kπ b. −π

6 + 2kπ c. − 3π
4 + 2kπ d. 5π

6 + 2kπ e. −π
3 + 2kπ

2.7 a. i b. − 1
2

√
2− 1

2

√
2 i c. i d. 1

2

√
3− 1

2 i e. − 1
2 −

1
2

√
3 i

2.8 a. − 1
2 −

1
2

√
3 i b. − 1

2 −
1
2

√
3 i c. − 1

2

√
2 + 1

2

√
2 i d. − 1

2

√
3 + 1

2 i
e. 1

2

√
2− 1

2

√
2 i

2.9 a. −1 b. 1 c. i d. −1 e. 1

2.10 a. i b. − 1
2 + 1

2

√
3 i c. i d. 1

2

√
3− 1

2 i e. 1

2.11 a. 1
2 −

1
2

√
3 i b. −1 c. − 1

2 −
1
2

√
3 i d. −1 e. −1

2.12 a. i b. i c. − i d. i e. −1

For the following two exercises we have taken the argument in the interval [−π
2 , 3π

2 〉.

2.13 a. 2.2361 e 1.1072 i b. 4.4721 e−0.4636 i c. 3.6056 e−0.9828 i d. 3.6056 e 4.1244 i

e. 3 e 3.1416 i

2.14 a. 2.2361 e .4636 i b. 2.2361 e−0.4636 i c. e−1.5708 i d. 5.0990 e 2.9442 i

e. 3 e−1.5708 i

2.15 a. −0.8323 + 1.8186 i b. 1.6209− 2.5244 i c. 0.1911 + 0.0591 i
d. −0.9614 + 0.7182 i e. −1.0000 + 0.0001 i

2.16 a. 3 e 2 i b. 9 e−4 i c. 243 e 10 i d. 1
3 e 2 i e. 3n e−2n i

2.17 a. z1z2 = 2 e 5 i 3 e−2 i = 6 e 3 i = 6 e−3 i = 2 e−5 i 3 e 2 i = z1 z2.
Part (b.) is done in the same way.

2.18 a. z1z2 = r1 e i ϕ1 r2 e i ϕ2 = r1r2 e i (ϕ1+ϕ2) = r1r2 e− i (ϕ1+ϕ2) = r1 e− i ϕ1 r2 e− i ϕ2 =
z1 z2. Part (b.) is done in the same way.
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2.19 a. −3.0749 + 6.7188 i b. 10.8523− 16.9014 i c. 1.1669 + 0.3609 i
d. −2.6599 + 1.9870 i e. −0.6065 + 0.0010 i

2.20 a. 0.0269 + 0.0419 i b. 17.6267− 9.6295 i c. −0.1340− 0.0191 i
d. 0.1044− 0.3528 i e. −2.2033 + 0.3141 i

2.21 a. 1.5431 b. −1.5431 c. −3.6269 i d. −9.1545 + 4.1689 i e. −9.1545 + 4.1689 i

2.22 a. On the y-axis we have x = 0, so e z = e i y and if y runs from 0 to 2π, then e i y

describes the complete unit circle.
b. They actually should coincide, but drawn in this way you more clearly see how this
part of the y-axis is mapped.
c. The horizontal lines in the z-plane are the lines y = k

6 π for k = 0, 1, . . . , 12. They are
mapped in the w-plane onto the drawn radii. If x runs from minus infinity to plus
infinity, such a radius is described from the origin to infinity.
d. No. If w = e x+ i y = 0 would hold, then the absolute value would be 0. However, the
absolute value equals e x, which is positive for every x.
e. The circles in the w-plane with center 0 and radius e and e−1 = 1

e , respectively.
f. The unit circle, which is described infinitely often if y runs from minus infinity to plus
infinity.
g. z = 1

2 π i has w = i as its image, but since e z is periodic with periode 2π i all points
z = 1

2 π i + 2kπ i (with integer k) are also mapped onto i .

3. Roots and polynomials

3.1 a. e ( π
6 +

2kπ
3 ) i (k = 0, 1, 2) b. e (− π

6 +
2kπ

3 ) i (k = 0, 1, 2) c. e ( 2kπ
3 ) i (k = 0, 1, 2)

d. 2 e ( 2kπ
3 ) i (k = 0, 1, 2) e. 2 e ( π

6 +
2kπ

3 ) i (k = 0, 1, 2)

3.2 a. 6
√

2 e ( π
12 +

2kπ
3 ) i (k = 0, 1, 2) b. 3 e ( π

3 +
2kπ

3 ) i (k = 0, 1, 2)
c. 3 e (− π

6 +
2kπ

3 ) i (k = 0, 1, 2) d. e (− π
9 +

2kπ
3 ) i (k = 0, 1, 2) e. 2 e kπ i (k = 0, 1) (dit zijn de

getallen 2 en −2)

