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Introduction

Machine translation (MT) is a sub-field of natural language processing that aims to
develop technologies for automatically translating text from a source language to a target
language. Early methods developed for machine translation were rule-based approaches,
often designing explicit linguistic rules involving morphological, syntactic, and semantic
structures to model the correspondences between source and target languages (Arnold
et al., 1994; Hutchins, 1986; Trujillo, 1999; Forcada et al., 2011). These rules are
usually designed by human experts. However, in the last 25 years, the bulk of research
in MT has been focused on developing data-driven MT systems (Koehn, 2010; Brown
et al., 1988, 1993). In data-driven MT, the idea is to learn a translation model from
a given sample of source-target sentence pairs, which is known as a parallel corpus
or bitext (Brown et al., 1988). Data-driven approaches enable the translation system
to learn models for any language pair without explicit knowledge about the grammar
and syntax of the source and target languages (Koehn, 2010). These trained models
represent the patterns of translations observed in semantically equivalent sentence pairs
in the training bitext. For example, these patterns could represent how source words are
mapped to the target words and how the target words are ordered with respect to source
words (Marcu and Wong, 2002).

Research in data-driven MT deals with several problems. The main issues among
them are efficient and robust training of models (DeNero et al., 2006; DeNero and Klein,
2008; Wuebker et al., 2010), inferencing (Wang and Waibel, 1997; Germann et al., 2001;
Aziz et al., 2014), selection of data (Eetemadi et al., 2015; Lii et al., 2007; van der Wees
et al., 2017), domain adaptation (Cuong and Sima’an, 2017), and evaluation (White and
O’Connell, 1993; Dorr et al., 2011). However, the most crucial bottleneck for training
data-driven MT is the availability of substantial amounts of training data with reasonably
high-quality (Koehn and Knowles, 2017). As a result, the translation performance of
data-driven MT systems is good for language pairs and domains for which a substantial
amount of training data is available. However, for other low-resource scenarios such
as language pairs or domains with a small amount of training data, the translation
performance is of poor quality (Irvine and Callison-Burch, 2013; Turchi et al., 2008).

Although the availability of high-quality annotated data is certainly important for
training high-performing MT systems, an important related aspect of this problem is
also the ineffectiveness of the standard training strategies in learning robust models by
leveraging all available training data compiled from various sources (Lii et al., 2007).
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1. Introduction

Most of these training algorithms treat the entire training corpus as uniform and attempt
to learn models in a single pass (Koehn, 2010, 2020). This results in problems such as
overfitting (Wuebker et al., 2010; Koehn, 2020; Zoph et al., 2016), imbalance of domains
or genres in the training data (Koehn and Schroeder, 2007; Chu and Wang, 2018) and
inclusion of incorrect features from samples of relatively low-quality (Khayrallah and
Koehn, 2018). These problems arise due to variations in data quality with respect to
the intended translation task. For example, forcing the learning algorithm to rely only
on the given samples in the training data is based on the assumption that all samples
in the training data are noise-free and belong to the intended domain. However, the
reality in industrial settings can be completely different, where the training data is often
compiled from multiple sources and tends to be noisy (Axelrod et al., 2011). In such
scenarios, a common solution is to improve the quality of the training data with respect
to the intended task or domain through techniques such as data selection (Rauf and
Schwenk, 2011). However, data selection techniques require robust oracle systems in
order to decide the quality of training data sample (van der Wees et al., 2017). Moreover,
these techniques only select a small subset as the relevant training data. Therefore,
instead of relying only on improving the quality and quantity of training data, another
more beneficial solution could be to explore algorithms and training strategies that can
potentially refine the model quality to minimize the effect of training data variations
and to investigate regularization techniques that can provide some kind of stabilization
during training.

An alternative approach to single-pass learning is to consider the segments of
data separately depending on domains and data quality and incrementally improve the
quality and robustness of the model by addition or refining of the knowledge in each
incremental step (Lii et al., 2007; Gao et al., 2011). Based on this idea, this thesis aims
to propose solutions to diverse problems such as the quality of translation models in
phrase-based SMT (PBSMT), degradation of performance during domain adaptation
for neural MT (NMT), and efficient exploitation of low-quality training data for neural
MT. While addressing these problems, the common theme in this thesis is to address
the following question: “To what extent can transfer of knowledge in incremental steps
help to improve the performance of machine translation models?”

The problems addressed in this thesis and the solution proposed for these problems
draw inspiration from two active research concepts in other machine learning-based
tasks: transfer learning and incremental learning. In transfer learning, the idea is to use
models learned for one specific task towards solving another different but related task
(Pan and Yang, 2010). In scenarios where sufficient data for a target domain or task
is not available, transfer learning provides transfer of common features from a source
domain to the target domain. Similarly, incremental training is a dynamic technique
in machine learning that can be used when training data becomes available gradually
(Geng and Smith-Miles, 2009). The aim is to adapt the model to new data without
forgetting the existing knowledge. Although the approaches we propose in this thesis
are closely related to transfer learning and incremental learning, we diverge from these
concepts by aiming to explore to what extent the knowledge gathered by the models
in initial training steps can be refined and used for solving varied problems such as
improvement of the quality of the models, efficient domain adaptation and efficient
utilization of noisy training data.

2



1.1. Research outline and questions

For a long time, research in data-driven machine translation has been dominated
by the phrase-based MT paradigm (Koehn, 2010). However, during the last few years,
neural machine translation (NMT) has achieved comparable or even better performance
than phrase-based MT for the majority of MT tasks (Koehn, 2020; Toral and Sanchez-
Cartagena, 2017). These two paradigms are significantly different from each other.
Training phrase-based MT involves learning probabilistic phrase translation rules from
sentence pairs in the training data along with additional features like re-ordering (Bisazza
and Federico, 2016) and n-gram language models (Koehn, 2010). The weights for each
individual model are then optimized on a development set, and finally, test sentences are
decoded using beam search over a hypothesis space (Neubig and Watanabe, 2016). On
the other hand, neural machine translation is an end-to-end neural network and training
involves learning of parameters of the neural network by minimizing a loss function
such as perplexity, given the source and target sentence pairs. As this paradigm shift
from phrase-based MT to neural MT happened during the course of this thesis, the
problems addressed in this thesis belong to both paradigms. Therefore, the first problem
that we address in this thesis falls under phrase-based MT, and the rest of the problems
addressed in this thesis fall under the neural MT paradigm.

1.1 Research outline and questions

In this thesis, we address four diverse problems in MT. The solutions that we propose
to these problems revolve around the idea of transferring information or knowledge
from initial models to guide the training of efficient resultant models. These research
problems are discussed as follows:

RQ1: How does heuristic training of translation models affect the performance of
phrase-based MT and to what extent can alternative training strategies based on re-
estimation of models improve phrase-based MT performance?

The first problem we address is about the limitations of standard training of transla-
tion models for phrase-based MT, which results in the extraction of unintuitive features
that affect the performance and compactness of the trained models (DeNero and Klein,
2008; Wuebker et al., 2010). We focus on improving the quality and compactness
through the re-estimation of the initial models by observing the features it would prefer
to achieve the best possible translations. We show that such a re-estimation allows the
training process to incorporate knowledge from different phrase-based MT models such
as re-ordering models and language models for the selection of high-quality phrase
segmentations. We divide this research question into three sub-questions and answer
those:

RQ1.1 What are the limitations of heuristic training algorithms for phrase-based
MT, and how is the translation performance of the models affected by them?

In Chapter 3, we address RQ1.1 by first discussing the limitations of the
heuristic training strategy in phrase-based MT, along with examples. This
standard training strategy is based on the extraction of phrase translation
pairs that are ‘consistent’ with the alignments of words between the sentence

3



1. Introduction

pairs in the training bitext. The translation probabilities of the phrase pairs
are calculated based only on their occurrence frequency in the training data
(Och and Ney, 2000). We show that the initial models trained with standard
heuristic training algorithm result in the extraction of unintuitive and noisy
phrase segmentations, which affect the translation performance of the SMT
system.

RQ1.2 Can the reliability and performance of translation models be improved by
re-estimating the phrase translation table through oracle-BLEU decoding of
the training data?

Some remedies, such as forced decoding, have been proposed in the litera-
ture to overcome the limitations of the heuristic-based approach (Wuebker
et al., 2010). However, these previously proposed solutions have their own
limitations. For example, in the case of forced decoding, the unreachability
of exact reference for noisy sentence pairs leads to incorrect and unreason-
able distributions of translation probabilities. While addressing RQ1.2, we
propose a more robust training strategy based on oracle-BLEU re-estimation
of the translation models. We show that instead of re-estimation through
forced decoding, oracle-BLEU re-estimation results in improved robustness
and compactness of models.

RQ1.3 To what extent can oracle-BLEU re-estimation of re-ordering models and
language models provide additional improvements in translation perfor-
mance?

Another limitation of forced decoding based training is that it does not
allow for the re-estimation of re-ordering and language models due to the
constraint of generating the exact reference. On the other hand, oracle-BLEU
translation based training allows for re-estimation of re-ordering and language
models. To answer RQ1.3, we experiment with oracle-BLEU re-estimation
of re-ordering models and language models and evaluate whether their re-
estimation provides any additional improvements in translation quality.

The idea of our proposed method can be generalized as a re-estimation strategy to
improve the quality of the translation model by learning from the model’s own predic-
tions over the training data. This method re-distributes the probabilities of the phrase
segmentations according to their likelihood of being selected by the decoding algorithm
to reach the best possible translation.

As already stated in the introduction section, recently, the focus of the research
community has rapidly shifted from phrase-based MT to NMT. Unlike phrase-based
MT, NMT is a single end-to-end neural network with a large number of parameters
(Bahdanau et al., 2015; Luong et al., 2015). NMT models are known to be data-hungry
and prone to overfitting if trained on training data of small amounts or low-quality
(Koehn and Knowles, 2017). Usually, there is a scarcity of data for a specific domain.
Research has shown that models trained on general domains do not perform well on test
sentences from a specific domain (van der Wees et al., 2017). Our second research
question in this thesis, addresses domain adaptation for NMT. A straightforward way to

4



1.1. Research outline and questions

adapt a general domain model to a specific domain is ‘fine-tfuning,’ where the idea is to
continue training a general model on the training data for a specific domain (Freitag
and Al-Onaizan, 2016). However, ‘fine-tuning’ leads to a degradation of performance
on the source or general domain. In real scenarios, one would prefer a model that is
equally good on different domains. To address this problem, we devise a technique
to transfer knowledge from a source domain to a target domain in a way that leads
to reasonable performance across multiple domains. We frame the second research
question as follows:

RQ2: How can we apply fine-tuning to adapt NMT models to new domains while
retaining the performance on the source (original) domain?
We answer RQ2 by dividing it into three sub-questions and answering those:

RQ2.1 How do NMT models trained on a general domain perform on data from a
specific domain?

In Chapter 4, we discuss the problem of low performance of the NMT model
when used to translate sentences from unseen domains. While addressing
RQ2.1, we demonstrate the effect of domain variation between training and
test data for neural machine translation. Our experiments show that the
performance of a model trained on general domain data is significantly lower
when tested on multiple target domains.

RQ2.2 How is the performance on the original source domain affected by fine-
tuning on target domains?

Fine-tuning is an easy way to adapt the NMT model to new domains. We
evaluate the performance of fine-tuning based domain adaptation on the target
domain and also evaluate whether the performance of the adapted model on
the source domain is retained. We demonstrate by answering RQ2.2 that the
fine-tuning strategy results in a degradation of model performance on the
source or original domain.

RQ2.3 Can we apply knowledge distillation as a remedy to minimize the degrading
effect of fine-tuning?

As a remedy to the degradation problem, we propose the transfer of knowl-
edge through a distillation procedure in order to minimize the degradation
on the source domain while improving the performance on the target or
new domain. In answer to RQ2.3, we evaluate the performance of domain
adaptation through knowledge distillation on the source and target domains
and show that this strategy helps to adapt to new domains with improved
performance, while at the same time, the model retains its performance on
the source domains.

Although domain adaptation is a well-known and thoroughly researched problem in
NMT, a related problem that has gained less attention from the research community is
that of the quality of the training data. Irrespective of the intended domain, low-quality
of the training data is known to severely affect the performance of neural network-based
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tasks (Khayrallah and Koehn, 2018; Koehn et al., 2018). Therefore, as a third research
problem, we address the issue of noise or low-quality of the training data for NMT.
Neural network-based tasks require a large amount of training data in order to improve
performance. Some parts of such large training corpora can be noisy. To reduce the
effect of noise in the training data, the standard practice is to select only relevant or
high-quality data from the noisy corpus. We propose a knowledge transfer strategy to
improve NMT performance that aims at leveraging all available noisy data without any
filtering. We frame the third research question as follows:

RQ3: How do noisy training corpora affect the performance of NMT and how can we
leverage them to improve NMT performance?

To answer RQ3, we divide it into three sub-research questions that we answer
individually:

RQ3.1 What is the effect of comparable or noisy training data on the performance
of a recurrent NMT system?

Here, we address the effect of low-quality training data on NMT performance.
Many language pairs do not have high-quality annotated data for training
neural MT systems. However, many of these language pairs only use slightly
low-quality parallel data known as comparable data that is built by crawling
the web and aligning source and target sentences. However, before using
this noisy data, one should investigate what kind of effect this noisy data
could have on the performance of trained models. We show that, at least for
recurrent architecture based NMT, low-quality data such as comparable data
can have negative effects on the performance of trained NMT models.

RQ3.2 To what extent can we leverage noisy comparable data to improve NMT
performance through the transfer of knowledge from a high-quality model?

An obvious solution to mitigate the negative effect of noisy data is data
selection or filtering, where the idea is to use only relevant samples from
the noisy data. However, these filtering or selection techniques are based
on heuristic measures that decide the level of noise based on various factors.
Here, we raise the following question: Is it possible to use comparable
data without any heuristic-based filtering? We propose that the concept of
knowledge distillation can be used as a strategy to minimize the effect of noisy
data and show that such a knowledge transfer can help to leverage the low-
quality data with minimal degrading effect. Knowledge distillation (Hinton
et al., 2014) is a framework for training compressed “student” networks by
using supervision from a large teacher network.

RQ3.3 What is the relative variation in performance of recurrent vs. non-recurrent
NMT models when noisy data is added to the training pool?

Although in RQ3.1, we show that noisy data has a negative effect on the
performance of the recurrent neural network-based NMT models, we also
aim to investigate its effect on the more recently proposed non-recurrent
architectures for NMT. Our intuition suggests that non-recurrent architectures
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achieve relative robustness against training noise. In RQ3.3, we also explore
the relative difference with respect to the effect of noisy data on recurrent and
non-recurrent architectures. We show that non-recurrent NMT architectures
such as transformers are relatively robust against noise in the training data as
compared to recurrent architectures.

In RQI1, RQ2, and RQ3, we aim to explore the idea of improving the reliability of MT
by transfer of knowledge across models, domains, or data sources. However, another
interesting way of combining the capabilities of multiple models is the combination
of different NMT architectures. Therefore, with the fourth research question, we
address the problem of the limited capability of recurrent neural network-based NMT to
accurately compose the source sequence representation using an attention mechanism.
The attention mechanism was proposed for NMT to enable the network to focus on
the relevant words or fragments of the source sentence corresponding to each target
position (Bahdanau et al., 2015; Luong et al., 2015). However, even with the attention
mechanism, the source representation fed to the decoder at each time step is a compact
summary of the previous history of the source sequence. As a result, the encoder
memory is shared across multiple words and is prone to have a bias towards the recent
past (Miculicich Werlen et al., 2018; Cheng et al., 2016). We propose that combining
recurrent and convolutional networks on the encoder side can allow the network to
create a representation of the source tokens with both global and local features. We
frame the fourth research question as follows:

RQ4: What are the limitations of using only recurrent layers towards effective modeling
of source sentences in NMT and can NMT performance be improved by the addition of
convolutional layers?

We divide RQ4 in two sub-questions and answer those:

RQ4.1 Can a combination of recurrent and convolutional layers for the encoder
provide the model with improved effective guidance to focus on relevant
information in the source sequence?

Here, we discuss the limitations of the NMT architecture, where both encoder
and decoder are solely based on a recurrent neural network. We propose to
add multiple convolutional layers on top of the recurrent layers of the en-
coder and demonstrate that it enables the encoder to capture relevant features
of the source sequence leading to improved neural MT performance. Our
experiments demonstrate that a combined recurrent and convolutional en-
coder model shows significantly better performance than the vanilla recurrent
encoder model.

RQ4.2 Are the improvements observed with additional convolutional layers due
to properties of convolutions or merely due to the increased number of
parameters?

Even if the proposed combination demonstrates an improvement over a
vanilla recurrent encoder model, it raises the question of whether the observed
improvements are a result of the increased number of NMT parameters or
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1. Introduction

are a result of increased capability of the model to capture complex features
due to the addition of convolutional layers. For this purpose, we evaluate
the proposed model against another fully recurrent model with an increased
number of layers as compared to the baseline. Our experiments suggest that
the addition of convolutional layers is indeed more beneficial than simple
additions of recurrent layers.

1.2 Main contributions

Here, we summarize the main contributions of the thesis. We categorize the contribu-
tions in algorithmic and empirical contributions:

1.2.1  Algorithmic contributions

1. We demonstrate that for phrase-based MT, phrase translation models trained with
a heuristic extraction method are unreliable and fail to incorporate the features
from other MT models such as re-ordering and language models. We propose
an improved re-estimation strategy based on oracle-BLEU translations of the
training data that also allows for the re-estimation of re-ordering models and
language models. [Chapter 3]

2. We address the requirement of training a neural MT model with consistent
performance across domains and demonstrate that domain adaptation methods
such as fine-tuning suffer from degradation of performance on the original domain.
We propose knowledge distillation as a remedy to minimize this degradation while
adapting to new domains. [Chapter 4]

3. We address the issue of negative effects of noisy training data on NMT and
demonstrate that NMT performance can be severely affected by the presence of
noise in the training data. We propose knowledge distillation in incremental steps
as a training strategy to leverage noisy comparable data while minimizing its
negative effects. [Chapter 5]

4. We propose a combination of recurrent and convolutional neural networks for
neural machine translation in order to provide effective guidance to the network
to focus on the relevant parts of the source sentence. [Chapter 6]

1.2.2 Empirical contributions

1. We compare the translation performance of the proposed oracle-BLEU re-
estimation to the standard heuristic training paradigm as well as to the previously
proposed forced decoding based training method and show that oracle-BLEU
re-estimation provides improved translation performance as compared to the other
two baselines. [Chapter 3]

2. We demonstrate that oracle-BLEU re-estimation also yields higher compression
rates compared to forced decoding as it focuses on the selection of only those
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segmentations that are suitable to generate the best possible translation of the
source sentences in training data. [Chapter 3]

. We demonstrate that oracle-BLEU re-estimation of re-ordering models provides
additional gains in translation performance as compared to the re-estimation of
phrase translation models only. [Chapter 3]

. For NMT, we compare the improvements achieved by vanilla fine-tuning for
domain adaptation in two different domains to an approach using knowledge
distillation. We show that while vanilla fine-tuning suffers from catastrophic
degradation on source domains, adaptation by knowledge distillation not only sus-
tains the improvements on the target domains but also retains good performance
on the source domain. [Chapter 4]

. We evaluate the effect of directly using noisy data for training NMT models in
addition to the high-quality data along with some well-known filtering techniques.
Further, we demonstrate that additional improvements can be achieved through
knowledge distillation without the requirement of filtering techniques. [Chapter
5]

. We compare the change in translation performance of recurrent vs. non-recurrent
NMT architectures when trained on low-quality noisy data and demonstrate that
non-recurrent NMT models are less susceptible to training noise and can learn
efficiently from noisy data without suffering a large drop in translation quality.
[Chapter 5]

Thesis overview

. Chapter 2 — Background: MT paradigms, Related concepts, Evaluations:
This chapter provides the required background about MT systems. It discusses
two main MT paradigms: Statistical Machine Translation and Neural Machine
Translation. After describing the basic concepts of the two paradigms along
with their similarities and differences, the rest of the chapter provides details on
the concepts related to this thesis, such as standard training strategies for both
paradigms, baseline models, and evaluation metrics.

. Chapter 3 — Model Re-estimation for Statistical Machine Translation: This
is a research chapter where we propose oracle-BLEU model re-estimation as a
strategy to overcome limitations of the standard training for phrase-based SMT.

. Chapter 4 — Efficient Domain Adaptation for Neural Machine Translation:
This is a research chapter where we propose knowledge distillation for efficient
domain adaptation of neural MT models.

. Chapter 5 — Neural Machine Translation with Noisy Data: This is a research
chapter in which we explore the effect of noisy training data on training neural
machine translation systems as well as a novel technique to effectively leverage
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1. Introduction

noisy data with minimal degrading effect. We also compare the negative effects of
noisy data on recurrent vs. non-recurrent neural machine translation architectures.

. Chapter 6 — Convolution over Recurrent Encoder for Neural Machine Trans-

lation: This is a research chapter where we propose modifications to the standard
neural MT architecture by combining recurrent and convolutional networks in
order to provide effective guidance to the network to focus on the relevant parts
of the source sentence.

. Chapter 7 — Conclusions: In this chapter, we summarize the thesis and revisit all

research questions. Finally, we provide an outlook for possible extensions and
future work corresponding to each of the research questions.

1.4 Origins

The chapters in this thesis are based on the previously published papers as described
below:

1. Chapter 3 is based on Dakwale and Monz (2016). Improving Statistical Machine

Translation Performance by Oracle-Bleu Model Re-estimation. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 38—44, 2016. Monz proposed the model and
concepts. Dakwale carried out the experiment and analysis. Dakwale did most of
the writing.

. Chapter 4 is based on Dakwale and Monz (2017a). Fine-tuning for Neural

Machine Translation with Limited Degradation across In-and Out-of-domain
Data. In Proceedings of the 16th Machine Translation Summit, 2017, pages
156-169. The idea was proposed by Dakwale. Experiments and analysis were
carried out by Dakwale. Dakwale did most of the writing.

. Chapter 5 is based on Dakwale and Monz (2019). Improving Neural Machine

Translation Performance using Noisy Data through Distillation. In Proceedings of
the 17th Machine Translation Summit 2019. The idea was proposed by Dakwale.
Experiments and analysis were carried out by Dakwale. Dakwale did most of the
writing.

. Chapter 6 is based on Dakwale and Monz (2017b). Convolutional over Recurrent

Encoder for Neural Machine Translation. The Prague Bulletin of Mathematical
Linguistics, vol. 108, pages 37-48, 2017. The idea was proposed by Dakwale.
Experiments and analysis were carried out by Dakwale. Dakwale did most of the
writing.

10



Background

In this chapter, we provide the necessary background for this thesis. We mainly discuss
two machine translation paradigms: Statistical machine translation (SMT) and Neural
machine translation (NMT). Besides this, we also provide a brief introduction to the
evaluation metrics, MT systems, and tools used in this thesis.

2.1 Statistical machine translation foundations

The idea of statistical machine translation is to learn translation models from a given
sample of source-target sentence pairs known as the parallel training corpus or bitext.
Statistical machine translation consists of models and architectures that can learn
translation rules and features from a training dataset without any explicit knowledge
about the linguistic features of the language pairs.

Training standard statistical machine translation starts with an assumption that a
large sentence-aligned bitext is available. A bitext is a corpus in which sentences that are
identical in meaning in source and target languages are paired together. The performance
of phrase-based MT systems is highly dependent on the quantity and quality of the
parallel corpora on which it is trained. These parallel corpora are obtained either
by human annotation or by automatic alignment techniques such as lexical matching
approaches (Tiedemann, 2011). Public and private institutions invest in the creation
of annotated parallel corpora for the languages and domains of intended applications.
However, the availability of high-quality data sets is limited to relatively few language
pairs and usually come from parliamentary proceedings such as Europarl (Koehn, 2005)
and the Linguistic Data Consortium.'

The earliest models introduced for SMT are word based models attributed to Brown
et al. (1993) who formalized the translation task in terms of a noisy channel model
(Shannon, 1948). Formally, given a sentence f in a source language, the corresponding
translation e in a target language can be generated as:

p(fle)p(e)
p(f)

e* = argmax p(e|f) = argmax = argmax p(fle)p(e) 2.1
€ € €

Thttps://www.ldc.upenn.edu/
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The above equation can be interpreted as the task of finding the most probable target
language translation for a given source language sentence f. Since the probability of
the source sentence remains constant for all possible translations, p(f) can be ignored.
Therefore, the probability of translation can be defined in terms of two models: the
translation model p(f|e), which assigns a higher probability to a hypothesis translation
that is similar in meaning to the given source language sentence, and the language
model p(e) that assigns a higher probability to more fluent or grammatical sentences
in the target language. Thus, a more probable translation for a given source language
sentence is one that is similar in meaning to the given source sentence and at the same
time is more appropriate in the target language in terms of fluency and grammaticality.

The translation model p(f|e) can be trained by counting how many times a source
language sentence f appears in the training corpora corresponding to a target sentence
e. However, given the limited quantity of training corpora, it is difficult to estimate
translation probabilities of sentence pairs directly. Therefore, the first instantiations
of the noisy channel model are known as word-based models or IBM models (Brown
et al., 1993), which were proposed to estimate the sentence translation probabilities
using correspondences between the source and target words in a sentence pair. The
first IBM model, known as IBM model-1, introduced the concept of word alignments.
Alignment refers to the set of links between source and target words in a sentence pair.
Given a sentence pair (f, e) where f = (f1, f2,..., fn) and e = (e1,ea,...,€e,) and
an alignment function (a : j — %), the translation probability is defined as:

ple, alf) = W T t(eil far)- 2.2)
j=1

Here, t(e;|fa(;)) are the translation probabilities of the generated target words condi-
tioned on the source word and the alignment link. The term ﬁl)m represents the
normalization over sentence lengths. The main modeling problem is, therefore, the
estimation of word translation probabilities ¢(e;| fo(;)). The assumption here is that we
know the alignment links between the source and target words of the sentence pairs
in the training corpus. However, in the parallel corpus, we only have the sentence
alignments but not the word alignment links. Therefore, to estimate the alignments and
their probabilities, Brown et al. (1993) proposed to use the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). The idea of using the EM algorithm for word
alignment training is to infer the most plausible alignment links between words of a
sentence pair. Starting by assigning uniform probabilities to all possible alignments, the
EM algorithm iteratively learns which source words frequently co-occur with which
other target words across the training corpus. Details of the implementation of the EM
algorithm for word alignments can be found in Brown et al. (1993).

IBM model-1 only considers word alignment for the computation of translation
probabilities, but it ignores word order differences. As a refinement, IBM model-2
(Brown et al., 1993) uses an additional parameter to represent the position of a word in
the target string. IBM model-3 includes a fertility parameter to capture one-to-many
mappings between words in a sentence pair. IBM model-4 further refines the relative
positioning (or distortion) by using word classes. A discussion about the details of each
of these models can be found in (Koehn, 2010).
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2.2. Phrase based machine translation

2.2 Phrase based machine translation

As discussed in Section 2.1, to model the frequent one-to-many mappings between the
words in language pairs, word-based models apply complex concepts such as fertility,
insertion, and deletions of the words. However, these concepts increase the complexity
of the model. Moreover, it is a common observation that the semantics of words is
highly dependent on the context in which they occur (Firth, 1935). To a large extent,
translation between language pairs is a sentence-level task where the semantics of each
word is dependent on other words in a sentence. Therefore, instead of learning the direct
translation between individual words, modeling groups of words as basic translation
units could be more beneficial. This idea was implemented as a solution, known as
phrase-based machine translation by Koehn et al. (2003). Phrase-based MT considers
phrases as the basic translation units and models the translation probability between
a given sentence pair as the product of all the phrase pairs into which the sentence
pair is segmented. In this model, phrases do not correspond to the linguistic definition
of syntactic phrases; instead, they are contiguous sequences of words with a fixed
maximum length. Further, to capture different aspects of translation, phrase-based MT
computes sentence translation probabilities by combining scores from several other
models using a log-linear combination as follows:

M
e* = argmax [Z Amham (€, )] ) (2.3)

m=1

In Equation 2.3, h,, represents the log-scores from various feature functions, most
important of which are the phrase translation probabilities and the language model
scores. A, are the optimized model weights for each feature. One of the most important
variations of these models is the reordering or distortion model that addresses word-
order variations between language pairs. In the following subsections, we will describe
the important models used in this thesis.

2.2.1 Phrase translation model

The standard practice of training a phrase translation model is to obtain alignments
between sentence pairs (using the IBM models discussed in Section 2.1) followed by
the extraction of phrases pairs consistent with these word alignments. Finally, the
probabilities of these phrases are estimated by simply counting and normalizing their
occurrences. Below, we explain the two steps in detail.

Word alignments: For training statistical machine translation systems (including
word-based MT and phrase-based MT), the first step is to obtain word alignments
between the tokens of sentence pairs in a given parallel corpus. Note that given a
sentence pair, there are a large number of possible alignments. This is due to the
inherent translation ambiguities of the words and differences in the word orders of
the source and target languages. The idea of word alignment training is to infer the
most plausible alignment links between words of a sentence pair by using IBM models
(Brown et al., 1993), and the parameters of the models are estimated using EM algorithm
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michael geht davon aus ) dass er im haus  bleibt

michael

assumes

that

he

will

stay

the

house

Figure 2.1: Phrase extraction from an English-German sentence alignment. This
example is taken from (Koehn, 2010). The English sentence is represented on the
vertical axis and the German sentence on the horizontal axis. Dark squares represent the
presence of an alignment link between words. Colored boundaries represent the borders
of consistent phrase segmentation. For simplicity of visualization, only two phrases are
shown in this figure.

(Dempster et al., 1977). The quality of trained word alignment is highly dependent on
the quality and quantity of the training data.

Note that alignments obtained for the source-to-target direction will be different
from those of the target-to-source direction. Therefore, it is common practice to train
the alignments in both directions and merge the two to obtain symmetric many-to-many
alignments.

Phrase segmentation: The end goal of training a phrase translation model is to
obtain source-target phrase pairs, which are most likely translations of each other.
Given a word-aligned sentence pair, the simplest approach is to extract all those phrase
translation pairs which have intersecting alignments within themselves. In other words,
in an extracted phrase pair, any word within the source phrase should only be aligned
to one of the words in the target phrase and vice versa. However, since there are many
unaligned words in a sentence pair, this strategy will be able to extract only very precise
phrase pairs, and a lot of the phrase pairs will be missed. Therefore, Koehn et al.
(2003) proposed a strategy known as grow-diag-final heuristics, which allows unaligned
words on either side to be included in the phrase pairs if they are neighboring the word
boundaries of alignment intersections. Formally, the notion of consistency with this
heuristic is defined in (Koehn et al., 2003) is as follows:

Phrase pair (€, f) is consistent with alignment A, if all words f1, fo,..., fn in f
that have alignment points in A have their alignment links with words e1, ..., e,, inée
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2.2. Phrase based machine translation

English phrases German phrases

michael michael

michael assumes michael geht davon aus

michael assumes michael geht davon aus ,
michael assumes that michael geht davon aus , dass
michael assumes that he michael geht davon aus , dass er
michael assumes that he will stay in the house | michael geht davon aus , dass er im haus bleibt
assumes geht davon aus

assumes geht davon aus ,

assumes that geht davon aus , dass

assumes that he geht davon aus , dass er
assumes that he will stay in the house geht davon aus , dass er im haus bleibt
that dass

that , dass

that he dass er

that he , dass er

that he will stay in the house dass er im haus bleibt

that he will stay in the house , dass er im haus bleibt

he er

he will stay in the house er im haus bleibt

will stay bleibt

will stay in the house im haus bleibt

in the im

in the house im haus

house haus

Table 2.1: List of phrase pairs extracted from English-German alignments shown in
Figure 2.1.

and vice versa:

(€, f) consistent with A <= Ve; € &: (e;,fi) €EA— fi € f
AND Vf, € f:(efi)EA—e ce (2.4)
AND de; € e, fj S f: (ei,fi) € A.

In other words, according to Equation 2.4, a phrase pair extracted from a sentence pair
is consistent if it has:

* aconsecutive sequence of words within the source and target sentences;
» words which do not have any alignment links outside the phrase pair; and
* at least one alignment link between any source and target word.

Figure 2.1 shows an example of a word-aligned source-target sentence pair and Table 2.1
provides a list of all phrase pairs that can be extracted from this sentence pair based on
the above heuristics. Note that these heuristics allow for a large number of phrase pairs,
many of which are overlapping and some of them are very unlikely to be used when
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decoding a test sentence. In Chapter 3, we will propose a technique to improve the
reliability of the translation models by extracting more reliable phrase segmentations.

After extracting the consistent phrase pairs from all sentences in the training bitext,
a phrase translation table is built that represents the translation probabilities for each
phrase pair. These translation probabilities are calculated as the relative frequency of

the source phrase given a target phrase. Formally, given a phrase pair (€, f), the phrase
translation probability is defined as:

- count(e, f)

o(fle) = —Zﬁ count(e. 7)) 2.5)

where count (€, f) is the joint count of observing phrase pair (e, f) in the training data
and the denominator is the total count of observing phrase € in the bitext. Inverse phrase

translation probabilities ¢ (€| f) are also computed in a similar manner and added to the
phrase translation table.

For phrase pairs that are rarely observed in the training data, it is not sufficient to rely
only on the phrase translation probabilities. To obtain a better estimate of probabilities
for such phrase pairs, one solution is to use “lexical weightings” which are a product of
the word translation probabilities of the aligned target words within a phrase pair (Koehn

et al., 2003). Formally, the lexical weighting for a phrase pair (e, f) with alignment
function a is defined as:

el
Afa) =T+ w(e;|f;

) € =
j) €al (i,j)€a

The lexical weighting of a phrase is calculated as the product of all individual lexical
weightings of each target word. If a target word is unaligned, its lexical weighting
probability is considered as 1. If a target word is aligned to multiple source words, its
lexical weighting probability is calculated as the sum of the translation probabilities over
all its alignment links. Similarly, inverse lexical weightings lex(€|f, a) are calculated
by considering word translation probabilities for all words in a source sentence and
added to the phrase translation table.

Note that theoretically, there is no limit on the length of extracted phrase pairs
according to the heuristics defined in Equation 2.4. This can result in full sentence
pairs being extracted as phrase pairs that can reduce the generalization capability of the
model while increasing its size. In order to avoid this, standard phrase-based systems
place a constraint on the maximum length of phrases on both the source and target side.
Moreover, it is also customary in phrase translation tables to include phrase-penalty and
word-penalty features in order to favor shorter phrases. These features are pre-defined
by the user and fire whenever a phrase is applied during decoding.

Finally, while building models for our experiments, for each phrase pair, we also
store the alignment links between the words of source and target phrases. Although it is
not used as a training feature, it is useful in our experiment in Chapter 3 to deduce full
alignment links between the source sentence and generated translation hypotheses.
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2.2.2 N-gram language model

As discussed in Section 2.1, in MT, the language model is used to ensure the fluency
of the translation output in the target language. In Equation 2.1, p(e) represents the
language model. A language model (LM) assigns probabilities to a sequence of words.
Traditionally, language models used in phrase-based MT are n-gram language models.

Using the probabilities of individual words, we can estimate the probability of
an entire sentence by multiplying them using the chain rule. Given a sentence S =
(w1, ws, ... w:), using an LM of order n, the probability of the sentence can be estimated

as follows:
t+1

p(s) = Hp(wi\wi_nﬂ, e W) 2.7
i=1

While computing sentence probability, n-grams also include tokens representing start
and end of the sentence (<s> and </s>). In the above equation, the additional term at
position ¢ + 1 is the end of sentence token (</s>). Note that the probability of each
word in the sentence is estimated conditioned only on n — 1 previous words (where n is
the order of the LM). Ideally, one would like to estimate this probability conditioned on
the entire history observed in the sentence. However, to keep the size of the LM small,
the order n is usually fixed to a given value.

There is an important problem with the above approach for estimating sentence
probabilities. Although language models are trained by collecting n-gram counts over
very large monolingual corpora, there is always a possibility of encountering an n-gram
sequence in the candidate translations that has never been observed in the training corpus.
Based on pure relative frequency, the probability of such an n-gram will be assigned
zero. Based on Equation 2.7, this will result in the likelihood of the entire sentence to
be zero as well. This problem can be solved by two well-known techniques, namely
“Smoothing” and “Back-off." Smoothing techniques assign a small probability to the
unseen n-grams and re-distribute the probabilities of the observed n-grams. The most
well-known smoothing techniques are Kneser-Ney smoothing (Kneser and Ney, 1995),
Witten-Bell smoothing (Witten and Bell, 1991), and Good-Turing smoothing (Good,
1953). We refer the reader to (Chen and Goodman, 1996) for a detailed discussion of
the different smoothing techniques. Similarly, the probability of an unseen higher-order
n-gram can be estimated by backing off to lower order n-grams that are possibly seen in
the training data (Katz, 1987).

2.2.3 Reordering models

Languages differ in the order of different syntactic and semantic elements when used in
a sentence. This implies that the order of the positioning of constituents like Subject,
Object and Verb maybe different in source and target languages. This creates the
problem of reordering in statistical machine translation. In terms of phrase-based MT,
reordering decisions define the order in which the phrases in the target side should be
generated in order to produce a sentence translation that follows the correct word order
of the target language (Koehn, 2010). For this purpose, various approaches have been
proposed in the SMT literature. Here we describe the most popular ones, which are also
used in this thesis.
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Ideally, MT systems must explore all possible reordering permutations between
words of a given sentence pair because the word orders between many language pairs
differ substantially. However, exploring all reordering possibilities is computationally
too expensive. Therefore standard phrase-based MT systems only focus on exploring
local reorderings. For this purpose, these systems impose a distortion limit, which
is the maximum permissible distance between two consecutive phrase applications.
Although this reduces the computational cost of the system, it limits the possibility of
capturing long-distance reorderings. Further, Koehn et al. (2003) introduced the concept
of distortion cost as a feature. This is modeled as a function of the distance between
consecutive phrase applications.

Lexicalized reordering models (LRM): Distortion limit and distortion cost are
just linear constraints to control the complexity of the model. However, an effective
reordering model should model what kind of reordering decisions will lead to a more
likely and fluent translation. Lexicalized reordering models (Tillman, 2004; Axelrod
et al., 2005) define the probabilities of three different orientations between the current
phrase pair and the next phrase to be selected. Orientation defines the relative order of
the application of the source side of a phrase pair at adjacent points of time. Given a
phrase pair (€, f) and a given orientation, the reordering probability is formally defined
by Koehn et al. (2003) as:

count (orientation, &, f)
>, count(o, €, f) (2.8)

where o € [monotone, swap, discontinuous].

p(orientation|e, f) =

The model defines three types of orientation: Monotone, Swap and Discontinuous.
Monotone orientation implies that the source side of the phrase applied at time ¢ + 1
immediately follows the source side of the phrase pair applied at time ¢ on the right
hand side. Similarly, Swap orientation implies that the source side of the phrase pair
applied at time ¢ + 1 is adjacent to the phrase pair applied at time ¢ on the left side. If
the two source phrases are not adjacent to each other, then the orientation is simply
considered as Discontinuous. For all phrase pairs learnt in the translation model, each of
these orientations is estimated separately from the training bitext. Note that this model
does not distinguish between different positions in a Discontinuous orientation, i.e., all
positions that are not adjacent either on the left or right side of the current phrase pair
have equal reordering probabilities.

Hierarchical reordering models (HRM): Although lexicalized models can efficiently
handle swaps between adjacent phrases, they are not efficient to model the long-distance
reorderings. Galley and Manning (2008) proposed an easy way to capture the long-
distance dependencies without depending on complex parsing algorithms. They instead
proposed to modify the LRM by including hierarchical phrases while estimating the
probabilities of the orientations. For example, by treating two adjacent target phrases
as one single phrase, the orientation of the subsequent phrase would be Swap, which
otherwise would have been Discontinuous by considering them separately. Galley and
Manning (2008) showed that modeling hierarchical phrases can significantly improve
the translation performance for language pairs such as Chinese-English, which have
substantially different word orders.

18



2.2. Phrase based machine translation

2.2.4 Bilingual language model (BiLM)

A Bilingual Language model (Niehues et al., 2011) is an n-gram language model that has
elements from both the source and target language. The advantage of BiLM’s for phrase-
based MT is that while n-gram language models can only predict the probability of the
next word given the previous context in the same language, BiLM’s are capable of using
context information from both sides to score the translation hypothesis. Niehues et al.
(2011) have shown that BiLM’s significantly increased phrase-based MT performance.
The simplest approach to model a BiLM is to compute n-grams for bilingual tokens
instead of tokens from one language. These bilingual tokens can be learned by relating
tokens in the source and target language through trained word alignments. Therefore,
in simple terms, a bilingual token is a target word along with all the source words it
is aligned to. If, however, a source word is aligned to multiple target words, multiple
bilingual tokens are created corresponding to each of the alignments. Unaligned words
on the target side are just represented as monolingual tokens, while unaligned words on
the source side are ignored.

2.2.5 Tuning

As defined in Equation 2.3, individual specialized models are trained separately, and the
scores from each of these models are combined in a log-linear fashion to estimate the
translation probability of a candidate translation. One important aspect of this training
process is the estimation of the values for the weight parameters \;. These parameters
define the importance of each of the models or features in deciding the probability
of a candidate translation. They are optimized by generating the translations for a
development set and updating the values of \’s with respect to quality metrics such
as BLEU (described in Section 2.5.1). In standard optimization algorithms, A’s are
initialized to a random or uniform value, and the development set is decoded (process
described in Section 2.2.6) generating the k best scoring translation hypotheses. Given
the target references in the development set, the \’s are then iteratively updated so that
the updated values lead the decoder to generate a more likely translation in terms of
BLEU. Various optimization algorithms have been proposed for machine translation
tuning. The most popular of these are MERT (Och, 2003), MIRA (Watanabe et al.,
2007) and PRO (Hopkins and May, 2011).

It is important to note that in phrase-based MT, individual models are independently
trained. They are combined by weighting them with respect to their importance de-
termined by tuning. Therefore, the training process has no knowledge of the overall
likelihood of the candidate translation when calculated with the combined scores in
Equation 2.3. As a result, the effect of the model becomes highly dependent on the
correct optimization of the values of model weights A’s.

2.2.6 Decoding

Decoding is the process of finding the highest-ranking translation from all conceivable
translations of a given test sentence. With reference to Equation 2.1, decoding implies
the application of the argmax function. In simple terms, given a test sentence, the
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decoding process involves segmenting the sentence into all possible phrase segmen-
tations, looking up the corresponding phrase translations from the translation model,
and arranging them in the correct order. However, each sentence can be segmented in
multiple ways. Moreover, for each possible phrase segmentation, there are multiple
possible translations in the phrase table, and there are many possible reorderings. All
these possible permutations result in a vast search space of possible translations, and
searching for the best possible translation in this search space is computationally too
expensive. In fact, it has been shown that a complete search through the entire space
is NP-complete (Knight, 1999). Therefore, phrase-based MT decoding (Koehn, 2010)
applies various intelligent heuristics to keep the search space tractable. The most impor-
tant heuristics is the use of a beam-search strategy where partial hypotheses are stored
in stacks, which are organized by the number of translated source words.

Given a source sentence, decoding starts with an empty hypothesis. Hypotheses
are expanded by adding phrase translations for different phrase segmentations of the
source sentence. These partial hypotheses are stored in multiple stacks, which are
organized according to the number of source words that have been covered by that
partial hypothesis (Wang and Waibel, 1997). Whenever a partial hypothesis is expanded,
it is moved to another stack based on the number of source words covered. However,
given a stack with a large number of partial hypotheses, it is critical to decide which
hypotheses should be expanded further. Attempting to expand all hypotheses could be
computationally expensive or even infeasible. On the other hand, one would like not to
drop a partial hypothesis that could lead to a highly likely translation. To overcome this
tradeoff, decoding applies pruning strategies to remove low scoring hypotheses from
each stack. The most common way is threshold pruning, where the idea is to discard
those hypotheses which fall below a pre-defined beam-width «. In other words, if the
score of a hypothesis is worse than «a times that of best scoring hypothesis in a stack,
it is discarded. The highest-scoring hypothesis in the final stack (which represents all
source words being translated) is generated as the final output translation. Note that due
to heuristics-based pruning, beam-search is prone to search error and hence does not
guarantee an optimal solution.

Each partial hypothesis is represented by a data structure with the following infor-
mation: (i) Coverage vector: This simply represents all source words that have been
translated so far. This is important to ensure that all words of the source sentence have
been translated just once. (ii) Cost (negative log probability) of the partial hypothesis:
This is the main parameter that is used to rank the partial hypothesis and to make
pruning decisions. (iii) Future cost: It may not always be beneficial to rank or prune the
hypothesis solely on the current cost (or probability of the translation). For example,
it is possible that a partial hypothesis may have low-probability (or high cost) for the
translation generated so far due to the use of difficult phrases or reorderings. However,
generating the translation of the remaining part of the source sentence may lead to
a low cost or more optimal final translation. Therefore, we also consider future-cost
while applying threshold pruning. Again, calculating future-cost is computationally
intractable; therefore, the decoding algorithm applies intelligent heuristics through dy-
namic programming to determine the approximate value of the future cost of translating
the remainder of the source sentence.

Another heuristics that the beam-search algorithm applies in order to reduce the
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number of partial hypotheses is the idea of hypothesis-recombination. If two partial
hypotheses have identical translations but different translation probabilities, the lower
scoring hypothesis can be discarded as it will never lead to best scoring full translations.
Further details about details of the decoding algorithm are provided by Koehn (2010).