3.3 a. e ( π
4 +

kπ
2 ) i (k = 0, 1, 2, 3) b. e (− π

8 +
kπ
2 ) i (k = 0, 1, 2, 3) c. e ( 2kπ

5 ) i (k = 0, 1, 2, 3, 4)
d. 4
√

5 e (−0.2318+ kπ
2 ) i (k = 0, 1, 2, 3) e. 6

√
6 e ( π

12 +
kπ
3 ) i (k = 0, 1, 2, 3, 4, 5)

3.4 a. 8
√

2 e (− π
16 +

kπ
2 ) i (k = 0, 1, 2, 3) b. 2 e ( π

5 +
2kπ

5 ) i (k = 0, 1, 2, 3, 4)
c. 3 e ( π

8 +
kπ
2 ) i (k = 0, 1, 2, 3) d. 7

√
2 e ( π

14 +
2kπ

7 ) i (k = 0, . . . , 6)
e. 6
√

18 e ( π
12 +

2kπ
3 ) i (k = 0, 1, 2)

3.5 a. z2 − 1 b. z2 − 6z + 5 c. z2 − (1 + i )z + i d. z2 + i z + 2 e. z2 − 2z + 2

3.6 a. z2 + i z b. z2 − 3z + 2 c. z2 + 2 i z d. z2 − 2z + 5 e. z2 − 2 i z− 2

3.7 a. z3− z b. z3 + z c. z3− z2 + z− 1 d. z3− 6 i z2− 11z + 6 i e. z3− i z2− z + i

3.8 a. z3 − 6z2 + 11z− 6 b. z3 − 3z2 + 4z− 2 c. z3 − 3z2 + 2z d. z3 − (1 + i )z2 + i z
e. z3 − 2 i z2 + z− 2 i

3.9 a. z3 − 2z2 b. z3 + 3z c. z4 − 1 d. z3 − 2z2 + z− 2 e. z3 − i z2 − z + i
f. z3 + i z2 + z + i

3.10 a. simple, z = 0 (double), z = 2 b. simple, z = 0, z =
√

3 i , z = −
√

3 i
c. double, z = 1, z = −1, z = − i d. double, z = i , z = − i e. simple, z = 1, z = −1,

source: https://staff.fnwi.uva.nl/j.vandecraats/
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z = i f. double, z = − i (also double)

3.11 a. z3 + 1 = (z + 1)(z2 − z + 1) b. z3 − 1 = (z− 1)(z2 + z + 1)
c. z4 − 1 = (z2 + 1)(z− 1)(z + 1) d. z3 + 27 = (z + 3)(z2 − 3z + 9)
e. z4 + 2z2 + 1 = (z2 + 1)2 f. z4 − 2z2 + 1 = (z− 1)2(z + 1)2

3.12 If you write p(x) in the indicated way, you see that p(x) for big positive x-values
nearly equals xn, so it certainly is positive. Also for big negative x-values p(x) nearly
equals xn, but then xn is negative (since n is odd). Therefore, p(x) is negative for big
negative x-values and positive for big positive x-values. In between p(x) must therefore
at least once become zero. Those who are versatile in working with limits may make this
reasoning more precise as follows:

lim
x→∞

p(x)
xn = lim

x→∞

(
1 +

an−1
x

+ · · ·+ a1

xn−1 +
a0
xn

)
= 1

and similarly lim
x→−∞

p(x)
xn = 1.
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Index

(r, ϕ) notation, 17, 20
abc-formula, 3, 29
k-fold zero, 29, 32
nth root, 27, 32
nth-degree equation, 29, 32
nth-degree polynomial, 27, 32

absolute value, 5, 7, 8, 20
arctangent function, 17
argument, 13, 20

branching point, 25

circle, equation of a circle, 11
coefficients, 29, 32
complex nth root, 23
complex plane, 5
conjugated complex number, 7, 8
cosine function, 19, 20
cube root, 23
cubic equation, 27, 30

degree, 29, 32
discriminant, 3, 29

equation of a circle, 11
Euler’s formulas, 20
Euler, formulas of Euler, 15
Euler, Leonhard, 15
exponential function e z, 20
exponential function e x, 19

factor theorem, 29, 32

Gauss, Carl Friedrich, 29
Greek alphabet, iii

imaginary, 3
imaginary axis, 5, 8

imaginary numbers, 5, 8
imaginary part, 5, 8
imaginary powers of e , 15

linear equation, 29
linear polynomial, 29
long division, 28

modulus, 5, 8, 20
multiplicity, 29, 32

parallelogram construction, 11, 20
polar coordinates, 17
polar notation, 17, 20
polynomial, 29, 32

quadratic equation, 3, 29
quartic equation, 30

radians, 13
radius vector, 13, 17
real axis, 5, 8
real part, 5, 8
real polynomial, 31
root, 29
root paradox, 2

second-degree equation, 29
sine function, 19, 20

unit circle, 13

variable, 29, 32
vector, 11, 20

zero, 29
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