2.3 Neural machine translation

As discussed in Section 2.2, the phrase-based MT paradigm is based on training indi-
vidual specialized models such as phrase translation models, reordering models and
language models, which are combined in a log-linear fashion to compute the likelihood
of a candidate translation. In this way, phrase-based MT systems are still inherently
rule-based systems where the rules and their probabilities are learned directly from
the training data. There are various limitations of this paradigm. First, the training
of individual models increases the complexity of the system. In this paradigm, all
features are learned in isolation, and during training, there is no feedback to learn which
model features could lead to a more likely translation. Further, to limit the size and
complexity of models, a phrase-based paradigm puts constraints on model parameters
such as phrase length and distortion limit, which restricts the capacity of the models to
learn important linguistic phenomena such as “long-distance reordering” resulting in
low fluency of the generated translations.

To overcome the limitations of phrase-based MT, a fully neural network-based
model was first proposed by Sutskever et al. (2014). The main idea was to develop
an end-to-end model that will avoid the requirement of training explicit models for
translation, reordering, alignments, etc. It has been shown that recurrent neural networks
(RNNss) have the capacity to model word sequences of variable length and hence have
the capacity to easily capture long-distance dependencies (Mikolov et al., 2010). A
recurrent network generates a hidden state representation for a given input vector based
on the previous history observed in the sequence. The hidden state representation at
each timestep is influenced by the hidden states in the previous steps. This property
makes them suitable to capture long-distance dependencies and, therefore, to model
sequential objects such as sentences.

Mikolov et al. (2010) proposed an RNN language model that predicts the probability
of the next word given a sequence of words in a sentence. For this purpose, the words in a
sentence are represented as high-dimensional dense vectors known as word embeddings,
which are then sequentially fed to multiple non-linear recurrent layers stacked on each
other. The hidden state representation of the last word is then projected to an output
layer, which has a size equal to that of a pre-defined vocabulary. This output layer
generates scores corresponding to each word in the vocabulary. These scores can be
converted to probabilities using a softmax function. The RNN can then be trained by
maximizing the log-likelihood of the output distribution with respect to the given target
word and updating the parameters of the model using optimization algorithms such as
stochastic gradient descent.

One limitation of an RNN is the problem of vanishing gradients. For very long
sequences, the gradients for the parameters of an RNN can become very small, which
would result in practically no updates of the parameters. As a solution, Hochreiter
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and Schmidhuber (1997) proposed Long-short-term-memory (LSTM) networks, which
consist of various gates to control the information flow between the nodes of the network.
This property allows LSTM networks to model relatively long sequences by avoiding
the vanishing gradient problem.

In Section 2.3.1 we explain the fundamentals of the NMT paradigms, followed
by training and decoding procedures in Section 2.3.2 and Section 2.3.3, respectively.
Finally, in Section 2.3.4 and Section 2.3.5 we discuss important modifications and
enhancements to NMT that are relevant to this thesis.

2.3.1 Recurrent neural machine translation

The earliest and simplest instantiation of the recurrent NMT model is the sequence-
to-sequence or encoder-decoder model of Sutskever et al. (2014), where a multi-layer
recurrent network known as encoder converts an input sentence X = [z1, X2, ..., Ty]
into a sequence of hidden states [hy, ho, ..., hy].

hi = fenc(xiy hifl)- (29)

Here, f., is a recurrent unit. Another multi-layer recurrent network known as decoder
predicts a target sequence y = [y1, Y2, - - - , Ym|. Each word in the sequence is predicted
based on the last target word y;_1, the current hidden state of the decoder s; and the
hidden state representation of the final state of the encoder h,,:

p(y]|y15 s Yi—1, X) = SOftmaX(Ws 5])7 (210)

where
8; = fdec(8j—1,Yj—1,hn). (2.11)

As stated in (Bahdanau et al., 2015), a limitation of the approach of Sutskever et al.
(2014) is that it attempts to compress all necessary information of the source side
into one single fixed-length vector. This may be problematic when dealing with long
sentences where the final representation will tend to lose the information from the start
of the sentence. Therefore, Bahdanau et al. (2015) introduced an “attention mechanism”
in which each time the decoder generates a target word, it uses a different representation
of the source sentence which is known as the context vector. This context vector is
computed as the weighted sum of the hidden state representations corresponding to
each individual word in the source sequence. These weights are calculated based on the
relevance of each source position with respect to the target position being generated.
This enables the neural model to focus on the local information in the source sequence
instead of squeezing all information into one single compact vector. Formally, the
context vector ¢; with respect to each target position is calculated as follows:

cj =Y ajihi, (2.12)
=1

where «; are attention weights corresponding to each encoder hidden state output /;:

exp(a(sj—1,hi))

_ : 2.13
S expla(s;—1, he) @1

Oéji
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Figure 2.2: Recurrent NMT encoder-decoder framework of Bahdanau et al. (2015). For

simplicity of visualisation, attention mechanism is shown only for a single decoder hidden state
representation sg.

where s; is the decoder hidden state generated by RNN units similar to the encoder:

S; = fdec(ijl,yjthj)- (2.14)

Given the target hidden state and the context vector, a simple concatenation combines
the information from both vectors into an attentional hidden state 5;:

5; = tanh(W¢[c;; s4]). (2.15)
This attentional vector §; is then projected to the output vocabulary size using a linear

transformation and then passed through a softmax layer to produce the output probability
of each word in the target vocabulary:

P(Wjily1s - -, yj—1,X) = softmax (W, 5;). (2.16)

Figure 2.2 shows the basic architecture of recurrent NMT model with attention as
proposed in (Bahdanau et al., 2015).
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2.3.2 Training

Training an NMT system implies searching for the optimal values for the parameters
(weights) of the neural network. The performance and the quality of the NMT model
largely depend on searching for the most optimal values of the network parameters. Note
that in phrase-based MT, training an MT system implies first learning the individual
specialized models followed by optimization of the model weight. On the other hand,
for NMT, training implies end-to-end optimization of all parameters over the training
bitext. The standard way of training any neural network is the “back-propagation
algorithm.” For NMT, at each training step, output probabilities p(y;) corresponding
to each target position j are generated by the softmax layer by running a forward pass
through the network. Given the correct word from the training data, the end-to-end
network is trained by maximizing the log-likelihood over the training data. In (Koehn,
2020), the log-likelihood loss for each timestep is defined as:

V]
Lawe(0) = = > un - log (p(yel:6) ) @.17)
k=1

where p(yy,) is the output probability distribution generated by the network and yy, are
the binary labels corresponding to each word in the target vocabulary V. Note that for
only one value of k, value of y; will be 1. This will be the index corresponding to the
true class label, i.e., the word at position j in the reference target sentence. Therefore,
this comes down to the probability p;, being given to the correct word k. The total loss
for the complete target sequence can then be calculated by summing losses over each
individual target position:

n |V]

Lo (0) = = D 3 (i) - 1og (p(yinle:0))- 2.18)

j=1k=1

The training results in learning of optimal values of model parameters 6.

The loss calculated above is then used to calculate gradients corresponding to each
layer of the network through back-propagation, and weights of the network are updated
correspondingly. Note that the above optimization calculates the loss corresponding to
each target position or word. However, the intention of an NMT model is to generate a
target sequence. Therefore a more principled approach would be either to optimize a
loss corresponding to the error in the generated sequence or to optimize quality metrics
such as BLEU (Ranzato et al., 2016). However, due to the simplicity of the approach,
log-likelihood based optimization is still the most popular training approach for NMT.
Moreover, well-known optimization algorithms such as Stochastic gradient descent or
Adam (Kingma and Ba, 2015) can be used for training the model.

2.3.3 Decoding

Similar to phrase-based MT, the NMT model of Bahdanau et al. (2015) also uses beam-
search to decode an unseen test sentence. However, unlike phrase-based MT, NMT does
not stack the hypotheses by the number of translated words but by the output length.
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The aim of decoding is to search a hypothesis with the highest log probability score,
where the score for a candidate translation sequence is defined as follows:

score(yi, Yz, - yt) = log(p(y1,y2 - . . y¢|))

! (2.19)
= log(p(y;lyr - - y-1,%)).
=1

The ideal situation would be to do an exhaustive search over all possible output se-
quences. However, an exhaustive search would have a complexity of O(VT) (where
V is the target vocabulary size, and T is the output sequence length), which is very
expensive. Therefore an efficient approach is beam-search. Given a beam size b, the
decoder assumes a dummy (start-of-the-sentence) token as the input and generates b
highest scoring words for the first output position. For the next position, the network is
instantiated b times, corresponding to each of the words generated in the previous step
as input along with the respective context vectors. Thus at each position, hypotheses are
expanded, and decoding continues until the network generates an EOS (end-of-sentence)
token for each possible hypothesis or a maximum number of timesteps has been reached.
This is unlike SMT, where the search continues until all words in the source sentence
have been covered. The maximum scoring hypothesis is produced by the system as
the translation of the given input sentence. Note that beam-search is an approximate
search algorithm and does not guarantee an optimal solution. Further, beam-search
tends to generate short translations. However, this can be avoided by normalizing the
log probability of the sentence by the length of the input source sentence.

The recurrent network-based encoder-decoder model, along with an attention mech-
anism, has shown comparable or even better performance than phrase-based MT (Luong
et al., 2015). However, there are several limitations to this model. Various enhance-
ments and modifications have been proposed to overcome these limitations. The most
important of these modifications are proposals for non-recurrent NMT architectures.

One major limitation of the recurrent architecture is the sequential processing of
the input sentence by the recurrent network. Due to sequential processing, each hidden
state of the encoder network depends on the previous hidden state. Therefore to process
each position, the network has to wait until inputs from all the previous positions have
been processed. This restricts parallel processing of the input and hence slows down
the whole training process. Moreover, although the attention mechanism enables the
decoder to model dependencies between input and output sequences by allowing access
to full input sequence, it still restricts the capability of the model to handle long-distance
dependencies among the input or output tokens themselves. This is due to the fact that
the encoder does not have access to the full source sequence at any specific position. To
resolve this, Vaswani et al. (2017) proposed a fully-attentional model, commonly known
as the Transformer model. We briefly describe the Transformer model architecture in
Section 2.3.4. Similarly, convolutional neural networks also allow parallel processing
of input. Gehring et al. (2017b) proposed a convolutional sequence-to-sequence model
for NMT. We discuss the model of Gehring et al. (2017b) in Section 2.3.5.
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2.3.4 Transformer NMT model

In order to avoid recurrent modeling and allow the encoder and decoder access to the
full input sequence at each position, Vaswani et al. (2017) proposed the fully-attentional
neural MT model, commonly known as the Transformer model. Vaswani et al. (2017)
used the idea of “self-attention.” In a self-attention mechanism, the representation
corresponding to each word is calculated as a weighted sum of every word in the input
sequence. In this way, at each position, the encoder has access to all other words in the
input sequence, which enables it to capture the relevant information from different parts
of the sequence.

Along with self-attention, Vaswani et al. (2017) also proposed the concept of “Multi-
head attention.” In this mechanism, an individual head is calculated as a different linear
transformation of the input representation. To compute each head, the individual vectors
representing the inputs are mapped into lower dimensions using weight matrices, and
the output of each transformation is used to compute the attention head. These heads
are then concatenated and transformed using another output weight matrix. The use of
these multiple heads enables different parts of the input to interact with other parts.

However, with no recurrence, the model is devoid of any sense of the order of the
input sequence. To incorporate information about the order of the sequence of words,
Vaswani et al. (2017) use “positional embeddings” which are calculated as sinusoidal
functions of the relative positions of the words. These positional embeddings are
combined with the word embeddings to compute the initial representation corresponding
to each word. Other important features of the Transformer model are the “residual
connections”(He et al., 2016) and layer-normalization. The decoder has an architecture
similar to the encoder except that in the decoder, all the values to the right of the
current position in the dot-product attention are masked in order to prevent access to
information from the future target words. We refer the reader to (Vaswani et al., 2017)
for a complete description of the Transformer model. Vaswani et al. (2017) shows that
the fully-attentional model performs comparably to the recurrent model while reducing
the computation time.

2.3.5 Convolutional sequence-to-sequence model

The convolutional sequence-to-sequence model is another approach to NMT and was
proposed by Gehring et al. (2017b) to avoid sequential processing and dependence
on a recurrent network. Since the convolutional network does not depend on the
processing of previous timesteps, it allows for parallelization over every element in
the sequence. Though convolutions create representations for a fixed length of context,
Gehring et al. (2017b) proposed that the effective context size can be made larger by
stacking multiple layers of convolutions and therefore enable capturing long-distance
dependencies. In the first layer, word embeddings for each input token are fed to the
convolutional functions which capture local context with fixed kernel size. Then, higher
layers allow for interactions between distant layers. This model also uses convolutions
for both encoders and decoders. Similar to the Transformer model, this model also
uses positional embedding to capture the order in the input sequence. Moreover, this
model uses gated linear units (GLUs) (Dauphin et al., 2017) as non-linearities. These
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GLUs allow the model to control the flow of information from only those inputs in
the current context that are relevant. An important aspect of this model is the use
of multi-step attention. This implies that at each decoder layer, a context vector is
calculated for each position using a dot-product similarity with all encoder outputs.
This is similar to the Transformer model but different from the standard recurrent model
of Bahdanau et al. (2015), which computes attention only for the final layer. We refer
the reader to (Gehring et al., 2017b) for a complete description of the convolutional
sequence-to-sequence model.

2.4 Knowledge distillation

An interesting concept in deep learning is the idea of “knowledge distillation” proposed
by Hinton et al. (2014). The concept of knowledge distillation is used in two chapters
in this thesis (Chapter 4 and 5). Therefore in this section, we briefly describe the main
idea behind knowledge distillation.

Knowledge distillation is a framework for training compressed “student” networks
by using supervision from a large teacher network. As discussed in (Hinton et al., 2014),
large, cumbersome neural network models with millions of parameters are computa-
tionally too expensive to be deployed in environments with a large number of users.
Therefore, such environments require smaller models due to limited computational
resources. However, smaller models with reduced dimension sizes usually fail to per-
form comparably to large models. Knowledge distillation provides a straightforward
approach to train smaller networks with performance comparable to large networks.

Assuming we have a teacher network with large dimension sizes trained on a large
amount of data, a smaller student network with much smaller dimension sizes can be
trained to perform comparable or even better than the teacher network by learning to
mimic the output distributions of the teacher network on the same data. This is done
by minimizing the cross-entropy or KL-divergence loss between the two distributions.
Formally, if we have a teacher network trained on a given training data with a learned
distribution g(y|x; f7), the student network (model parameters represented by 6) can
be trained on the same data by minimizing the following loss:

V]
L (0, 07) = ZKL( (ylz:0r) plylz:0) ). (2.20)

where 07 is the parameter distribution of the teacher network and K L represents the
KL-divergence loss function. Commonly, this loss is interpolated with the log-likelihood
loss, which is calculated with regard to the target labels in the training data:

L(e, QT) = (1 — )\)LNLL(Q) -+ ALKD(Q,QT) 2.21)

In Equation 2.21, the first term Ly, represents the loss of the student network with
respect to the given target (similar to the teacher network), while the second term
Lkp(0,07) represents the difference or divergence of the output distribution of the
student network with respect to that of the teacher network. The second term forces
the student network to mimic the output of the teacher network. Hinton et al. (2014)
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discussed that the generalization capability of the teacher model could be transferred
to the student network using these output probability distributions, which they termed
“soft-targets.” These soft-targets result in less variance in the gradients as compared
to the hard targets, therefore, enabling faster convergence even when the size of the
training data is relatively small. An important aspect of the knowledge distillation
framework is the increased temperature of the softmax layer. The higher temperature
allows the student network to encode the similarities among the output classes. Hinton
et al. (2014) suggest generating a smoother distribution by increasing the temperature
of the softmax of both teacher and student networks.

2.5 Experimental setup

2.5.1 Evaluation metrics

Various evaluation matrics have been proposed in the literature for automatic as well
as human evaluation of the translation quality of MT output. These include BLEU
(Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) and TER (Snover et al.,
2006). However, BLEU remains the most popular metric for automatic MT evaluation
due to its simplicity and independence from any hyper-parameter. Throughout this
thesis, we only use BLEU for the evaluation in all our experiments. We briefly explain
BLEU as follows.

BLEU stands for Bilingual Understudy Evaluation. Essentially, it is based on
the calculation of n-gram precision. It counts how many n-grams in the translation
output of a given test set match with the n-grams in one or more reference translations
usually provided by human annotators. Precision is calculated by normalizing the
number of matching n-grams by the total number of n-grams in the reference set. This
precision is calculated for each value of n and finally multiplied. However, using only
n-gram precision will reward short sentences that have a perfect match in the reference
translations. To avoid this, the n-gram precision is multiplied by a ‘brevity-penalty,’
which penalizes shorter translations. The brevity-penalty is calculated as the sum of
the ratios of output length to that of the reference lengths of all candidate sentences.
Formally, BLEU is defined as:

n
BLEU, = BP x Hprecz'sz'oni, (2.22)
i=1
. 1(ouput;)
BP — (1,7J . 223
; i I(reference;) ) (2.23)

Note that standard BLEU is defined only for a given test set and not for individual
sentences. In Chapter 3, we define some modifications to the standard BLEU metric,
where we require the calculation of approximate BLEU for each individual sentence in
a generated output set. These modifications will be described in the appropriate section
in Chapter 3. Other than this, all results are reported using the standard definition of
BLEU over the entire test set. In all our experiments, we use case-insensitive BLEU up
to and including n-grams of length 4.
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2.5.2 Phrase based SMT system

For all experiments related to phrase-based MT conducted in this thesis, we use a
phrase-based MT system designed in Perl, which is very similar in its architecture and
implementation to the Moses SMT toolkit (Klein et al., 2017). However, this SMT
system requires some other tools for training individual models, which we describe
below. Although the specific settings and parameter values for different models will be
described in the respective research chapters, here we describe some of the standard
parameters that are used identically across all experiments.

* Word alignments for the training bitexts are obtained using GIZA++ (Och and
Ney, 2003) in both directions.

e N-gram language models are trained using the SRILM toolkit (Stolcke et al.,
2011). Unless otherwise specified, all n-gram LMs are of order 5 with linear
interpolation and Kneser-Ney smoothing.

* Optimization of weights or tuning is performed through an algorithm called
pairwise ranking optimization (PRO) (Hopkins and May, 2011)

* Unless otherwise specified, the maximum phrase length in the phrase translation
models is 7, and the distortion limit in the reordering models is fixed as 5.

2.5.3 Neural machine translation systems

In this thesis, we use two different NMT systems. In Chapter 4 and Chapter 6, we use
Tardis,> which is based on the system described in (Luong et al., 2015) and developed
in the Torch deep learning framework. In Chapter 5, we use the Open-NMT-py toolkit
(Klein et al., 2017), which is an open-source NMT system developed in Python. The
specifics of the used models and hyper-parameters will be described in the respective
chapters.

Zhttps://github.com/ketranm/tardis
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Model Re-estimation for Statistical
Machine Translation

3.1 Introduction

In this chapter, we focus on the problem of improving the reliability and quality of
translation models trained from a word-aligned parallel corpus for phrase-based MT.
This problem is based on the first research-question RQI1 stated in Chapter 1:

RQ1: How does heuristic training of translation models affect the performance of
phrase-based MT and to what extent can alternative training strategies based on
re-estimation of models improve phrase-based MT performance?

As explained in Section 2.2, standard phrase-based SMT systems translate source
sentences by segmenting them into phrases and translating each phrase separately.
These systems are usually composed of at least three models: (a) a phrase translation
model consisting of bilingual phrase pairs extracted from a parallel corpus and their
corresponding translation probabilities, (b) a re-ordering model to score movements
between the phrase applications, and (c) a language model used to score the fluency of
the candidate translation in the target language. To determine the overall likelihood of
a candidate translation, probabilities from these models are combined in a log-linear
fashion:

M
e* = argmax [ Z Ambn (e, f)] ) (3.1)

m=1

In Equation 3.1, h,, represents the log-scores from various feature functions, most
important of which are the phrase translation probabilities and the language model
scores. The \,, factors are the optimized model weights for each feature.

As described in Section 2.2, the phrase pairs in the translation model are trained
using a heuristic extraction method from a word-aligned bilingual training data (Och and
Ney, 2000). This heuristic method extracts phrase pairs based on alignment consistency,
i.e., all possible phrase pairs are extracted in which the word alignments are within the
boundaries of the extracted pairs on both the source and the target side, and at least
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one source and target word within a phrase are aligned with each other. The word-level
alignments are statistically learned from the bitext using the EM algorithm. Formally,
the consistent phrase segmentations are defined in (Koehn, 2010) as follows:

Phrase pair (&, f) is consistent with alignment A, if all words fi, fa, ... f, in f that
have alignment points in A have these with words e, ... e,,s in € and vice versa:

(€, f) consistent with A <= Ve; €€: (e;,fi) €A — fi € f
AND sz S f_Z (ei»fi) cA— e, €€ (3.2)
AND de; € ¢, fj S fT: (ei,fi) € A.

After extracting the consistent phrase pairs from all sentences in the training bitext,
a phrase translation table is built that represents the translation probabilities for each
phrase pair. The probabilities of the translation model are then calculated for each
phrase translation as the relative frequencies of the extracted phrases:

;o count(e, f)
o(fle) = ;. count (e, ;) .

A notable limitation of heuristic extraction based training has been discussed in the SMT
literature: The translation model probabilities calculated using the heuristic method can
be unintuitive and non-reliable (Marcu and Wong, 2002; Foster et al., 2006). Heuristic
method simply extracts all phrase translation pairs that satisfy the criteria described in
Equation 3.2. This includes overlapping phrases. The heuristic extraction is based on
simple counting and does not consider whether the extracted phrases correspond to a
highly probable or unlikely alignment. Moreover, the extracted phrase tables reflect
only the distribution over the phrase pairs observed in the training data.

On the other hand, during translation (decoding), hypotheses are generated by con-
sidering each relevant phrase translation in the phrase table, which are then combined
with the probability score from language models, re-ordering models, and other pos-
sible features and the highest-scoring hypothesis is selected as the output translation.
Therefore, phrase table training and decoding are not necessarily consistent with each
other. While training only considers the distribution of phrase pairs in the training
data, during decoding, the hypotheses are ranked on a weighted combination of trans-
lation probabilities, language model scores, and re-ordering probabilities. Due to this
combination, a phrase translation extracted with high translation probability using the
heuristic method may not get selected in the generation of a highly ranked translation
of the source sentence. This implies that a considerable probability mass is wasted on
phrase translation pairs that are less likely to be used during decoding.

To understand the problem described above, consider the example shown in Figure
3.1. Since the heuristic method allows the extraction of phrases which include unaligned

words, this results in 3 possible translations of source phrase (. (yyn). The proba-
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bilities are calculated based on their occurrence frequency in the bitext, as shown in
Table 3.1 (which is a small excerpt of the complete phrase-table extracted from an
Arabic—English bitext). In order to analyze which of the possible translations of the

Idhy i’ aly asrt yyn qabl 3700 ‘ama

il aam ol 3yl o Js 3700 Lile

which dates back 3,700 years to the yin dynasty .

Figure 3.1: Word aligned Arabic-English sentence pair example.

Table 3.1: Example phrase pairs extracted from sentence alignment in Figure 3.1.

source target Forward probability
Oy (yyn) | the yin 0.0946896

Ju (yyn) | tothe yin | 0.00160451
Oy (yyn) | yin 0.476923

given phrase are actually used during translation, we use the decoder optimized using
this phrase table to translate the source side of the complete training bitext. We observe
that within the 100 best scoring hypotheses, only the last phrase translation is used. The
first two translations are never used. This implies that during training, considerable
probability mass is ‘wasted’ on the first two phrase pairs. One simple solution, which is
widely used to reduce the phrase-table size, is “phrase-table pruning” where the idea is
to simply discard the phrase translations below a threshold probability score. However,
this kind of pruning is again unreliable because these low-scoring phrase pairs could
appear in a highly probable translation when model scores from the language model
and re-ordering models are combined.

This implies that the choice of phrase segmentation used to achieve the highest
scoring translations is also affected by the scores of other models. In order to train a
compact phrase translation model with a reliable probability distribution, these scores
should be taken into account. This brings us to our first sub-research-question.

RQ1.1 What are the limitations of heuristic training algorithms for phrase-based
MT, and how is the translation performance of the models affected by them?

It can be concluded from the discussion above that the translation models trained with
heuristic training are unreliable because of following two reasons:

* A large number of overlapping and unusable phrase segmentations increase the
size of the translation models and hence can be inefficient due to memory and
time complexities.
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* The count-based calculation of phrase translation scores is based only on their
occurrence in the training data and does not have an intuition about which phrase
segmentations are more likely to lead to better MT output.

In the next section, we discuss strategies proposed in the literature that aim to overcome
the limitations of the heuristic training strategy.

3.2 Related work

Several methods have been proposed to learn a more reliable phrase translation model.
One of the most intuitive solutions is to use the word alignment probabilities to score the
likelihood of the phrase segmentations. DeNero et al. (2006) proposed direct training
of phrase segmentation using the EM-algorithm, where the likelihood of the phrase
pairs is calculated using word alignment probabilities. However, they found that this
kind of highly constrained training leads to overly deterministic probability estimates,
ultimately leading to overfitting and that it performs worse than heuristic training. In
other words, constraining the translation model to only have one translation of each
source phrase in a given sentence and no overlaps results in only a few translation
options for each phrase segmentation, leading to poor generalization and overfitting.
As a more reliable solution, Wuebker et al. (2010) proposed “forced-decoding” with
a leave-one-out procedure, which attempts to learn more probable phrase alignments and
segmentations by forcing a decoder to produce the reference translations for the source
sentences in the training bitext and then re-estimating phrase translation probabilities
based on these alignments. Their idea is to first train all models using heuristic training
and then use these models to translate the source sentences in the training data. Finally,
the phrase-table is re-estimated based only on those segmentations, which lead to a
hypothesis exactly matching the target sentence. In forced-decoding, given a sentence
pair (f{, el), the best phrase segmentations and alignments are searched that will cover
both sentences. The best segmentation is defined in (Wuebker et al., 2010) as follows:

M
st = argmax{ Z b (€1, 53¢ f{)} (34)
m=1
The above equation implies that out of all possible phrase segmentations of the source
and target sentences, the best segmentation of the sentence pairs is the one that will
maximize the probability of translating the source sentence into the given target sentence
using the weighted sum of all model features used to score the sentence likelihood. The
phrase table is re-estimated by counting all the best phrase segmentations defined above
for all sentence pairs in the training bitext.

The reason behind the success of forced-decoding is the fact that it results in align-
ments and segmentations that are considered more probable by the decoder based on the
scores from all the translation models (phrase translation model, language model, and
re-ordering model) and features and thus results in a more reliable translation probability
distribution. Thus, forced-decoding is a re-estimation technique that refines the phrase
table by re-distributing the probability mass among those phrase segmentations that lead
to translations of the source sentences equivalent to the given target sentences with high
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probability. As discussed in (Wuebker et al., 2010), using forced-decoding an improve-
ment of up to 1.4 BLEU points can be achieved over a baseline for German—English.
An additional advantage of forced-decoding is that the re-estimated phrase table size is
significantly reduced compared to the original phrase table.

However, there are some limitations to forced-decoding based estimation. First,
it is too conservative in selecting phrase segmentations by restricting the decoder to
only produce the given reference translation. In a related line of research, Liang et al.
(2006) used forced-decoding for an end-to-end discriminative MT model and called this
restrictive selection “bold updating” where only the “Viterbi approximation” leading
to the target translation is considered. They discover that bold updating is not always
the best strategy, especially in the case of noisy alignments. For example, in case of an
incorrect alignment for a noisy sentence pair, the initial phrase segmentations leading
to the exact target reference will have a very low probability, and these segmentations
are already unreliable due to the noisy alignments. Reinforcing such segmentations
during re-estimation may be undesirable to improve the reliability and compactness of
translation models.

As an alternative to “bold updating”, Liang et al. (2006) proposed “max-BLEU
updating,” where instead of updating the model weights towards the given exact target,
the updates should be made with respect to the hypothesis with the highest score.
With “max-BLEU updating,” although the best hypothesis is far from exact reference,
its correspondence to the correct segmentation would be more reasonable. However,
as pointed out in (Chiang et al., 2008), even updating towards max-BLEU may be
undesirable since the max-BLEU translation may contain some peculiar rules due to
noise in the training data. As a result, Liang et al. (2006) proposed a third strategy called
“local updating,” where the idea is to first generate an n-best list based on model scores
and select the highest-BLEU translation from this list. However, the limitation of this
approach is that the max-BLEU translation search is limited to the space of the n-best
hypotheses based on model probabilities. Therefore, Chiang et al. (2008) proposed
oracle-BLEU updating, where instead of searching for max-BLEU translations from
the n-best translations, the idea is to select the translation that maximizes the optimal
combination of BLEU and model score. Note that neither Liang et al. (2006) nor Chiang
et al. (2008) have used the max-BLEU or oracle-BLEU for the training of generative
phrase translation models. Liang et al. (2006) compared the update strategies for an
end-to-end discriminative model, whereas Chiang et al. (2008) proposed oracle-BLEU
update for the optimization of model weights, \’s.

As a second limitation, forced-decoding requires searching the exact hypotheses
within an exponential space, which will require relaxation of most of the decoding
constraints of phrase-based SMT such as distortion limit, beamwidth, and stack size
resulting in slow training time.

A third limitation is that in forced decoding phrase segmentations are re-estimated
only from hypotheses that match the given target reference; therefore, the word order
and hence the re-ordering of phrases remain the same as the initial model. As a result
re-estimation of lexicalized re-ordering models is not possible with forced decoding.

Motivated by the success of forced-decoding and observing its limitations, we
propose another solution, which is to re-estimate the translation models by aligning the
source sentence with the oracle-BLEU hypothesis similar to the one proposed in (Chiang
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et al., 2008). We rank the possible hypotheses on a score, which is the combination
of model score and BLEU score. We propose that the segmentations observed in the
hypothesis with the highest BLEU score, with respect to the target reference, provide a
more realistic estimate of the translation models from the decoding perspective than the
estimate obtained with “bold updating” or “local updating.” In this way, we consider a
middle ground between the approaches of Wuebker et al. (2010) and Liang et al. (2006).
Thus, our aim is to re-estimate the phrase segmentations in such a way that unreliable
phrase translations are not reinforced in the case of noisy data, however, at the same
time, the extracted segmentation and their probabilities are not completely different
from those extracted by heuristic extraction.

To understand this, consider Figure 3.2, which shows word alignments for a noisy
example from the training data for Arabic—English. The connecting lines between the
source (Arabic) and target (English) words or tokens show the set of alignments for this
sentence pair obtained using EM-algorithm. However, note that this is a partially noisy
sentence pair, i.e., the given target is not a complete translation of the given source
sentence and has some fragments missing when compared to a translation provided by a
human annotator. The additional fragments missing in the aligned target are marked in
red in the human translation. Because of the noisy fragments, many words in the source
sentence remain unaligned. When phrase pairs are extracted from this noisy sentence
alignment, the presence of these unaligned words leads to the extraction of overlapping
unreliable phrase segmentations.

Tit w dhkrt aladarf alamt | altyran almdny an rjal alshrit almhlyyn akhdhwa alfl  mn altayrt
Src K3 Bl Ll Labll  aal ol Jlay  Topsll pudall faal Jayll . I
Trg local policemen took the away from airplane

Hmn The Civil Aviation Administration said the local police had taken the man from the plane.

Figure 3.2: Word alignments; Tlt= Transliteration of source sentence, Sre=Source
(Arabic) sentence, Trg=Aligned target sentence in bitext, Hmn=Human translation of
source sentence; Words in red have no correspondence on source side.

In forced-decoding, the idea is to re-estimate only those phrase segmentations which
lead to the highest ranking hypothesis translation equivalent to the given target. As
shown in Figure 3.3, only three phrase pairs will be re-estimated from the given sentence
pair and the rest of the phrase pairs which were extracted in heuristic training will be
discarded. However, since in this case, the original reference itself is noisy, the decoder
selects unreliable phrases translation such as [( w dhkrt aladart alami) > the ] and [ (1
altyran almdny an rjal alsh) < local policemen took ] In this way, forced-decoding
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can lead to reinforcement of the probability of such noisy segmentations.

Tit w dhkrt aladarf al'amt | altyran almdny an rjal alshrii almhlyyn akhdhwa alrjl mn  altayri
st s oS 5l 1.,L.J|| |J obabll sl ol sy iyl uuJéul ||,_g| ol e aslll
Trg local policemen tookl | thel |man away from the airplane

Figure 3.3: Phrase segmentation from forced-decoding.

With the re-estimation strategy based on the model score, as shown in Figure 3.4,
the best hypothesis is closer to human translation. However, due to fewer unaligned
words, it is relatively farther than the given original reference translation. For example,
for one of the source phrase, this approach selects a target phrase as [’local police
officer’] while a correct target phrase with respect to the given reference sentence would
be “local policemen”. On the other hand, as shown in Figure 3.5, the oracle-BLEU is

Tit w dhkrt aladarf alamt | altyran almdny an  ral alshrif almhlyyn akhdhwa aljl  mn  altayrt

sl |5 ass|[om 2w g onl g | |JL>) Wyl olal ||3;;\| |J§)JI|

the general administration of civil aviation| |, said that the man| the plane

Trg Fccording to |Iocal police officersl

Figure 3.4: Model-best hypothesis segmentation.

midway between the original target reference and the best model hypothesis. Unlike
forced-decoding, it does not select the noisy segmentations, and at the same time,
aligned phrases are closer to the given reference. In oracle-BLEU re-estimation, the
goal is not to search for the original target reference but to search for the best scoring
hypotheses allowing for the pruning of the hypothesis space with general constraints
of decoding. Therefore, unlike forced-decoding, relaxation of decoding constraints is
not required, and hence the re-estimation can be done within the usual decoding time.
Since the decoder is not restricted to generating the exact reference, the oracle-BLEU
translation may have a different re-ordering from the reference. Thus, our approach also
allows for the re-training of re-ordering models.
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Tit w bkt aladari alami | alyran almdny an  rjal alshri almhyyn akhdbwa g mn  altayri
Src ‘, ] ‘;)w Ll J Olalall gq_m‘ ‘JL; Unyall v.\_ml‘ dall 5l

Trg ‘ according to ‘ ‘ the general administration of civil aviation ‘ ‘ , said that ‘ I local policemen I ‘ the man ‘ ‘ the plane ‘

Figure 3.5: Oracle-BLEU-best hypothesis segmentation.

Oracle-BLEU translations have previously been used for weight optimization (tun-
ing) based on n-best re-ranking (Srivastava et al., 2011), for comparing re-ordering
constraints (Dreyer et al., 2007) and for the analysis of model errors (Wisniewski et al.,
2010) in SMT. Howeyver, to the best of our knowledge, we present the first approach to
re-estimate translation models from oracle-BLEU translations for SMT. Our approach
for obtaining oracle-BLEU translations is based on (Chiang et al., 2008) who use
an optimal-BLEU approximation for on-line large margin training of syntactic and
structural features in a discriminative machine translation setting. Similar to Chiang
et al. (2008), we use a weighted combination of model score and a pseudo-document
approximation of the BLEU score to obtain oracle translations; see Section 3.3.1 for
details.

3.3 Model re-estimation

The basic idea of our approach is to re-train or re-estimate the translation models from
the phrase segmentations that are used to achieve n-best oracle-BLEU translations
obtained by decoding with the initial models trained with heuristic extraction. Given
a source and its reference translation, the oracle-BLEU translation is defined as the
translation with the highest BLEU score with respect to the given reference sentence. It
can be seen as a translation that is most similar to the reference translation, out of all
the possible translations that an SMT system can produce for a given set of models and
decoding constraints.

3.3.1 Optimal oracle-BLEU score

As discussed in the previous section, instead of absolute BLEU scores, we use an
optimal-BLEU score that is a combination of model score and BLEU score for each
hypothesis. The optimal-BLEU hypothesis is defined in Chiang et al. (2008) as follows:

e* =argmax(B(e) — u(B(e) — w - h(e)),

(3.5)
argmax ((1 — p)(B(e)) — p(w- h(e))),
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where B(e) is the BLEU score for each hypothesis e, h(e) are the model scores and w is
the optimized weight for each model or feature, x is a hyper-parameter in range [0, 1]
which controls the relative weight between BLEU score and model score (sentence
translation probabilities). A value of ;1 = 0 implies that the optimal hypothesis is the
one with the highest BLEU score while 1+ = 1 implies that the optimal hypothesis is the
translation with the highest model score (sentence translation probability). We use a
value of p = 0.5 which implies that the optimal hypothesis has BLEU scores almost as
high as the max-BLEU translations, yet are not very far from the translations preferred
by the model.

Ideally, one would like to calculate the optimal-BLEU score defined above for each
hypothesis translation. However, there is a problem in calculating BLEU for individual
sentences. As discussed in (Chiang et al., 2008), BLEU is not designed to be used for
sentences in isolation. Instead, it is defined to be calculated over the entire test set or
the entire test document. Chiang et al. (2008) and Watanabe et al. (2007) proposed
to calculate BLEU for a sentence in the context of an exponentially-weighted moving
average of previous translations. We follow the approach of (Chiang et al., 2008) for
sentence-level BLEU computation which is briefly discussed as follows:

Given a source sentence f, and its reference translation r, for a hypothesis translation
e*, let c¢(e*) be defined as the vector of the following counts:

* |f| (source length),

* |r| (effective reference length),

* ngram(e*) (the number of n-gram in e*),

* match(e*, r) (number of n-gram matches between e* and r).

Then O is defined as “pseudo-document” and is calculated as an exponentially-weighted
moving average of the vectors from previous sentences and the current sentence. This
implies that for each training sentence if e* is the hypothesis translation; O and input
length O are updated as follows:

0 < 0.9(0 + c(e"))
O; 0905 + If]) (3.6)
c(e*) = [lrl, Ifl, ngram(e), match(e*,r)].

The above update equation simply means that while processing the sentence in a
document, we maintain vectors to carry forward an approximation of the values (from
preceding sentences) required for BLEU computation. Both the vectors O and Oy are
updated and the final vector for the current sentence is computed as a fraction of the
resultant values. However, as the document is processed, O will become larger and the
effect of the current sentence on the BLEU score will be reduced. This is corrected by
scaling the current BLEU score with current effective input length. With these values,
the BLEU score for a sentence pair (f,r) and translation e* is defined as:

B(eitr) = (07 +[f]) « BLEU (0 + c(e’s£x) ). G
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3.3.2 Oracle-BLEU re-estimation

For obtaining the oracle-BLEU translations, we first train the translation models on
the bitext using the standard pipeline of word alignment and heuristic extraction. For
our experiments, along with the phrase translation model and language model, we also
train a bilingual language model (BiLM) (Niehues et al., 2011), as well as lexicalized
(Tillman, 2004) and hierarchical re-ordering models (Galley and Manning, 2008). The
phrase table contains extracted phrase translations along with forward and backward
phrase translation probabilities and lexical translation probabilities (Koehn et al., 2003).
It also stores the word alignments for each translation pair. We use a bilingual language
model (BiLM) specifically as an instance of a re-ordering model in order to determine
the effect of re-estimation on re-ordering decisions from oracle-BLEU translations. We
use the decoder trained on these models to translate the training bitext. Along with the
1-best translation (based on model probabilities), we also store search graphs or lattices
generated during the translation process. The overall procedure can be summarized in
the following steps:

Given bitext D = [(f;,7i,a;)] wherei = 1,2,...,n and f;, r; and a; are source
sentence, target sentence and sets of word alignments between them respectively.

1. Train the initial translation model P7j and the Re-ordering model RMj using
the heuristic alignment method for the given data and alignments (the subscript O
stands for the initial models).

2. For each source sentence f;:

2.1. Using the models PT, RM, and language model LM, .., decode source
sentence f; and generate a corresponding hyper-graph (lattice) Hm°d¢!
representing model scores.

2.2. Convert the lattice "% to HPLFU by comparing the transitions against
reference r;.

2.3. Extract n-best optimal-BLEU hypotheses NB = [h{E h9B ... hOB]
from lattice HBLEU.

3. Extract phrase pairs used in NB and re-estimate the translation model
PTrefestimate-

Re-estimation of the translation models is straightforward by counting the joint and
marginal counts for all phrase pairs in the n-best oracle-BLEU hypotheses and re-
calculating the forward and backward probabilities. We retain the lexical weightings
from the initial translation model.

3.3.3 Searching for oracle-BLEU

Finding the best scoring hypothesis based on translation probabilities (referred to as
model scores hereafter) from the hypothesis space (known as lattice) is a relatively
easy task. Traditional SMT systems implement this by using a beam search (Koehn,
2010) based on decoding as described in Section 2.1. A lattice is a hyper-graph where
the nodes represent all partial hypotheses that were considered during decoding of the
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source sentence. The edges represent the costs or scores of transitions between the
partial hypotheses based on the model probabilities. In other words, each transition or
edge in the lattice represents a translation corresponding to each phrase segment. The
terminating node of the graph represents the complete hypothesis with all words/spans
of the source sentence covered. The edge score is calculated based on the weighted
combination of the model scores for each transition.

However, searching for the highest-scoring sentence within the full search space,
specifically for sentence-level metrics such as BLEU, is non-trivial. This is due to the
fact that computing the contribution of each edge towards the sentence-BLEU (which
is based on the n-gram precision) requires taking into consideration all other edges
on the same path. Various approaches have been proposed for efficiently searching
the oracle-BLEU translation from the lattice (Dreyer et al., 2007), (Li and Khudanpur,
2009), (Sokolov et al., 2012). For our purpose, we use the dynamic programming-based
algorithm of Dreyer et al. (2007) for which we first convert the translation lattice to
an isomorphic oracle-BLEU lattice, which has the same set of nodes as the translation
lattice. However, the edges in the oracle-BLEU lattice represent BLEU score differences
corresponding to each transition. Finally, we extract n-best candidate translations from
this graph according to the BLEU score, as defined in Equation 3.7.

We briefly explain the algorithm for the computation of the oracle-BLEU score
of each partial hypothesis in a lattice. A detailed explanation is provided in (Dreyer
et al., 2007). Consider the example shown in Table 3.2. Along with given source and

Source | “ilsl! s e &Ua_'iﬂ o oo yd Jadl &4
Target transpo;t committee warn of private sector control of ports

ha transport committee warn of control of the private sectors to ports
hp transport committee warn of the private sector control of ports

Table 3.2: Arabic-English sentence pair example.

target sentences, we show two partial hypothesis translations h 4 and hp of the given
source sentence which are generated by the decoder. Note that usually there is a very
large number of complete hypotheses in the decoding space. However, for the sake
of brevity, here we show only two. The translation (model) lattice for this example is
shown in Figure 3.6. Each edge in the model lattice represents the phrase translation
corresponding to one partial expansion. Here the path corresponding to hypothesis 5 4
is the path with maximum model probability score [pathy =0 —-1 =2 =3 -4 —
5 — 6]. The path corresponding to hypothesis hp is [pathg =0 —>1 =2 = 7 —
8 — 9 — 6]. Note that the actual scores are costs or negative log probabilities, however,
here we use translation probabilities for the sake of illustration. The edges in Figure 3.6
are labelled with model scores.

To compute the optimal-BLEU score corresponding to each edge, we first update the
n-gram matches corresponding to each edge. Here n-gram matches mean the number of
n-grams matched with the reference sentence in the partial hypothesis generated up to
the terminating node of the edge.

Figure 3.7 depicts the n-gram matching and update step. Consider node 1 for which
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0.4144 0.1492

the private sector to ports

0.2862
0.1816
transport committee warn of

o b——[ 1 |——>] 2
the private sector

0.127
KR KN

control of ports

0.2198 0.0898

Figure 3.6: Model (translation probability scores) lattice for example in Table 3.2.

the partial hypothesis is [‘transport committee’]. For this partial hypothesis, there are
two unigram matches with the reference sentence, i.e., [transport, committee]. Similarly,
for node 2, the partial hypothesis generated so far is [ ‘transport committee warn of’|
for which there are four unigram matches, three bigram matches, two trigram matches
and one 4-gram match with the reference translation. These counts for each n-gram size
match are represented at each edge. The total count of each n-gram size in the reference
string is [9,8,7,6], i.e., nine unigrams, eight bi-grams, seven trigrams, and six 4-grams.

9/6/2/1

8/6/2/1
the private sector to ports

2/1/0/0 4/3/211
transport committee warn of

o ——[1 >
the private sector

7/5/211
(7 {8 F—{s]

control of ports

8/7/311 10/9/5/3

Figure 3.7: N-gram matching and updates for the example in Table 3.2.
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In Figure 3.8, the value ‘p’ labeled at each edge represents the corresponding n-gram
precision calculated based on the n-gram counts of each edge (from Figure 3.7). Other
than precision, calculation of BLEU requires the calculation of ‘brevity-penalty.” For
sentence-level BLEU, the brevity penalty can be calculated as the ratio of the length
of the full hypothesis to that of the reference length (based on the number of tokens).
However, for partial hypotheses or subpaths, the total lengths of the resulting full
hypotheses are not available. Hence, the exact value of the brevity-penalty for a partial
hypothesis is not computable.

As a solution, to calculate the brevity-penalty for each subpath, we follow (Li
and Khudanpur, 2009): the true reference length corresponding to an expansion is
calculated as the product between the length of source sentence covered by that partial
hypothesis and the ratio between the full source length and full reference length. Thus
for the example in Table 3.2, the full source length to target ratio is 9/8. As shown in
Figure 3.8, for the expansion (1 — 2), up to the node 2, the source length covered is
4; as a result, the approximated reference length for this partial expansion becomes
(9/8) x4 = 4.5, and the length of the hypothesis up to this node is 4. Hence the brevity-
penalty = (4/4.5) = 0.889. The brevity-penalty for each expansion is represented as
‘bp’ in Figure 3.8. With n-gram precision and brevity penalty, the partial BLEU “pBLEU”
score for each edge is calculated. This is combined with the model score according to
Equation 3.5 to calculate optimal-BLEU “oBLEU” as shown in Figure 3.8.

As shown in Figure 3.8, the final oracle-BLEU (oBLEU) for hypothesis hp is
0.4534 while that for hypothesis h 4 is 0.2871. Apparently, since the hypothesis h g is
more similar to the given reference as compared to h 4, it leads to a higher BLEU score
for h B-

b= 0.422 p=0.434
bp = 1.11 bp = 0.98
PBLEU = 0.468 PBLEU =0.425
0= 03753 OBLEU = 0.4412 OoBLEU =0.2871
bp =0.889 the private sector to ports
pBLEU = 0.334
p=0.0408 p=0298  OBLEU=0.2084 | 4 |_>| 5 |

bp=1.12 bp = 0.889
pBLEU=0.04  pBLEU =0.265
OBLEU=0.291  OBLEU=0.2756

control of
</s>

transport committee warn of

the private sector

p=039 | 8 |—>| 9
bp=1.11

pBLEU = 0.433

oBLEU = 0.98 control of ports
p=0.485 p=0.817
bp =0.88 bp =1
pBLEU= pBLEU =0.817
oBLEU =0.3254 oBLEU =0.4534

Figure 3.8: Oracle-BLEU lattice for the example in Table 3.2.
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With this BLEU-lattice as input, we run Yen’s algorithm (Yen, 1970) to search for
n-best oracle-BLEU hypotheses.

3.3.4 Re-estimation of re-ordering model, language model, and
BiLM

Word alignments for each phrase pair used in the n-best oracle-BLEU translation
can be obtained from the initial phrase table. Using these alignments, we extract the
sentence alignments between each source sentence and each of their n-best oracle-BLEU
translations. With these word alignments, we re-train the re-ordering model and BiLM
on these translations and alignments. To re-estimate the language model, we simply
extract the n-best BLEU translations and build an n-gram language model from these
translations, which is then interpolated with the baseline language model for evaluation.

3.3.5 Avoiding over-fitting

An important problem that arises during the re-estimation of the phrase tables is that of
over-fitting. Many of the phrase translations that are only observed in a few sentences
will have artificially high translation probabilities. In extreme cases, if a phrase transla-
tion is observed only in one sentence, such a phrase translation, known as a singleton,
will have a probability of 1. While translating the sentences in the training bitext, it is
highly likely that the highest-scoring hypothesis will have a phrase segmentation that is
extracted from the same sentence due to these high scores. Re-estimating the translation
models from such n-best translations could reinforce the probabilities of these phrase
pairs in the resulting models leading to over-fitting.

For forced-decoding, Wuebker et al. (2010) address this problem by using a leave-
one-out approach where they modify the phrase translation probabilities for each sen-
tence pair by removing the counts of all phrases that were extracted from that particular
sentence. By thus modifying the probabilities, they ensure that while translating a
sentence, the model will not be biased to select a phrase pair that was extracted from
the same sentence pair. However, in our oracle-BLEU re-estimation approach, there is
no constraint to produce the exact translation. Instead, the optimal-BLEU translations
may be very different from the references. Thus it is not strictly necessary to apply
leave-one-out in our approach as a solution to over-fitting. Instead, we handle the
problem by simply removing all the phrase pairs below a threshold count, which in our
case is 2:

d)init = ¢baseline - ¢C(e,f)<2; (3.3)

thus removing phrase pairs with high probability but low frequency.

3.4 Experimental set up

We conduct our experiments for an Arabic—English parallel corpus of approximately 1
million sentence pairs. First, we establish a baseline system by training models using
heuristic extraction on this parallel corpus. We then compare this to a forced-decoding

44



3.4. Experimental set up

implementation and to our approach, where we re-estimate the models by oracle-BLEU,
all using the same bitext.

3.4.1 Baseline

The initial training corpus we use is a collection of parallel sentences taken from
following data sources released by the Linguistic Data Consortium: LDC2006E25,
LDC2004T18, several GALE corpora, LDC2004T17, LDC2005E46, LDC2007T08, and
LDC2004E13. Table 3.3 provides statistics of the training data. Initial word-alignments

Table 3.3: Arabic-English parallel training data statistics.

#Sentences | Arabic Tokens | English Tokens
944,468 29,288,811 30,058,376

are produced with GIZA++ (Och and Ney, 2003). Along with the phrase translation
models (including forward and backward probabilities and lexical weightings (Koehn
et al., 2003)), we train two re-ordering models, namely lexicalized and hierarchical
distortion models (8 features), and also a lexical and a part-of-speech BiLM.

The English 5-gram target language model is trained using SRILM (Stolcke et al.,
2011) with Kneser-Ney smoothing trained on news data from various sources of nearly
1.6 Billion tokens.

We use an in-house implementation of a phrase-based SMT system similar to the
Moses SMT toolkit (Koehn et al., 2007). A distortion limit of 5 and a maximum phrase
length of 7 is used for the baseline system.

Model weights are optimized on NIST’s MT04 data set using pairwise ranked
optimization (Hopkins and May, 2011). For testing the performance of the re-estimated
models, we tune (optimize model weights) different systems while replacing the baseline
models with the corresponding re-estimated models incrementally. We also experiment
with the interpolation of re-estimated models with the corresponding baseline model.
For all the settings, weights are tuned on MT04. We evaluate results on 4 test sets MTOS5,
MT06, MTO08, and MT09.

Case-insensitive 4-gram BLEU (Papineni et al., 2002) is used as evaluation metric.
Approximate randomization (Noreen, 1989; Riezler and Maxwell, 2005) is used to
detect statistically significant differences.

3.4.2 Forced-decoding experiments

For forced-decoding, we use the existing implementation within the Moses SMT toolkit
(Koehn et al., 2007). For this purpose, we use the baseline phrase translation model
to decode its own training corpus, while constraining the output to exactly match the
reference. Standard decoding constraints such as stack size limits, beamwidth, and
distortion limit, which are necessary to maintain the efficiency of decoding, restrict
the possibility of producing the reference translation exactly. In many cases, the exact
reference is pruned out from the search space of the decoder. Therefore, to increase
the chances of producing the exact reference requires relaxation of all constraints. This
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also results in a decrease in decoding speed. Motivated by the discussion in (Foster and
Kuhn, 2012), we relax the parameters as follows:

e Distortion Limit: co

 Stack size: 2000

¢ Beamwidth: 10e(-30)

* No threshold pruning of translation model

No re-ordering or language model is used for forced-decoding of the bitext. However,
as observed in our experiments, even with such a high relaxation of constraints, only
approximately 40% of the sentences can be decoded to match the exact reference which
is much lower than the maximum success rate of 78% for Chinese-English and 81%
for French-English as discussed in (Foster and Kuhn, 2012). This low success rate
of forced-decoding for our data can be attributed to the presence of noisy sentence
pairs taken from various sources. Therefore, additionally, we allow for partial covers
as a feasible hypothesis for those sentence pairs for which exact reference can not be
produced with the given decoding parameters. By partial covers, we mean the best-
scoring hypotheses where a segment of the target sentence can be matched but not the
full target sentence.

3.4.3 Oracle-BLEU re-estimation

As discussed in Section 3.3.2, we implement the re-estimation of the models by extract-
ing phrase pairs from the n-best optimal BLEU translations of the source sentences in
the training set, using target sentences as references. For this purpose, we first train
an initial SMT system and use it to decode the bitext. This system is identical to the
baseline system except for the removal of phrase pairs with low frequency from the
baseline phrase table, as described in Equation 3.8. To obtain the n-best oracle-BLEU
translations, we experiment with different values of n, where n € {1, 10, 100}. From
these oracle-BLEU translations and alignments, all phrases that were used in the deriva-
tion of these n-best sentences are extracted, and the models are re-estimated from these
phrases only. Hierarchical and lexicalized re-ordering models, as well as the BiLMs,
are re-trained using the source sentences, oracle-BLEU translations, and corresponding
word alignments.

3.5 Resulis

In this section, we discuss the experimental evaluation of our proposed oracle-BLEU
re-estimation approach for different model variants and settings. We focus on the
effectiveness of oracle-BLEU re-estimation over heuristic model training and over
forced-decoding.

3.5.1 Effect of n-best variation

As discussed in Section 3.2, we re-estimate the models from n-best oracle-BLEU
translations with three different values of n (1, 10, 100). Models re-estimated for a value
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of n were evaluated under three model settings: phrase table re-estimation, interpolation,
and BiLLM re-estimation. The best improvements over the baseline for oracle-BLEU
re-estimation are obtained by using only the Viterbi translation (alignment), i.e., for
n = 1 as shown in Table 3.4. This is in contrast with forced-decoding, as discussed in
(Wuebker et al., 2010), where the best improvements are obtained for n = 100.

Table 3.4: Performance of the oracle-BLEU re-estimation with varying size n of n-best
list for the NIST MTO09 test set. Statistically significant improvements over baseline are
marked A atp < 0.01, and with A at p < 0.05. V¥ represents a statistically significant
drop at p < 0.01. Values in brackets show gain in BLEU scores over the baseline
for each result. PT,.=Phrase table re-estimation, PT;,=phrase table interpolation and
BiLM,.=BilLM re-estimation.

Baseline 50.1

n=1 n=10 n=100
PT,. 50.1(0.0) 50.1(0.0) 50.0(-0.1)
PT;, 50.74(+0.6) | 50.54(+0.4) | 50.0(-0.1)
BiLM,.. + PT;,, | 50.94(+0.8) | 50.54(+0.4) | 49.6(-0.5)

3.5.2 Comparison with forced-decoding

To compare the effectiveness of our approach against forced-decoding, we run both
approaches on the same training data. Table 3.5 provides a comparison between
BLEU improvements achieved by forced-decoding (100-best) and our oracle-BLEU
re-estimation approach (1-best) over the baseline under two re-estimation settings. Here,
we only list comparisons between settings that result in the best improvements over
the baseline. For forced-decoding, this is the model re-estimated at n = 100, and for
oracle-BLEU, this is the model re-estimated at n = 1.

First, we only re-estimate the phrase tables for both methods and evaluate SMT
systems trained with these phrase tables. For both methods, the re-ordering model
and language model are the same as the baseline. It can be observed from Table 3.5
that while for forced-decoding, the BLEU score for phrase table re-estimation drops
substantially for all test sets (up to —1.4 for MT(09), our oracle-BLEU phrase table
re-estimation shows either slight improvements (+0.2) or negligible drops in BLEU
compared to the baseline.

In the second setting, we linearly interpolate the re-estimated phrase table with the
baseline phrase table (using uniform interpolation weights) for both approaches and
evaluate the SMT systems trained with the interpolated phrase tables. Again, all other
models remain the same as the baseline. In Table 3.5, for phrase-table interpolation,
forced-decoding shows only a slight improvement for MT09 (4-0.3), MT0O8 and MT06
and still suffers from a substantial drop for MT05 (—0.3). On the other hand, oracle-
BLEU re-estimation shows consistent improvement for all test sets with a maximum
gain of up to 4-0.7 for MTO06.
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Table 3.5: Comparison of BLEU scores for 4 test sets for forced-decoding and oracle-
BLEU re-estimation. PT.=Phrase table re-estimation, PTj,=phrase table interpolation,
BiLM,.=BiLM re-estimation, FD=Forced-decoding and OB=oracle-BLEU.

MTO05 MTO06 MTO8 MTO09
Baseline 58.5 479 473 50.1
FD OB FD OB FD OB FD OB
PT,. 57.4Y 1.1y 58.77 to2) 46.3(-0.7) 47.8Y con [46.17 (12[47.4% 01| 48.7Y c1ay [50.100)
PT;n 582" (03 |58.8% 03 [48.0(+0.1) [ 48.6% 07 (47 5002 |47.7% cos) |50.47 o3| 50.72 o)

3.5.3 Comparison with forced decoding with leave-one-out

As already pointed out in Section 3.3.5, Wuebker et al. (2010) uses a leave-one-out
strategy to mitigate over-fitting, which significantly improves the performance of forced-
decoding. For additional analysis, we also compare oracle-BLEU re-estimation to
forced-decoding with leave-one-out.

As can be observed from Table 3.6, even with leave-one-out, phrase table re-
estimation through forced-decoding yields performance below the baseline (a drop of
—0.8 for MTO05, —0.3 for MTO8 and —0.3 for MT09). In contrast, the phrase table
trained through oracle-BLEU re-estimation still performs either similar to or slightly
better (up to +0.2 for MTOS) than the baseline, along with the benefit of a substantially
reduced phrase table size. When interpolated with the baseline phrase table, both
approaches show significant improvements over the baseline. This implies that forced-
decoding in itself with or without leave-one-out may degrade performance as compared
to heuristic extraction. As shown in the last row of Table 3.6, only when interpolated
with the original phrase table does forced-decoding (with leave-one-out) outperform
the baseline trained using heuristic extraction. On the other hand, oracle-BLEU re-
estimation consistently performs better than forced-decoding (up to +0.6 for MT(09)
with leave-one-out when interpolated with the baseline phrase-table.

Table 3.6: Comparison of BLEU scores for Forced-decoding with leave one out and
oracle-BLEU re-estimation. PT,.=Phrase table re-estimation, PT;,=phrase table interpo-
lation, BiLM,.=BiLLM re-estimation. F'Do=Forced-decoding and OB=oracle-BLEU.

MTO05 MTO08 MT09
Baseline 58.5 47.3 50.1
FD;o |OB FDro |OB FD;o |OB
PTT’E 57.7'(-().8) 587 (+0.2) 47.()'(-().3) 47.4 (+0.1) 49.8'(»().3) 50. 1(().0)
PTi’IL 58.7 (+0.2) 58.8A(+0.3) 47.6(+0,3) 4'7.7A (+0.4) 50.6 (+0.5) 50.7A(+0,6)

In summary, based on the results shown in Table 3.5 and Table 3.6, we can conclude
that oracle-BLEU re-estimation performs better than standard heuristic training and
also yields performance better than forced-decoding.
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3.5.4 Re-estimation of re-ordering models

As discussed in Section 3.2, an important novelty of oracle-BLEU re-estimation is
that it also allows re-training of other models alongside the phrase table. In Table 3.7,
we provide the results for the re-estimation of re-ordering models (lexicalized and
hierarchical distortion models) and the bilingual language models for test sets MT08
and MTO09. Note that the forced-decoding procedure, by definition, only allows for
re-training of phrase translation models. This is because their goal is to search for exact
references in the hypothesis space. Therefore only the re-orderings observed in the
target sentence would be permitted, and no new re-ordering model can be learned.

We observe that unlike phrase table re-estimation, re-estimated re-ordering models
(DM,.) do not provide any significant improvements over the original models. Instead,
a drop of up to —0.6 BLEU is observed. Interpolation (DM;,,) of the re-estimated
re-ordering models with the baseline models provides results equivalent to the baseline
models. This implies that although oracle-BLEU training allows for re-estimation of re-
ordering models, it does not provide any significant gain over the baseline. Interpolation
of all the re-estimated models (phrase table, re-ordering models, and bilingual language
models) shows an improvement of up to 0.8 BLEU over the baseline.

Finally, we evaluate the effectiveness of BiLM re-estimation in two additional
settings, as shown in Table 3.7. The re-estimated BiLM on its own adds BLEU improve-
ment of up to +0.5 (for MT09). The highest bleu improvement of +0.8 is achieved for
a system trained on a re-estimated BiLM and all other models being interpolated with
the baseline models, as shown in the last row.

Table 3.7: Oracle-BLEU re-estimation of re-ordering Models. DM,.. = Re-estimated
(Lexical Re-ordering Model + Hierarchical Re-ordering Model), D M,,,=Interpolation of
re-ordering models with baseline models. BiL M, .=Re-estimated Bilingual Language
model. BiLM;,=Interpolation of BiLM.

MTO08 MT09
Baseline 47.3 50.1

FD 4611 | 48.7 s
DM,.. + Baseline(PT, BiLM, LM) | 46.9..4 49.5006)
DM;,, + Baseline(PT, BiLM, LM) | 47.2w 50.100
BiLM,.. + Baseline(PT, DM, LM) | 47.5¢02 50.6¢05)
BiLM;,, + Baseline(PT, DM, LM) | 47.4uo 50.4¢03
All models interpolated 47.7% w04 | 50.9% 0

The results discussed in Table 3.7 demonstrate that although re-estimation of re-ordering
models does not provide any significant gain over the baseline models, it yields perfor-
mance similar to the baseline. Moreover, re-estimation of Bilingual language models
(BiLM) which can also be considered an instance of the re-ordering model, provides
additional improvements over the re-estimation of phrase translation models.
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3.5.5 Model compression

As already discussed in Section 3.2, oracle-BLEU re-estimation results in the removal of
unintuitive and overlapping phrases that may not be useful for decoding a test sentence.
Oracle-BLEU training results in a re-estimated phrase table with a significantly reduced
size as compared to the baseline. As shown in Table 3.8, the minimum phrase table size
after re-estimation is only 3% of the baseline for 1-best oracle-BLEU. While for forced-
decoding, the minimum phrase size obtained with 100 best translations is 8% of the
baseline phrase table. Thus our approach provides a reduced phrase table as compared
to forced-decoding. Since the re-ordering models define re-ordering probabilities for
the same phrase translation as in the phrase table, the size of the re-ordering models is
also reduced as a result of this phrase pruning. This reduction in size reduces memory
requirements of the SMT system, thus making decoding feasible for devices with smaller
memory.

Table 3.8: Phrase table size compared to Baseline for Oracle BLUE re-estimation
for N=1,10,100 and Forced-decoding, OB=Oracle-BLEU, FD=Forced-decoding,
FD; o=Forced-decoding with leave-one-out.

Phrase Table Size (% of baseline)
OB 100 best 5
OB 10 best 4
OB 1 best 3
FD 100 best 28
FDro 100 best 8

3.5.6 Phrase length comparison

Since forced-decoding requires generation of exact reference, decoding a noisy sample
sentence will yield segmentations which have phrases with unaligned words. This results
in an increased average phrase length (number of words or tokens in a phrase). Even
with leave-one-out, inclusion of such phrases will negatively effect the generalization
capability of the re-estimated model. On the other hand, we observed that the oracle-
BLEU translations usually include smaller phrase segmentations which is a desirable
property to achieve better generalization. Table 3.9 provides a comparison of source

Table 3.9: Phrase length comparison of translation models trained from Oracle-BLEU
re-estimation and Forced-decoding.

Source phrase length (avg) | Target phrase length (avg)
Oracle-BLEU 1-best 3.2 35
FD 4.7 5.0
FD Leave-one-out 3.8 42
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and target phrase length sizes for oracle-BLEU re-estimated models and models re-
estimated by forced-decoding. The average source phrase and target phrase sizes for
1-best oracle-BLEU re-estimated phrase table are 3.2 and 3.5 tokens, respectively. For
forced-decoding with and without leave-on-out, it is 3.8 and 4.2 tokens, respectively.
Therefore, it is evident that the oracle-BLEU translations prefer smaller phrases as
compared to forced-decoding.

3.6 Conclusion

In this chapter, we have proposed a simple re-estimation strategy to improve the quality
and robustness of translation models for phrase-based machine translation. We first
discussed the limitations of heuristic training for phrase based MT as an answer to
research question RQ1.1:

RQ1.1 What are the limitations of heuristic training algorithms for phrase-based
MT, and how is the translation performance of the models affected by them?

We showed that extraction of phrases based on segmentations consistent with the word
alignments leads to the extraction of overlapping noisy phrase translations, and the
allocation of probability mass to these segmentations constrains the overall performance
of the model. We also discussed forced-decoding, which is based on the re-estimation
of phrase segmentations from hypotheses exactly matching the target reference. We
discussed a limitation of forced-decoding, which leads to the re-estimation of incorrect
segmentations in the case of noisy data. We also discussed the limitations of forced-
decoding in terms of training complexity and its inability to reach the exact target in the
case of noisy data.

As a remedy, we proposed oracle-BLEU re-estimation where phrase segmentations
are selected from the best scoring hypotheses translations (in terms of BLEU) of
the source sentences in the training bitext. To answer research question RQ1.2, we
evaluated the performance of oracle-BLEU segmentations as compared to the heuristic
training as well as forced-decoding based re-estimation:

RQ1.2 Can the reliability and performance of translation models be improved by
re-estimating the phrase translation table through oracle-BLEU decoding of
the training data?

Our experiments show that re-estimating translation models either by forced-decoding
or from oracle-BLEU translations, yields translation performance comparable to the
initial phrase translation table trained using the heuristic extraction method. At the
same time, due to the removal of unintuitive overlapping phrases, the size of the phrase
table is reduced significantly to just 3% of the original size. The most important aspect
behind the success of re-estimated models is that the reliability or likelihood of a phrase
segmentation is estimated not just on the occurrence frequency in the training data, but
also on their ability to generate a high-quality translation, which includes the scores from
re-ordering and language models. Further, our proposed re-estimation method performs
better or comparable to the forced-decoding procedure. Forced-decoding insists on
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considering only those segmentations, which lead to the target reference. This restriction
of forced-decoding is based on the assumption that the training data has high translation
equivalence and hence fails to reliably re-estimate from noisy sentence pairs. On the
other hand, the proposed oracle-BLEU re-estimation considers phrase segmentation
from hypotheses with a high optimal-BLEU score. Therefore, it encourages translations
very similar to the given reference but is not restricted to generate the exact target
reference. Hence, even in the case of noisy sentence pairs in the training data, it can lead
to a more reliable translation instead of faulty segmentations extracted from the noisy
training examples. In conclusion, our experiments show that the reliability of translation
models can be improved by re-estimating phrase segmentations from translations of
the source sentences in the training data that have a high score based on an optimal
combination of model probabilities and BLEU score.

Finally, since the oracle-BLEU re-estimation method allows for re-estimation of re-
ordering and language models, we proposed that it can yield additional improvements in
the overall translation performance. To answer research question RQ1.3, we evaluated
performance improvements through oracle-BLEU re-estimation of re-ordering and
language models:

RQ1.3 To what extent can oracle-BLEU re-estimation of re-ordering models and lan-
guage models provide additional improvements in translation performance?

While forced-decoding does not allow for the re-estimation of re-ordering models due to
the restriction to generate the exact translation, the proposed oracle-BLEU re-estimation
allows re-ordering of the best hypothesis to be different than the given reference and
hence new re-ordering decisions can be observed and re-estimated. Re-estimation of re-
ordering models, especially the Bilingual Language model (BiLm), provides additional
improvements in translation performance as compared to only the re-estimation of
phrase translation models. Therefore, our experiments indicate that along with the
translation models, reinforcing those re-ordering decisions that lead to a high scoring
translation of the source sentence is beneficial to improve the translation performance
of the SMT system.

In this chapter, we addressed the question of the reliability of the training mechanism
for phrase-based machine translation with respect to the efficient utilization of available
training data. In the next chapter, we shift our discussion to a related problem: the effect
of domain variation in the training data on machine translation.
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4.1 Introduction

In recent years, the focus of research in machine translation has rapidly shifted from
statistical machine translation to neural machine translation (NMT). For many language
pairs, NMT has shown better performance than phrase-based machine translation
(Toral and Sanchez-Cartagena, 2017). There are multiple reasons behind the growing
interest in NMT. First, the ability of recurrent neural networks to capture long-distance
dependencies enables the model to generate translations with improved grammaticality
without depending on explicit re-ordering models (Mikolov et al., 2010). Second, the
end-to-end architecture of NMT provides an easy alternative to phrase-based MT, which
requires training of different models in isolation and optimization of the weights for
each model. However, neural methods, including NMT, are known to be data-hungry
(Koehn and Knowles, 2017).

Standard approaches in NMT train on all available parallel data for a language
pair without taking into consideration the domain of the intended translation task (Chu
and Wang, 2018). This training data pool is compiled from parallel texts from various
domains and genres. For example, for German—English translation, the training data
provided for the news translation task at the annual conference on machine translation
(WMT) (Bojar et al., 2019) is one of the most commonly used publicly available corpora
for research in machine translation. The majority of sentence pairs in this corpus come
either from multilingual news sources or parliamentary proceedings. However, in many
industrial settings, the aim is to translate sentences from specific domains. For example,
in the medical domain, the requirement is to translate medical journals, manuals, and
prescriptions, etc. Undoubtedly, the terminology and the language style can differ
substantially between the news domain and the medical domain (van der Wees et al.,
2015; Haddow and Koehn, 2012; Cuong and Sima’an, 2017). A model trained on
the data from the snews domain may not have learned the terminologies and nuances
of specific domains such as medical journals. As a result, a model trained on data
compiled from various sources may show substantially better performance on test data
from a domain that is the most dominating in the training data pool. However, for
other domains, such a general domain model will show poor performance (Koehn and
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Knowles, 2017). Therefore, training a model for a specific task or domain requires a
substantial amount of training data belonging to that specific domain. However, high-
quality training data for every intended domain may not be available in large amounts.
As a result, NMT systems trained for a domain with less available parallel data quickly
overfit, resulting in poor performance (Zoph et al., 2016).

Research in domain adaptation addresses the problem of adopting a model trained
on data from one specific domain to test instances from another domain. The majority of
the strategies proposed for domain adaptation of phrase-based MT as well as NMT fall
in one of two categories (van der Wees, 2017): (a) domain adaptation at the data level
and (b) domain adaptation at the model level. Both strategies have shown significant
improvements for domain adaptation for phrase-based machine translation. The details
of these strategies are discussed in Section 4.2. With the increasing popularity of
NMT, research in domain adaptation for NMT has also received significant attention.
Since data-level adaptation methods mainly focus on the selection of training samples
relevant to the intended domains, they do not require any modification either to the
training strategy or model architecture, and hence they can be directly applied to NMT.
However, due to the fundamental difference between the two MT paradigms, model-
level adaptation for NMT would require rather different techniques than those used for
phrase-based MT.

A fast and efficient method for domain adaptation for neural methods is fine-tuning,
which has been applied to NMT (Freitag and Al-Onaizan, 2016; Chu et al., 2017).
In fine-tuning, a neural network that is already trained on a large general domain
corpus (also called out-of-domain data) is further trained on a small corpus available
for the target domain (also called in-domain data). Fine-tuning yields significant
improvements as compared to training on in-domain data only (Chu et al., 2017). The
idea of fine-tuning is to first learn the low-level features or parameters common to both
domains and then to transfer these parameters to the intended in-domain task. This
allows the model to converge on the in-domain data in relatively few steps and hence
reduces the amount of training data required for the in-domain task (Zoph et al., 2016).
However, training the neural network involves optimizing the output distribution from
the final layer of the network with respect to the given classes or target labels, which
can be substantially different for different tasks. This results in significant drift in the
parameter space corresponding to the events observed in the new data (Lee et al., 2017b;
Kirkpatrick et al., 2017; Kemker et al., 2018). As a result of this transformation to the
new parameter space, the performance of the resulting model decreases drastically for
the test instances from the general (source) domain. This phenomenon is known as
catastrophic forgetting in the machine learning literature (Li and Hoiem, 2018; Kemker
et al., 2018). In real-world applications, such a degradation of translation performance
on either of the tasks is undesirable because even after adaptation, one would like to
use a single model for translating sentences from multiple domains. In this chapter,
we address this problem of drastic degradation of the translation performance of an
NMT model when fine-tuning it to a new (target) domain. This problem is stated in the
second research question RQ2:

RQ2: How can we apply fine-tuning to adapt NMT models to new domains while
retaining the performance on the source (original) domain?
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In order to address the main research question, we first empirically demonstrate the
effect of domain variation by evaluating the performance of model trained on general
domain data over test sets from specific target domains. This is the main concern of the
first sub-research question RQ2.1:

RQ2.1 How do NMT models trained on a general domain perform on data from a
specific domain?

Next, we discuss fine-tuning as a straightforward method for domain adaptation. We
evaluate the performance of fine-tuning-based domain adaptation on the source as well
as target domains to determine its degrading effect on source domain test instances.
This is the concern of our second sub-research question RQ2.2

RQ2.2 How is the performance on the original source domain affected by fine-tuning
on target domains?

To address the problem of drastic degradation by fine-tuning, in this chapter, we propose
two simple modifications to the fine-tuning approach. Both approaches are based on
the knowledge-distillation framework of Hinton et al. (2014), where a smaller student
network learns to mimic a large teacher network by minimizing the loss between
the output distributions of the two networks. We are motivated by the idea that new
tasks can be learned without degrading performance on old tasks, by preserving the
parameters shared between the two tasks (Li and Hoiem, 2018). We conduct experiments
for English—German translation for three different domains to answer the third sub-
research question RQ2.3:

RQ2.3 Can we apply knowledge distillation as a remedy to minimize the degrading
effect of fine-tuning?

Our first modification is a simple multi-objective learning approach which involves
fine-tuning a general domain model on small in-domain data while at the same time
minimizing the loss between the output distributions of the student network (the model
learned by fine-tuning) and the baseline teacher network (a model trained on sizeable
general domain data). In our second modification, we propose adding multiple output
layers to the student network corresponding to the different tasks (domains) and learning
task-specific parameters for both domains using only the in-domain data while simply
fine-tuning the parameters shared between the two tasks. Our experiments demonstrate
that both of the proposed approaches, namely multi-objective fine-funing and multi-
output fine-tuning, achieve translation performance comparable to vanilla fine-tuning
on the target domain task and at the same time suffer little degradation on the original
general domain task.

In Section 4.2, we discuss related work on domain adaptation for traditional statisti-
cal MT as well as recent approaches in neural MT. We briefly discuss the fine-tuning
method for domain adaptation and its limitations in Section 4.3. We introduce our
approaches in Section 4.4 and discuss experiments and results in Section 4.5 and 4.6,
respectively.
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4.2 Related work

4.2.1 Domain adaptation for phrase-based MT

As discussed in Section 4.1, the problem of domain adaptation has been explored exten-
sively for phrase-based machine translation (Cuong and Sima’an, 2017; Etchegoyhen
et al., 2018). For phrase-based MT, domain adaptation approaches fall mainly into two
categories: (a) domain adaptation at the data level and (b) domain adaptation at the
model level (van der Wees, 2017).

Domain adaptation at the data level is mainly based on the selection of data samples
from the out-of-domain training data that are similar to the target domain. Computation
of the similarity can be based on simple criteria such as cross-domain entropy (Moore
and Lewis, 2010; Axelrod et al., 2011). Other approaches include instance weighting
(Matsoukas et al., 2009; Foster et al., 2010) or feature weighting (Hoang and Sima’an,
2014). While the data selection approach aims at filtering and discarding sentences
dissimilar to the intended domain, another useful approach is to obtain or generate
additional training data for the specific domain. For example, Schwenk (2008) generates
additional synthetic or pseudo-parallel data by translating a monolingual corpus by an
SMT system trained on the available in-domain data. For phrase-based MT, these data
selection approaches have yielded significant improvements in performance (Cuong
and Sima’an, 2017; van der Wees, 2017). Recently these data selection methods have
also been evaluated for NMT and have demonstrated results similar to phrase-based
MT (Silva et al., 2018; van der Wees et al., 2017). Note that the data level adaptation
approaches are independent of the training procedure and can be applied to both the
paradigms without any change in the training procedure or model architecture.

Domain adaptation at the model level aims at changing the distribution of the model
trained on the general domain so as to represent the distribution of the intended domain.
These approaches involve more complex solutions such as model interpolation (Koehn
and Schroeder, 2007; Foster and Kuhn, 2007), domain-specific classifiers (Banerjee
et al., 2010) and fill-up (Bisazza et al., 2011). Since in phrase-based SMT, each model
is trained in isolation, adapting the SMT system to a new domain requires adapting all
involved models to the new domain. This is unlike standard NMT, where the model
is trained in an end-to-end fashion. For phrase-based MT, model interpolation is the
most effective (Sennrich, 2012). However, it is a complex approach because it requires
training of multiple models, including phrase-tables, re-ordering, and language models
corresponding to each of the domains and then learning the corresponding interpolation
weights.

In the case of phrase-based MT, there has not been much research in addressing
the problem of degradation in the source domain. To the best of our knowledge, Wang
et al. (2012) is the only relevant work that has discussed this problem and has goals
similar to that of our approach, i.e., to adapt an SMT system for the newer domain
while at the same time preserving the performance on the original (source) domain.
Their idea is to learn a different set of model weights corresponding to each intended
domain and then classify the incoming sentence at test time and accordingly select the
corresponding model weights to decode the test sentence. However, their results show
that for phrase-based SMT, the degradation effect is not drastic. On the other hand, as
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we will discuss in Section 4.6, for NMT, the drop in performance on the original domain
after domain adaptation can be catastrophic.

4.2.2 Domain adaptation for NMT

The majority of recent research on domain adaptation in NMT has focused on fine-tuning
a pre-trained model on the additional in-domain data. This is because the end-to-end
architecture of NMT enables fast and efficient fine-tuning without the complexity of
re-training individual components for each domain. The first attempt at applying fine-
tuning to NMT was by Luong and Manning (2015). They adapted an NMT model
trained on large general domain data by training it further on a small in-domain data set.
Freitag and Al-Onaizan (2016) extended this fine-tuning approach by using an ensemble
of the baseline general domain model and the fine-tuned model. They proposed that the
ensemble provides better translations on the new domain and, at the same time, retains
much of the performance on the general domain. Their experiments on TED-talks
(Cettolo et al., 2012) as in-domain data demonstrated improvements on the in-domain
test set. However, as we will discuss in Section 4.6, our experiments demonstrate
that even with an ensemble, the performance of the fine-tuned model still degrades
significantly on the general domain task, especially when adapted to a target domain
such as medical documents for which vocabulary and style are substantially different
from that of the source domain. On the other hand, our approach, which is based on
“baseline supervision” during fine-tuning, not only retains general domain performance
better than an ensemble for two different target domains but also provides a faster and
more efficient decoding procedure by avoiding the requirement of having to compute
two output distributions separately which is required in the ensemble approach.

Another approach for NMT domain adaptation is “mixed fine-tuning” by Chu et al.
(2017). They propose to fine-tune the baseline model on a parallel corpus that is a mix
of in-domain and general domain corpora instead of fine-tuning only on in-domain data.
However, as they point out, mixed fine-tuning takes longer than vanilla fine-tuning,
depending on the size of the “mixed” data. Also, it requires robust data selection
heuristics to extract relevant sentences from the general domain. On the other hand,
in our approach, we completely remove any dependence on the general domain data
while fine-tuning. To generate additional data for specific domains, Sennrich et al.
(2016a) apply back-translation of the target in-domain sentences, thus adding new data
to the training corpus and then fine-tuning on the extended bitext. A similar approach is
(Poncelas and Way, 2019), where the idea is to select only the most relevant sentence
pairs from the back-translated corpus using data selection algorithms.

A related line of research to our approach is in computer vision where supervision
from the baseline model based on the knowledge distillation framework has been
extensively used in various domain adaptation paradigms such as “deep domain transfer”
(Tzeng et al., 2015), “knowledge adaptation” (Ruder et al., 2017) and “learning without
forgetting” (Li and Hoiem, 2018). The “learning without forgetting” approach of Li and
Hoiem (2018) is very similar to our approach since they propose to reduce the general
domain performance degradation by adding multiple nodes in the output layer of a
convolutional neural network and fine-tune the parameters on the in-domain data using
the supervision from the baseline model. However, we differ from their approach in that
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we not only apply this method to neural machine translation, but we also experiment
with training with multiple objectives as well as numerous output layers instead of
simply adding new nodes corresponding to the new classes.

4.3 Background

4.3.1 Neural machine translation

In this chapter, we conduct domain-adaptation experiments with the recurrent NMT
architecture discussed in Section 2.3. In order to explain the modifications proposed
in this chapter, we briefly revisit the NMT architecture and training procedure. It
is important to remember here that given a source sequence and previous history of
the target sentence, the softmax layer of the end-to-end neural network generates a
probability distribution for the next target position. This distribution represents the
probabilities of each word in the target vocabulary for that target position. The log-
likelihood of this distribution is calculated as defined in Equation 2.18:

V]

Lo (0) = = 22 D (wie) - log (p(yieles:0) ). .1

j=1k=1

In Equation 4.1, y; corresponds to the output label generated by the network at each
timestep, and k is the true class label, i.e., the reference target word at each timestep,
which is selected from a fixed vocabulary V. With the outer summation, the total loss is
computed as the sum over the entire target sequence. This loss is then back-propagated
to each layer of the network. The corresponding parameters are then updated using the
respective gradients. Training is performed iteratively over batches of training samples
until model convergence is achieved.

4.3.2 Fine-tuning for domain adaptation

Fine-tuning (Hinton and Salakhutdinov, 2006; Yosinski et al., 2014) is a straightforward
strategy to quickly adapt a model to a new task or domain. It belongs to a more general
class of approaches known as transfer learning where the idea is to transfer the set of
features or parameters learned for a specific domain (known as out-of-domain-data)
to another target domain for which substantially large training data are not available
(Pan and Yang, 2010). The motivation behind this strategy is that for two tasks with
a similar set of output classes but different inputs, the low-level features have similar
distributions while the higher-level features can be domain- or task-specific. Training
on a small dataset does not provide sufficient supervision to learn optimal values for a
large number of parameters. As an easy solution, using a network pre-trained for similar
tasks results in better initialization of low-level parameters, and further training on the
intended task by fine-tuning enables learning of task-specific features (Zhou et al., 2017;
Li and Hoiem, 2018). Fine-tuning has been extensively used in many neural network
applications such as image recognition, where it is common to use a pre-trained network
trained on a large dataset sand fine-tune it to other domains for which sufficient training
data is not available (Oquab et al., 2014; Radenovic et al., 2019).
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Although fine-tuning provides an easy way to quickly adapt to new tasks, an im-
portant shortcoming of this approach has been discussed in the deep learning literature.
This problem is the catastrophic forgetting of the original domain (also known as source
domain) (Li and Hoiem, 2018). Forgetting can manifest itself as degradation of the
performance of a model on the source domain after fine-tuning on the target domain.
Although this is not a problem when the only requirement for experimental settings is to
adapt the model to the intended in-domain task, such a degradation is not desirable for
an industrial setting where a model is expected to perform equally well for the source
and farget domain. The reason behind this catastrophic forgetting is discussed in (Chen
and Liu, 2016) and (Goldberg and Hirst, 2017). When a pre-trained neural network is
adapted to the new task, it tends to forget the representations learned for the original
task. This is due to the fact that the weight updates for the new task superimpose or
override the parameters or weights learned for the original task. This problem has been
referred to as the stability-plasticity dilemma in neuroscience by (Abraham and Robins,
2005). They explain that a rigid model will not be able to learn from the new inputs for
future tasks. This is also known as high stability. On the other hand, a model with high
plasticity will easily update the weights for a new task but will forget the information for
the original task. For NLP tasks, Goldberg and Hirst (2017) argue that when fine-tuned
on data with a different distribution of words or tokens, the representations for the
original words will change to the new parameter space.

4.4 Domain adaptation with baseline supervision

As described in Section 4.1, during fine-tuning, a model pre-trained on general domain
data is further trained on the in-domain data, which largely shifts the parameter space
of the model to the target domain resulting in performance degradation on the general
domain test instances. We propose that fine-tuning on the target domain with an
objective function similar to one defined in Equation 2.21 using the supervision from
both the general domain and the target domain can avoid the performance degradation
on the general domain while achieving performance comparable to vanilla fine-tuning
on the target domain. We explore this idea by proposing two modifications to the
fine-tuning approach.

4.4.1 Multi-objective fine-tuning (MCL)

In the first modification, we train the network on a joint objective function that includes
the supervision provided by the hard target labels in the in-domain data as well as the
output distribution of the general domain model on the in-domain data. We believe that
with such a joint objective, the network can learn a parameter space common to both
domains.

First, we pre-train the initial model, also known as ‘teacher network,” on the general
domain data. Then we fine-tune this baseline model on the in-domain data by minimiz-
ing the log-likelihood loss between the target references and the output distribution of
the network. However, at the same time, for each sentence, we also minimize the KL-
divergence (or cross-entropy) loss between the output distribution of teacher network

59



4. Efficient Domain Adaptation for Neural Machine Translation

and the distribution produced by the student network on the in-domain training data, as
shown in Figure 4.1.

Let the general domain data (on which the initial model is trained) be represented
by x,,: and the in-domain data be represented by x;,,, then the final learning objective
becomes:

L(8,6r) =
V]
1—A j:k x lo J:kxm,ﬁ
(1= 20 3y = k) x log (p(ys = Flins0)) )

14
+A ( -3 KL(q(y\w; 1) p(ylzin; 9))) -
k=1

In Equation 4.2, KL is the KL-divergence function, ¢ is the output distribution of
‘teacher’ model on the in-domain data and 67 is the parameter space of the model
learned over the general domain data. Note that both distributions here are obtained by
increasing the temperature e of the softmax as defined in Equation 4.3.

pe(ylx; 0) = softmax <M> . 4.3)

In the proposed approach, once the teacher model is trained, data from the source
(general) domain is no more required while fine-tuning.

4.4.2 Multiple-output layer fine-tuning (MLL)

Although learning a joint objective as discussed in Section 4.4.1 can reduce the degra-
dation on the general domain task to some extent, a much better solution to retain the
performance on the old task is to preserve task-specific parameters corresponding to the
old task and at the same time slightly transform parameters shared across the two tasks
(Li and Hoiem, 2018). Therefore, as a second modification, we propose modifying
the baseline model by adding parameters specific to the new task and learning the
task-specific parameters with the respective learning objectives.

In this approach, we consider only the parameters of the final output-layer (W, as
defined in Equation 2.16) of the NMT network as task-specific, while all parameters
corresponding to the encoder, decoder, attention mechanism, and the concatenation
layer are considered to be shared. Let 6, be the set of all the shared parameters and 6,
and 6, be the task-specific output-layer parameters corresponding to the old (general
domain) and new (in-domain) task, respectively.

Training the general domain baseline model results in initially learning the shared
parameters 6 and the output layer for the out-of-domain task 6,. For training the
in-domain student model, we first modify the network by adding another output layer
to the standard NMT network, as shown in Figure 4.2. We first compute the output
distribution of the general domain teacher model on the in-domain data. Then the
shared parameters for the student network corresponding to the encoder-decoder and
attention mechanism are initialized with 6, which are learned from the baseline model.
Similarly, the parameters of the output layer corresponding to the old-domain task
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Figure 4.1: Multi-objective fine-tuning. Both teacher and student network have the
same architecture. The student network is initialized with parameters trained for the
teacher network. During fine-tuning the parameters of the teacher network are frozen.

are also initialized with parameters 6,. Parameters specific to the in-domain task 6,
are initialized randomly. Then we first train the new parameters 6,, using the ground-
truth with the standard log-likelihood objective as defined in Equation 4.1. This is
a simple warm-up procedure that improves fine-tuning performance (Li and Hoiem,
2018). During this warm-up, we freeze 05 and 6,,. Finally, all parameters are fine-tuned
by minimizing the joint objective. Consider z,, y, to be a sentence pair from the
in-domain data. Then, let y, be the computed output of the teacher model for the new
data, i.e.,

Yo = Q(l’n, 93, 00) 4.4)

For the student network, let / and y/, be the output distributions from the old and new
output-layer, respectively corresponding to ¢/ and 6/

Yy, = p(n,0,,0,) 4.5)
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Figure 4.2: Multi-output-layer learning. The student network has two output layers.
The additional layer is trained with respect to the distribution from the teacher network.

yr, = plan, 0, 0)). (4.6)

Then similar to Equation 4.2, we define two objectives: The first objective is the standard
log-likelihood loss for the shared parameters € and the parameters for new task 6,, with
respect to the target references in the in-domain data

Ly, = —yn X log(p(x,|0%,0.,)). 4.7

The second objective is the KL-divergence between the output distribution of the
student network with respect to the output distribution of the teacher network on the
same in-domain data:

V]

—ZKL(yO,p(yg|xn;0;,0;)). (4.8)

k=1
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The student network is finally trained on the joint objective defined as:
Lcombined = (1 - >\)Ln + AL,. (49)

During decoding, the output layer corresponding to the domain label of the test sentences
is used to compute the output distribution.

4.5 Experimental settings

4.5.1 NMT parameters

In all our experiments, we use an NMT system based on (Luong et al., 2015) imple-
mented using the Torch7 deep learning framework. It is a two-layer unidirectional
LSTM encoder-decoder with a global attention (dot product) mechanism. Both the
encoder and decoder have input embeddings and hidden layers of size 1000. We limit
the vocabulary sizes to 60k for the source and 40k for the target side. Parameters are
optimized using stochastic gradient descent. We set the initial learning rate as 1 with
a decay rate of 0.5 for each epoch after the Sth epoch. Model weights are initialized
uniformly within [—0.02,0.02]. A dropout value of 0.2 is applied to each layer. The
mini-batch size for out-of-domain training is fixed to 64 sentences, while for each of
the in-domain fine-tunings, we use a batch size of 32. We train for a maximum of 20
epochs and decode with a standard beam search with a beam size of 10. All models
have been trained on NVIDIA Titan-X (Pascal) GPU devices.

For in-domain training, we use the same vocabulary extracted from the baseline
general domain bitext. Note that our multiple-output layer approach also allows for the
use of a different vocabulary (that can be extracted from the new data) for in-domain
fine-tuning.

452 Data

We conducted experiments for English—German translation. For all settings we use the
WMT-2015 (Bojar et al., 2015) training set as the general domain training data. This
training set contains approximately 4.2 million parallel sentences from multiple sources
including Europarl, news commentary and common crawl articles. We constrain the
maximum sequence length to be 80 and remove duplicates. This results in a bitext of
approximately 4 million sentence pairs, out of which we reserve 5000 sentence pairs for
perplexity validation and use the rest for training the general domain baseline model.
We use newstest15 (the official test set for WMT-2015) as a general domain test set.
For in-domain training, we consider three different domains namely the TED-talks
bitext (Cettolo et al., 2012) (approximately 170k sentences, also known as the IWSLT-
2013 corpus), the EMEA corpus (Tiedemann, 2009) (approximately 200k sentence)
which is a parallel text of medical guidelines, and the information technology domain
data provided from the IT-translation task for WMT-2016 (Bojar et al., 2016). From
each of these three corpora, we reserve 2000 sentences as the validation set. For the
TED talk domain, we use a combination of the official test sets for IWSLT 2011, 2012,
and 2013 as an evaluation set. For the medical and IT-domain, we reserve a set of
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Table 4.1: Training and evaluation sets for various domains. Sizes in number of parallel
sentences.

Corpus | Train | Validation | Test

WMT 4M 2K 2.1K

Ted 170K 2K 47K
Medical | 200K 2K 2K
IT 210K 5K 2K

2000 sentences each from the respective training corpus evaluation sets. Table 4.1
summarizes the statistics of training and test data sets for all domains. Results are
reported in terms of case-insensitive BLEU-4 (Papineni et al., 2002). Approximate
randomization (Noreen, 1989; Riezler and Maxwell, 2005) is used to detect statistically
significant differences.

4.6 Results

We define multiple baselines to compare our proposed approaches. First, we obtain
the BLEU scores for a model trained only on general domain data and measure its
performance on the general domain (source domain) test set as well as on the in-domain
test sets. Similarly, for baseline comparisons, we train models only on the small in-
domain data for each of the target domains. We compare our approaches to vanilla
fine-tuning and ensemble methods (Freitag and Al-Onaizan, 2016) in terms of BLEU
improvements on the in-domain test sets as well as in terms of degradation on the
general domain test-set. Finally, we also train baseline models on the combined general
and in-domain bitexts and test them on both test sets. Note that this baseline acts as
a ceiling for our approaches as this setting can only be used for training when data
from the general, as well as the target domain, are available. Table 4.2 summarizes the
notations used for different models and datasets used in this section.

Table 4.2: Notation for models and datasets.

Notation Description

In-domain,,;, | Model trained only on in-domain data

General Model trained only on General data

Combined Model trained on combined in-domain and general domain data
FT Vanilla fine-tuning

FTEns Ensemble fine tuning

MCL Multi-objective fine-tuning

MLL Multi-output-layer fine-tuning

Since the main goal of our experiments is to adapt the model to the target domain, we
first evaluate each model on the in-domain development set and finally evaluate the same
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model on the evaluation set for both the source (in-domain) and general domain. Finally,
we also aim to measure how the performance of the model varies during in-domain
training. Therefore we report epoch-wise BLEU score for each adaptation technique on
the evaluation set (test-set) corresponding to each domain.

4.6.1 Domain adaptation for TED data

For domain adaptation for TED data, Table 4.3 summarizes the BLEU scores for
different settings and also the highest and lowest BLEU scores for fine-tuning and the
proposed approaches. The performance of the General,,;,, model (19.46) is higher
than that of the In-domain,y,;,, model (17.95) for the in-domain (iwsl?) test set. Hence,
we consider the BLEU scores of the General,,;, model on the two test sets as our
corresponding baseline scores. To compare the gradual degradation of vanilla fine-
tuning with our proposed approaches, we report BLEU scores corresponding in the
first epoch as well as highest BLEU score achieved for the in-domain test set. The last
column shows the corresponding BLEU scores over the general domain test set.

Table 4.3: BLEU scores for different approaches for TED data domain adaptation. iwslt
=IWSLT (2011+2012+2013). * represents the baseline setting for these experiments
and 4 /Y and #/V indicates a statistically significant gain/drop at p < 0.01 and p < 0.05
respectively over the baseline.

Epoch In-domain (TED) General domain (WMT)
development \ iwslt(test) newstest’ 15 (test)
Standard NMT baselines
In-domain,,, 15.51 17.95
General,piy 17.40 19.46* 18.54*
Combined 20.80 22.864 (+3.40) | 17.57Y (-0.97)
Fine-tuning methods
FT 1 17.60 19.694(+0.23) | 13.94(-4.60)
3 18.43 21.904(+2.44) | 12.68Y(-5.86)
FTEns 19.60 22.904(+3.44) | 16.707(-1.84)
Proposed approaches
MCL 1 19.31 21.774+2.21) | 16.957(-1.59)
7 20.55 22.194(+2.73) | 16.557(-1.99)
MLL 1 17.29 20.26%(+0.80) | 18.24V(-0.30)
9 18.40 21.704(+2.24) | 16.90V(-1.64)

Vanilla fine-tuning improves over the baseline by up to +-2.4 BLEU in the third
epoch for the in-domain (iwslt) test set. However, it drops substantially in the first epoch
by +4.6 BLEU on the general domain (newstest’ 15) test set and by +-5.8 corresponding
to the third epoch. On the other hand, for the in-domain test set, multi-objective
learning (MCL) improves over the baseline by up to +2.7 BLEU (in the third epoch)
which is slightly better than vanilla fine-tuning while at the same time, performance
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Figure 4.3: Epoch-wise BLEU (a) improvement over in-domain test set (TED) (b)
degradation over general domain (WMT) test set.

degradation on the general domain test set is only —2.0 which is substantially less than
for fine-tuning.

Similarly, for multi-output-layer learning (MLL), we observe improvements of up
to +2.2 BLEU over the baseline on the in-domain test set, which is almost equal to
fine-tuning and the drop in BLEU over the general domain test set for the 9th epoch is
only —1.64.

The ensemble method (FTEns) achieves an improvement of +1 BLEU over simple
fine-tuning for the in-domain test set (iwslt), which is higher than both proposed methods
and also suffers similar degradation on the general domain (newstest’15) test set. This
is due to the fact that although the TED talks are considered to be a different domain,
the vocabulary and style of the TED data is very similar to that of the general domain
data. Also, the model trained on the combined data performs comparable to the best
setting, i.e., the ensemble method for both test sets.

Figure 4.3 shows the epoch-wise comparison of BLEU scores for source and target
domain test sets for TED data domain adaptation. For the source domain, fine-tuning
performance drops rapidly, starting from the first epoch. However, performance degrades
relatively slower for our two proposed approaches on the general domain.

In conclusion, we observe that for the TED data, our approaches show compara-
ble improvement to fine-tuning while suffering from less degradation over the source
domain. However, the ensemble method of Freitag and Al-Onaizan (2016) also demon-
strates similar results. Therefore, we repeat our experiments for domain adaptation for
the EMEA corpus for which the vocabulary is substantially different from the source
domain of news articles as compared to the TED data.

4.6.2 Domain adaptation for medical domain data

Table 4.4 summarizes our experiments for domain adaptation for the EMEA data. The
first important observation is that the BLEU score for the In-domain,,,;, model on the
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in-domain test set is 20.08 while for the General,,;, model it is 13.54. That is, the
performance of the In-domain,,;,, model is substantially higher than the General,,;,
model on the in-domain test set. This is in contrast to the experiments on TED data,
where the General,,,;,, model performed better than the In-domain,;,, model. Hence,
for this set of experiments, we consider the In-domain,,;, model performance (20.08)
as our baseline. Also, here the model trained on the combined data performs only
slightly better than the In-domain,,,;, baseline for the EMEA test set while performing
comparable to the General,,;,, model on the WMT test set.

Table 4.4: BLEU score for different approaches for EMEA data domain adaptation. *
represents the baseline setting for these experiments. emea,.s; = test set for medical
domain, emeag., = development set for medical domain. * represents the baseline
setting for these experiments and 4/ and 2/V indicates a statistically significant
gain/drop at p < 0.01 and p < 0.05 respectively over the baseline.

Epoch In-domain (EMEA) General domain (WMT)
emea ey, \ emeasest newstest15 (test)
Standard NMT baselines
In-domain,, 19.40 20.08 *
General,piy 13.13 13.54 18.54*
Combined 20.51 20.842(+0.76) | 17.607(-0.94)
Fine-tuning methods
ET 1 11.71 12.34 7.10Y(-11.44)
6 22.23 22.574(+2.49) | 4.50(-14.04)
FTEns 18.90 19.437(-0.65) | 13.63Y(-4.91)
Proposed approaches
MCL 1 17.75 18.147(-1.94) | 15.507(-3.04)
11 22.11 22.504(+2.42) | 13.297(-5.25)
MLL 1 20.20 20.60 (-0.02) | 17.17Y(-1.37)
6 21.87 22.334(+2.25) | 14.677(-3.87)

Vanilla fine-tuning shows an improvement of up to +2.5 BLEU (in the 6th epoch)
as compared to the In-domain,n;, model on the in-domain (EMEA) test-set. However,
for fine-tuning, the drop for the general domain test set is dramatic, i.e., —11.3 in the
first epoch and —14 BLEU in the 6th epoch. Although the ensemble method suffers
from less degradation (—4.9) for the general domain test set (newstest’15), it performs
slightly lower (—0.6) than the baseline for the in-domain (EMEA) test as compared
to vanilla fine-tuning. On the other hand, multi-objective learning (MCL) performs
comparably to fine-tuning on the in-domain (EMEA) test set (42.4 improvement over
baseline) while the drop for the general domain test set (—5.25) is not as dramatic as
for vanilla fine-tuning.

Similarly, for our multi-output-layer approach (MLL), while the improvement on
the in-domain (EMEA) test-set is comparable to fine-tuning, it shows the smallest drop
in performance for newstest’ 15. Figure 4.4 shows the comparison of BLEU scores for
the in-domain (EMEA) test set and newstest’15. Similar to the TED data experimental
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Figure 4.4: Epoch-wise BLEU (a) improvement over in-domain test set (EMEA) (b)
degradation over general domain test-set (WMT).

results, while fine-tuning performance drops rapidly on the general domain test set, it
drops slower for our proposed methods,

In conclusion, for the medical domain, our proposed methods of multi-objective and
multi-output-layer learning show improvements comparable to fine-tuning on the target
domain with limited loss on the source (general) domain as compared to fine-tuning. On
the other hand, the ensemble method fails to achieve any improvements for the target
domain.

4.6.3 Domain adaptation for IT domain data

Table 4.5 summarizes the results of our experiments for domain adaptation for the IT
domain data. Similar to the medical domain, for the IT-domain, the performance of a
model trained only on in-domain data (In-domain,,y) is higher (+12.1) than that of
a model trained only on out-of-domain data (General,yi,) on the in-domain test set
(ITtest). Therefore, for adaptation to the IT-domain, we consider the in-domain-only
model In-domain,;, as our baseline. Surprisingly, a model trained on the combined
data shows no improvement for test sets from either of the domains. Instead we observe
a drop of —0.78 for the in-domain test set and a drop of —0.63 for the general domain
test set as compared to the corresponding baselines.

Similar to the medical domain results, the best performance observed for the in-
domain test set corresponds to vanilla fine-tuning, which shows an improvement of up
to +3.18 BLEU (in the 10th epoch) over the in-domain test-set. However, again, the
drop in performance over the general domain test set is very large, i.e., —7.22 in the
first epoch and —7.59 in the 10th epoch.

Similar to the medical domain results, the ensemble method suffers less from
degradation in performance for the general domain test-set (newstest’15 ), i.e., —3.78
BLEU. However, it performs slightly lower than the baseline for the in-domain (/7}¢s¢)
test (—0.9) as compared to vanilla fine-tuning.
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Table 4.5: BLEU score for different approaches for IT data domain adaptation. *
represents the baseline setting for these experiments. 1T ., = development set for IT
domain, IT;., = test set for IT domain. * represents the baseline setting for these
experiments and 4 /Y and 2 /V indicates a statistically significant gain/drop at p < 0.01
and p < 0.05 respectively over the baseline.

Epoch In-domain (IT) General domain (WMT)
ITyey | ITiest newstest’ 15 (test)
Standard NMT baselines
In-domain,,,;, 32.21 | 32.48%
General, iy 21.14 | 21.36 18.54%
Combined 31.50 | 31.707(-0.78) | 17.917(-0.63)

Fine-tuning methods
30.21 | 30.56Y(-1.92) | 11.327(-7.22)

FT

10 35.48 | 35.66%(+3.18) | 10.957(-7.59)
FTEns 31.32 | 31.574(-0.91) | 14.76 A(-3.78)
Proposed approaches
MCL 28.53 | 28.717(-5.16) | 16.727(-1.82)
10 32.73 | 32.804(+0.32) | 15.797(-2.75)
v v
MLL 1 27.11 | 27.327(-5.16) | 16.917(-1.63)

32.90 | 33.214(+0.73) | 15.737(-2.81)

IT}cs; (in-domain) newstest 15 (general domain)
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Figure 4.5: Epoch-wise BLEU (a) improvement over in-domain test set (IT) (b) degra-
dation over general domain test-set (WMT).

In contrast to the results for the medical domain, the performance of the proposed
multi-objective learning (MCL) for the IT domain is not as high as fine-tuning on the
in-domain test set (only 4-0.32 in the 10th epoch). However, it is still higher than the
baseline, and the drop in general domain performance (—2.75) is much lower than
for vanilla fine-tuning. Similarly, for a multi-output-layer approach (MLL), while
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the improvement on the in-domain test-set is similar to multi-criteria-learning (MCL)
(+0.73 BLEU), it shows the least drop in performance for the general domain test set
(—2.81).

Figure 4.5 shows the comparison of BLEU scores over the IT domain test sets and
the general domain test set for IT data domain adaptation. Similar to the TED and
medical domain results, fine-tuning performance drops rapidly on the general domain
test set, whereas multi-criteria learning shows smaller drops. For the IT domain, while
the proposed methods perform lower than the fine-tuning method for the in-domain test
set, they still show significant improvements over the baseline. Moreover, both methods
result in a smaller drop in performance over the general domain test sets as compared to
vanilla fine-tuning.

4.6.4 Decoding time comparison

Finally, we compare the average decoding time per sentence for ensemble decoding
and multi-objective learning in Table 4.6 as calculated over the TED domain data. The
decoding time for the ensemble method is twice that of fine-tuning because it requires
computing two different models, while for multi-objective learning, it is the same as
that of fine-tuning.

Table 4.6: Average decoding time (in milliseconds) on GPU devices per sentence for
ensemble decoding and multi-objective learning. The average sentence length for the
used test set is 20.9 tokens.

Average time(ms)
Fine tuning 0.131
Ensemble decoding 0.277
Multi-objective learning 0.147

4.7 GConclusion

Although NMT has demonstrated better translation performance than statistical
machine translation in general domain applications, the data-hungry nature of NMT
models makes them prone to overfitting and can result in low performance for
translation tasks focused on specific domains due to the scarcity of training data in these
domains. Domain adaptation provides methods to utilize the general domain models for
translating text in specific domains. For NMT and other neural network-based tasks,
fine-tuning provides a straightforward method for fast domain adaptation. However, a
particular shortcoming of fine-tuning is the large degradation of performance on general
domain tasks. In this chapter, we addressed the question of how to retain the consistent
performance of an NMT model across the source and target domains when adapting the
general domain model to specific domains. We asked the general research question RQ2:
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RQ2: How can we apply fine-tuning to adapt NMT models to new domains while
retaining the performance on the source (original) domain?

To answer RQ2, we carried out three sets of experiments: First, we evaluated the perfor-
mance of a model trained on the general domain (news data) on three different target
domains: TED talks, medical domain, and IT-domain. As discussed in Section 4.6.2 and
4.6.3 for the medical domain and IT domain, the performance of the general domain
model is significantly lower than that of the in-domain model when evaluated on the
in-domain test set. Only for the TED-talks data, due to the substantially smaller size
of the in-domain data, the performance of the general domain model is higher than the
in-domain model.
Our first sub-research question in this chapter was:

RQ2.1 How do NMT models trained on a general domain perform on data from a
specific domain?

To answer RQ2.1, we can conclude from the discussions in Section 4.6.2 and 4.6.3 that
given a reasonable size of in-domain data, the performance of a model trained on general
domain data will be substantially lower than training only on the in-domain data. Only
in case of a very small amount of in-domain data, as observed for the TED-domain in
Section 4.6.1, can a general domain model yield better performance than the in-domain
model.

Domain adaptation aims at making the best use of general domain data for domain-
specific tasks. As discussed in Section 4.3.2, although various data selection methods
have been proposed for domain adaptation in SMT, due to the end-to-end neural network
architecture of NMT, fine-tuning becomes an easy and straightforward solution. We can
answer our second sub-research question about the evaluation of fine-tuning for NMT
on the source (general) as well as target domains:

RQ2.2 How is the performance on the original source domain affected by fine-tuning
on target domains?

The goal of addressing RQ2.2 is to evaluate whether fine-tuning provides any significant
improvements over the in-domain baselines when adapting the models to multiple
domains. At the same time, we also evaluate whether the model adapted through fine-
tuning can retain its performance on the general domain task. It can be concluded from
the results for all domains that fine-tuning indeed provides significant improvements as
compared to the in-domain only or general domain only models, but the performance of
the adapted model on the general domain tasks degrades drastically.

To address the problem of this drastic degradation, we proposed two modifications to
the fine-tuning method for domain adaptation for NMT in order to retain the performance
on the source domain. The third sub-research question addresses the evaluation of the
proposed methods.

RQ2.3 Can we apply knowledge distillation as a remedy to minimize the degrading
effect of fine-tuning?
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From the results for all domains, we see that both proposed approaches achieve per-
formance comparable to vanilla fine-tuning while retaining performance on the source
(general) domain. Moreover, the decoding speeds of the proposed methods are the same
as fine-tuning, while the ensemble method requires almost twice the decoding time of
fine-tuning.

Similar to the negative effect of domain variation, the quality of the training data
is another problem that negatively affects the performance of the NMT models. In the
next chapter, we discuss the problem of utilizing noisy data for training NMT models
and propose a solution also based on the idea of knowledge distillation.
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Neural Machine Translation with Noisy
Data

5.1 Introduction

In Chapter 4, we discussed the problem of domain adaptation for neural machine
translation. We proposed a strategy to easily adapt NMT models to new domains
without degradation on the source domain. A similar problem that has received limited
attention is that of low-quality training data. In this chapter, our aim is to evaluate the
effect of noisy training data on NMT performance and propose strategies to effectively
utilize the noisy data for training NMT models. Therefore, our main research question
in this chapter is:

RQ3: How do noisy training corpora affect the performance of NMT and how can we
leverage them to improve NMT performance?

Recent research has shown that the negative effect of noise on neural machine translation
performance as compared to phrase-based machine translation (Khayrallah and Koehn,
2018). Similar to phrase-based machine translation, most of the recent techniques
proposed for de-noising training data for NMT are based on data filtering approaches
that rank the samples in the training data in terms of their comparability or translation
equivalence and then use only the highly ranked samples for training (Junczys-Dowmunt,
2018; Khayrallah et al., 2018; Rossenbach et al., 2018; Koehn et al., 2018). These
ranking algorithms are based on combinations of heuristics-based filtering and data-
driven classifiers (Junczys-Dowmunt, 2018; Barbu and Barbu Mititelu, 2018). The
classifiers are usually trained on high-quality data that enable the machine learning
algorithms to learn features from high-quality samples. Samples from noisy data that
are ranked low by these algorithms are discarded, and only highly ranked samples are
used for training. Although recent research has shown that data filtering techniques can
improve the performance of NMT, we believe that these techniques yield inefficient
utilization of low-quality data. This is due to the fact that in filtering techniques, samples
that are identified as noisy by the data selection algorithm are discarded completely.
However, as we will demonstrate in Section 5.3.1, a noisy sentence pair can still have
some fragments that can provide useful contextual features for NMT models. Therefore,
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it is important to investigate and experiment alternative techniques that could enable
utilization of all samples in the available training data, even if they are of low quality. In
this chapter, we propose one such technique based on knowledge-distillation and show
that for recurrent NMT, the proposed technique allows for the utilization of low-quality
training data without requiring any data filtering techniques.

For many language pairs, substantial amounts of high-quality parallel corpora
are not available. For some of these language pairs, another useful resource known
as comparable corpora can be obtained easily in substantially larger amounts. A
comparable corpus is an aligned bitext created by crawling large monolingual data in
the source and target languages from multilingual news portals such as Agence France-
Presse (AFP), BBC news, and Euronews, etc. Source and target sentences in these
monolingual corpora are then aligned by automatic document and sentence alignment
techniques (Munteanu and Marcu, 2005). Such a bitext extracted from comparable
data is usually not of the same quality as annotated parallel corpora. In recent research,
Khayrallah and Koehn (2018) showed that building models from low-quality data could
have a degrading effect on the performance of recurrent NMT models. Based on the
observations reported by Khayrallah and Koehn (2018), we address the first sub-research
question in this chapter:

RQ3.1 What is the effect of comparable or noisy training data on the performance
of a recurrent NMT system?

Following Khayrallah and Koehn (2018), there is a growing interest in filtering and
sampling techniques to extract high-quality sentence pairs from large, noisy parallel
texts. Recently, the “Parallel corpus filtering” (Koehn et al., 2018) shared task was held
at WMT-2018. This task aims at extracting high-quality sentence pairs from Paracrawl,'
which is a large but noisy parallel corpus. Most of the participants (Junczys-Dowmunt,
2018; Barbu and Barbu Mititelu, 2018; Koehn et al., 2018) in this task use rule-based
pre-filtering methods followed by a classifier-based scoring of sentence pairs. A subset
sampled with a fixed number of target tokens is then used to train an NMT system in
order to evaluate the relative quality of the filtered bitexts. Some of the submissions
show good translation performance for the German—English translation task by training
on the filtered bitext only (Koehn et al., 2018). In Section 5.2, we discuss in detail the
relevant literature that aims to utilize low-quality training corpora for NMT.

Although results from Khayrallah and Koehn (2018) and the submissions at the
“Parallel corpus filtering” task show that noisy training data indeed has a negative effect
on NMT performance, there are some open questions in their conclusions. First, the
majority of previous work has experimented with only one standard noisy dataset,
which is the Paracrawl corpus for the German — English translation task. Second, the
submissions at the “Parallel corpus filtering” task reported results for systems trained
only on the samples filtered from the Paracrawl noisy corpus. Therefore, there is
a requirement to further evaluate the effects of noisy data for other language pairs.
Moreover, it is also important to evaluate the effect of noisy data when it is used in
conjunction with clean, high-quality data. To answer RQ3.1, we experiment with

Uhttps://paracrawl.eu/
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noisy data for three language pairs and evaluate the effect of noisy data when used in
conjunction with high-quality parallel data.

As already discussed, most previous work that aims to use noisy corpora for neural
MT training select only high-quality subsamples from the noisy corpus and discard
samples that are ranked lower. However, we argue that most of the noise in the training
data is due to the low translation equivalence between aligned sentence pairs. Such
noisy samples can still have some correct overlaps between the fragments of source
and target sentences. Therefore, instead of discarding a sentence pair completely, using
it with possible correction of noisy fragments can provide better gains in translation
performance. In order to correct noisy fragments, we explore two approaches. The
first one is to simply replace the source sentences in the noisy corpora with their back-
translation equivalents, which are the translations of the corresponding target sentences
generated through another pre-trained NMT model in reverse direction (Sennrich et al.,
2016a). The second approach is knowledge distillation, where the correct targets for
noisy fragments are replaced with a pseudo-label obtained through supervision from a
strong teacher model. Both approaches aim to answer RQ3.2:

RQ3.2 To what extent can we leverage noisy comparable data to improve NMT
performance through the transfer of knowledge from a high-quality model?

In our distillation strategy, we first train a teacher model on the clean parallel data, which
then guides the training of a student model on the combination of clean and noisy data.
Our experimental results demonstrate that for multiple language pairs, distillation helps
to successfully utilize noisy comparable corpora without any performance degradation.
Moreover, it also outperforms one of the best performing filtering techniques reported
in (Koehn et al., 2018). In Section 5.3, we provide a brief discussion of the types of
noise encountered in the comparable data and describe our strategy to use knowledge
distillation for training with noisy data in Section 5.4. We discuss our experimental
settings in Section 5.5 and results in Section 5.6.

The majority of related research on studying and handling noisy training data ex-
perimented only with recurrent architectures for NMT (Khayrallah and Koehn, 2018;
Koehn et al., 2018). However, recently proposed non-recurrent architectures have not
yet been studied in the context of noisy training data. Non-recurrent architectures such
as the Transformer models (Vaswani et al., 2017) have achieved comparable or better
performance as compared to recurrent NMT models. Moreover, they are more appealing
due to their ability to process the input in parallel, resulting in faster computations.
However, it is important to investigate whether these non-recurrent models also suffer
from similar degradations when high-quality training bitexts are augmented with addi-
tional noisy data. We believe that due to the sequential processing of the input sequence
in the training data, recurrent networks are more severely affected by noisy fragments
as compared to non-recurrent architectures, where the input representations are more
localized, and the overall representations of sequences are less severely affected by
small noisy fragments. In Section 5.7, we discuss the differences between recurrent and
non-recurrent NMT models and provide the basic intuition behind our argument. As
an additional investigation, in Section 5.9, we empirically compare the effect of noisy
data on the performance of recurrent vs. non-recurrent architectures for NMT. These
experiments provide an answer to our third sub-research question:
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RQ3.3 What is the relative variation in performance of recurrent vs. non-recurrent
NMT models when noisy data is added to the training pool?

5.2 Related work

We divide the discussion of relevant literature into four categories: First, we discuss
commonly used approaches in machine learning that are aimed at handling noisy training
data. Second, we briefly discuss previous work that aims to utilize noisy or low-quality
data for improving the performance of phrase-based MT. Next, we describe recently
proposed approaches for the utilization of noisy data for training NMT. Finally, we
discuss noise handling approaches used in other neural network-based tasks that can be
directly applied to NMT.

In the machine learning literature, it is well-known that the performance of machine
learning algorithms is highly susceptible to the quality of the training data (Nettleton
et al., 2010). Although training noise can be categorized into various types, the most
common noise type is caused by incorrect output labels. Label noise refers to sample
instances where the given targets do not correctly represent or define the input samples
(Frénay and Kaban, 2014). Frénay and Verleysen (2014) provided a comprehensive
survey of the various techniques to handle label noise in the training data. The most
common method for handling training noise is the filtering method, where the idea is to
treat the noisy samples as outliers. These filtering methods detect noisy samples with
different outlier detection algorithms (Liu and Tao, 2016) and finally exclude them from
the training data. Some recent approaches suggest direct learning through noise-robust
algorithms, which involves modifying the loss function (Beigman and Klebanov, 2009;
Manwani and Sastry, 2012). These methods are successful in cases where label noise
can be managed by avoiding overfitting on the noisy data. In situations where a small
set of high-quality labeled data is available, semi-supervised learning is used. In these
semi-supervised techniques, the unlabeled data can be annotated, or noisy data can
be corrected by classifying the samples. These classifiers are trained on high-quality
data. One variant of the semi-supervised method is the bootstrapping approach, where
improved labels for noisy or unlabeled data can be obtained by predictions of another
classifier (Reed et al., 2014). Another well-known approach is the transfer learning
method, where the idea is to treat noisy data as samples from a different domain. This
approach is quite successful in situations where the size of the noisy data is relatively
large as compared to the size of the clean data. In such cases, using transfer learning, the
model is first intialized by training on the noisy data and then fine-tuned on the smaller
clean dataset (Oquab et al., 2014). Recently, some approaches have been proposed
to handle noise in a deep learning setting. These approaches aim at modeling the
label noise by proposing either an additional loss function (Mnih and Hinton, 2012)
or an additional noise layer that adapts the network outputs to match the noisy label
distribution (Sukhbaatar and Fergus, 2014).

For machine translation, the majority of the noisy samples correspond to mismatched
sentence pairs, where the degree of semantic equivalence between the source and target
pairs is low. We provide a detailed discussion of this noise category along with examples
in Section 5.3. For phrase-based MT, it has been shown that filtering or cleaning the
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bitext prior to training can provide significant boosts in SMT performance (Vogel,
2003). The majority of the proposed methods for training SMT systems on noisy data
focus either on the selection of high-quality parallel sentences from comparable corpora
(Fung and Cheung, 2004; Axelrod et al., 2015) or on cleaning the noise in the aligned
sentence pairs (Formiga and Fonollosa, 2012; Mermer et al., 2007). In filtering-based
approaches, the noisy samples are usually identified using a classifier that is trained
on features based on bilingual lexicons. A slightly different variant of the filtering
approach is proposed by Hunsicker et al. (2012). They use additional heuristics to
trim the search space by imposing thresholds on features such as length differences or
dictionary scores. Instead of filtering out noisy sentences, another simple approach is
to weigh the training samples according to their quality scores. As a result, the phrase
pairs and other features learned from noisy data will have lower probability scores as
compared to those learned from clean data. Zhang and Chiang (2014) use this approach
through Kneser-Ney smoothing based on weighted counts of n-grams. Although all
these approaches proposed for phrase-based MT have shown significant improvements,
it is important to note that in the case of phrase-based MT, the effect of training noise is
not as problematic as it has been observed for NMT (Khayrallah and Koehn, 2018).

Similar to phrase-based MT, there has been a large body of research for domain
adaptation for NMT. The majority of these approaches focus on the selection of data
relevant to the intended domain. Cross entropy-based data selection is the most common
variant of this approach (Axelrod et al., 2015; van der Wees et al., 2017). By treating
noisy data as a different domain from clean data, data selection approaches proposed
for NMT can also be applied to handling noisy data. However, as already stated in
(Khayrallah and Koehn, 2018), the problem of noisy data is different from domain
adaptation because it deals with the quality of training data across domains. For
training NMT, an important aspect is the requirement for substantial amounts of training
data. In order to obtain additional training data, a very successful approach is that of
data augmentation, which aims to generate additional synthetic data either by back-
translation of monolingual data (Sennrich et al., 2016a) or by alteration of sentences in
available parallel data (Fadaee et al., 2017). From the success of these data augmentation
methods for NMT, we can conclude that NMT systems can benefit even from non-natural
synthetic training data if the synthetic data has good translation equivalence between
the source and target sentences. Based on these observations, it is worthwhile to explore
whether NMT can benefit from additional parallel data that is not of the same quality
as the annotated clean data. In this regard, important recent work is (Khayrallah and
Koehn, 2018). The authors report that NMT models could suffer substantial degradation
by the addition of noisy bitexts when compared to a baseline model trained only on
high-quality parallel text.

In the WMT-2018 “Parallel corpus filtering” shared task (Koehn et al., 2018), the
participants were asked to filter out high-quality subsamples from the noisy Paracrawl
corpus. The submissions were evaluated based on the performance of NMT systems
trained only on the bitext filtered from Paracrawl. However, given that many language
pairs have at least some small amount of high-quality parallel corpora, it is important
to investigate whether a bitext filtered using these proposed techniques results in any
additional improvements when used in conjunction with the high-quality data. Filtering
techniques involve discarding a sentence pair with a low confidence score. However, a
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sentence pair with a low score may still have fragments in the source and target sentences
that can provide useful contexts. Our results show that for a recurrent NMT model,
filtering the noisy bitext using one of the best techniques submitted to the filtering task
(known as “dual conditional cross-entropy filtering” (Junczys-Dowmunt, 2018)) yields
only small improvements.

Finally, we discuss some of the approaches used in other neural network tasks
that can be directly applied to NMT. For example, as a variant of bootstrapping, a
forward translation procedure can be applied to the noisy bitext. In this method, the
target side of the noisy bitext can be replaced by synthetic target sentences obtained by
decoding the source sentences with a model trained on high-quality data. However, a
better alternative for NMT would be to use back-translation (Sennrich et al., 2016a),
i.e., to replace the source sentences in the noisy bitext by synthetic source sentences
obtained by decoding the given target sentences with a model trained in the reverse
direction. Our experiments show that although back-translations of noisy data show
some improvements as compared to the degradations caused by direct use of the
noisy data, these improvements are quite moderate. Nevertheless, these results do
suggest that, indeed, NMT performance can be improved if the target labels have
better correspondence with the source tokens. However, there are several limitations
to back-translation-based data cleaning. First, it is expensive in terms of time because
back-translation requires running beam search based decoding for millions of training
examples. Second, the back-translation procedure does not guarantee the correction of
‘label noise’; instead, it changes the sample features according to the given labels.

As explained in Section 4.3.2, fine-tuning (Barone et al., 2017) is a well-known
technique used for domain adaptation for NMT. This technique can also be used as a
possible solution for training with noisy data. In fine-tuning, the idea is to first pre-train
the model on noisy data and then continue training on high-quality data. Another line
of research relates to data selection, which is a popular technique for domain adaptation.
The idea in this approach is to extract samples from the noisy corpus that are similar
to representative samples of high-quality data. The most common similarity measure
used in this approach is the cross-entropy between the high-quality samples and noisy
samples (Moore and Lewis, 2010). This is done by training two separate language
models on the noisy and clean data and then scoring the samples in the noisy data based
on differences in cross-entropy values from the two language models. Samples with
scores above a chosen threshold are then selected for training.

Recently, Wang et al. (2018) have proposed an online data selection based strategy
for de-noising training data. Their idea is to first train a model on clean data and then
iteratively fine-tune the model on noisy data while selecting the samples based on
the differences between the binary cross entropies of the models trained on clean and
noisy data. In each iteration, a fixed number of samples with the highest cross-entropy
differences are used for fine-tuning. This solution is based on cross-entropy based data
selection strategies for domain adaptation (Axelrod et al., 2015; van der Wees et al.,
2017). Wang et al. (2018) apply this idea to handle noisy data. The success of their
approach suggests that entropy of noisy samples with respect to a model trained on clean
data could be an effective criterion to decide the quality of the samples. Our proposal
for using knowledge distillation is based on the idea of generating a pseudo-label, which
is a combination of a given target label (which can be noisy) and a label predicted by a
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teacher model. We will discuss the details in Section 5.4.3.

Although knowledge distillation has been used as a solution to other problems of
NMT such as domain adaptation (as discussed in Chapter 4) or transfer learning for
low-resource languages (Chen et al., 2017) and for leveraging noisy data for image
recognition (Li et al., 2017), our approach is the first attempt to exploit distillation for
training NMT systems with noisy data.

5.3 Background

5.3.1 Noise in the training corpora

As discussed in Section 5.1, the majority of related research in machine learning deals
with handling label noise. Label noise is a sample instance in which the target labels
do not correspond to the given input. For machine translation, training samples are
sentence pairs, which are sequences of tokens. However, in the traditional NMT
approach, the model is trained using a loss function with respect to a single output
token, and the overall loss from all tokens in a sentence or a batch of sentences is
accumulated for back-propagation. For classification or other labeling tasks, it can
be beneficial to either completely discard a sample or clean the label with one of the
approaches discussed in Section 5.2. For NMT, discarding a sample means discarding
a full-sentence pair. However, in the context of bitexts, noise in the samples occurs in
different varieties and may not necessarily be considered label noise. Therefore, before
proposing any solution, it is important to study the noise types in the NMT training data
and identify which of the categories can be considered as “label noise.” In this regard,
(Khayrallah and Koehn, 2018) is an important work for NMT. The authors analyze the
Paracrawl German—English bitext, identifying various types of noise in this corpus.
They categorize the noise into the following four main types:

* Misaligned sentences: This type of noise forms the majority of samples in the
Paracrawl corpus. This noise occurs when the aligned sentences are not correct
translations of each other. Khayrallah and Koehn (2018) note that this type of
noise is frequent in corpora extracted and aligned from the web but is less frequent
in annotated corpora such as Europarl. For NMT, this type of noise corresponds
to what is considered as “label noise” in the machine learning literature. In this
chapter, our focus will be on handling this type of noise.

* Wrong language: This situation also occurs in the case of web-aligned corpora
when some of the sections on either the source or target side are exchanged or
texts from a third language is wrongly aligned. This type of noise can very easily
be identified and filtered out by using language identification tools such as lang-id
(Lui and Baldwin, 2012).

* Untranslated sentences: In web aligned corpora, often, some of the sentences
may remain untranslated. These sentences may correspond to elements such as
copyright information or markup tags. Again, it is very easy to filter out this type
of noise. Simple pre-processing techniques can be used to identify untranslated
sentences in a bitext.
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Table 5.1: Categorisation of noise type in Paracrawl corpus.

Noise type Count
Misaligned sentences 41%
Wrong language 23%
Untranslated Sentences 4%
Short segments 6%
Non linguistic characters 2%
Good sentence pairs 23%

» Short segments: In some cases, large bitexts may contain translations of small
phrases or bilingual dictionaries. Since in NMT, the aim is to learn the translations
of sentences, these short segments provide little significant information. They
can be filtered using constraints based on sentence length.

Table 5.1 summarizes the findings of Khayrallah and Koehn (2018). The majority of
noisy samples fall into the category of misaligned sentences. This type of noise is not
easy to identify and can not be corrected with simple pre-processing. Therefore, similar
to most of the previous work, in this chapter, our aim is to propose a solution for this
type of noise.

Khayrallah and Koehn (2018) conduct their analysis for one language pair on the
Paracrawl corpus. However, other well-known noisy corpora that are traditionally
used for many language pairs are the automatically aligned parallel datasets known as
comparable bitext. A well-known instance of a comparable bitext for Arabic—English
and Chinese—English is the ISI bitext created by automatically aligning sentences from
monolingual corpora such as the AFP and Xinhua news portals (Munteanu and Marcu,
2005). No detailed study has been conducted on the categorization of noise types in
comparable corpora. However, from the description of the extraction technique, it
becomes evident that most of the noise in such corpora would be due to poor translation
equivalence. The alignment method used for the creation of these bitexts first searches
for articles representing similar articles in two separate monolingual corpora using
cross-lingual information retrieval with the help of a dictionary (Munteanu and Marcu,
2005). Then, parallel sentences are aligned by calculating the word overlap between
each candidate sentence pair followed by a maximum entropy classifier. Since the
bitexts are extracted from monolingual corpora in the source and target language, there
is rarely any noise due to misspelling, wrong re-ordering, or non-linguistic characters.
The majority of noise in the resulting aligned bitext is due to limitations of the sentence
alignment techniques, often resulting in sentence pairs that are partial translations of
each other.

Table 5.2 shows some examples of noisy sentence pairs for Arabic—English (from
the ISI bitext) and German—English (from the Paracrawl corpus). The fragments
marked red in either the source sentence or the target sentence have no equivalence on
the corresponding aligned side. For instance, in the Arabic—English sentence pair, the
aligned target sentence contains fragments like ‘fraqi Kurd’, which are missing in the
human annotated translation. This implies that there is no corresponding fragment in
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the source sentence for these target fragments. During training, these fragments will
result in incorrect parameter updates and should be considered label noise. However,
the other fragments in the target sentence can still provide correct feedback.

Table 5.2: Noisy sentence pair example from ISI bitext (Arabic—English) and Paracrawl
(German—English). Fragments in red in the aligned target translation have no corre-
sponding fragment in the source sentence and vice versa. Src = Source sentence in the
bitext, Tgt = Target sentence in the bitext, and Ann = Human annotated translation of
the given source sentence.

Arabic—English (ISI bitext)

Sre: oAz ey Laas bl J dagkud 3 N1 LA e okl Ludsd! Jandl 5,159 &) 39
Tgt: | The Dutch justice ministry decided to expel the Iraqi Kurd despite Amman’s
demand that he be handed over to Jordanian authorities.
Ann: | The Dutch Justice Ministry decided to deport him, despite Jordan’s request to hand
him over as part of a drug smuggling case.

German— English (Paracrawl)
Sre: Der Elektroden Schalter KARI EL22 dient zur Fiillstandserfassung und -regelung
von elektrisch leitfahigen Fliissigkeiten .
Tgt: | The KARI EL22 electrode switch is designed for the control of conductive liquids .
Ann: | The electrode switch KARI EL22 is used for level detection and control of electri-
cally conductive liquids.

5.4 De-noising training data

5.4.1 Problem definition

Let’s assume we have a combined bitext D¢y = Dejean U Dg, where D jean is
a clean annotated bitext and D¢ is a quasi-parallel comparable bitext. Dy, =
[X1,Y1],...,[Xn, Ys] where X; = [z, 22,...,24] is a source sequence and Y; =
[Y1, Y2, - - -, Ym] is the corresponding target sequence where x; and y; are tokens. When
represented as indices in the target vocabulary, y; can be considered as label. Since the
training data includes the comparable data, some of the labels y; corresponding to it are
noisy or unreliable. As stated in (Li et al., 2017), the noisy label y; can be considered
as corrupted from the true label y. The goal is to train an optimal model on the entire
dataset D.,,; so as to minimize the risk on unseen test data as defined in Equation 5.1:

g* = argmin Rp, (g) = argminRDt{L[y*,g(x)]}. 5.1
g g

Here, D; is the unseen test data and g is the classifier function. Li et al. (2017) define
risk R in terms of loss with respect to the true label y*.
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5. Neural Machine Translation with Noisy Data

5.4.2 De-noising by back-translation

As discussed in Section 5.2, bootstrapping is a strategy that avoids fitting model param-
eters to the noisy data by first achieving a reasonable model performance and relying
more on the model predictions in the later stages. A simple way of applying bootstrap-
ping to NMT would be to first train an initial model on the available clean data and
then to obtain better translations by decoding the source side of the bitext (known as
forward translations). However, for NMT fluency and correctness of the target side of
the training data is more important than that of the source side.

A well-known technique called back-translation (Sennrich et al., 2016a) has been
proposed for NMT, where the aim is to augment the training corpus by generating
pseudo-source sentences for additional monolingual data using a model trained in the
reverse direction of the intended translation direction. By using back-translation, the
additional context in the fluent target sentences can be easily exploited regardless of the
synthetic quality of the source sentences. We apply the back-translation strategy as a

Synthetic source
(Ssynth)

v B
\ Target
M /\

Forward N % Reverse @

trainin h raining
/ \ Decode

Source /

Baseline (S) Reverse

Model ~ model (M,)

Automatically aligned
comparable corpora

Figure 5.1: De-noising by back-translation. S = Source side of the training bitext, T =
Target side of the training bitext, M,, = NMT model trained in revere direction (T — S),
Ssyntn = Pseudo source sentences obtained by decoding S with model Mr, and My; =
Final model trained on dataset Ssy,+,, — T.

bootstrapping method in order to obtain synthetic source sentences for the automatically
aligned comparable corpora. Similar to the bootstrapping method, an NMT model
can be trained in reverse direction on the available clean data to achieve a model with
reasonable generalization. Since the attention distribution in NMT highly correlates
with traditional word alignments (Ghader and Monz, 2017), during decoding, most
target words are generated corresponding only to one of the words/tokens in the source
sequence, thus mostly avoiding over-generation. Therefore, decoding target sentences
with a reverse model trained on clean data can produce back-translated source sentences
with reasonably improved levels of correspondence to the input target sentences. The
proposed process is illustrated in Figure 5.1.
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5.4. De-noising training data

Given a corpus (S, T), the baseline model will be trained directly on this noisy
corpus. Simultaneously, we train a reverse model M, on the same corpus in reverse
direction (T, S). Then we use the model M, to decode the corpus on which it was
trained. This gives us the back-translated source side Ssynsn. A final model My, is then
trained on the corpus (Ssyntn, T').

Formally, the “De-noising by back-translation” approach implies that in Equa-
tion 5.1, risk is minimized with respect to y (given noisy label) instead of actual
label y*. Moreover, the input sequence X; is replaced by a pseudo source sequence
X} = [xf,25,...,25]. Now, risk is minimized with respect to given target label and
pseudo-input x*:

g* = argmin Rp, (g) = argmin RDt{L[y,g(x*)]}. (5.2)
g g

Table 5.3 shows an example of a sample generated by the back-translation process.
Source and Target are the original sentences in the noisy bitext. A pseudo translation
Sourcepseudo is obtained by back-translation of Target. Human — Sourcepseudo 15
the back-translation of ‘Target’ obtained by a human translator. We can observe that the
back-translated source sentence Sourcepscudo 1S almost identical to the one obtained
by a human translator.

Table 5.3: Example of de-noising by data cleaning.

Arabic—English (ISI bitext)

Source a2 g G ] 3 aeded 039 Gl ok oslegl Gadsd] Jual )55 o) B

Target The Dutch justice ministry decided to expel the Iraqi Kurd de-
spite Amman’s demand that he be handed over to Jordanian
authorities.

Sourcepseudo

¥ Sl 1o ol o Ol il n o)1 Sl LA 3l Gl Jall 055 5,5
Human — Sourcepseudo | The Dutch Justice Ministry has decided to expel the Iraqi Kurds
despite Amman’s demand that it be handed over to Jordanian
authorities

5.4.3 Knowledge distillation for noisy data

Although de-noising by back-translation is a simple solution, obtaining back-translations
for a large noisy corpus is expensive in terms of time. A better alternative would be
to correct the noisy labels instead of modifying the source sentence. Moreover, the
bootstrapping approach generates hard targets using beam search. Li et al. (2017)
pointed out that soft distillation scores (based on predictions of another model) are
better than hard labels when guiding the training process of a model. Motivated by these
observations, we apply “knowledge distillation” to guide training of a student network
by soft scores generated by a teacher model. As discussed in Section 2.4, knowledge
distillation is a framework proposed by Hinton et al. (2014) for training compressed
“student” networks by using supervision from a large teacher network. Here, we discuss
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Figure 5.2: Distillation for noisy data. Both the teacher and student network have the
same architecture. The teacher network is trained only on the clean data and the student
network is trained for two losses: Ly with respect to target labels and Ly, with
respect to the output distribution of the teacher network.

the main intuition and idea behind using knowledge distillation for noisy labels. A
detailed analysis is given by Li et al. (2017). As shown in Figure 5.2, the idea is to first
train the teacher model f on the clean data D, and then transfer the knowledge from
the teacher to a student network that is trained on the entire dataset D,,; by optimizing
the following loss:

Lo, (00 f (@) = Ax Ly, f@)) + (1= N) x L8 f@).  5.3)

where s; = fp.,.., (x;)/7 and 7 is the temperature of the softmax. In Equation 5.3, the
student model is trained on the combination of two loss functions, the first term is the
cross-entropy loss [ between the prediction of the student model and the ground truth
y;, while the second term is the cross-entropy or KL-divergence between the output
distributions of the student model and the teacher model. Also, A is a parameter to
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5.5. Experimental setting for noisy data distillation

balance the weight between the two losses. Assuming the second loss to be cross-
entropy, Equation 5.3 can be re-written as:

Lo, (y f(mi)) - L</\ oy 4+ (1= \) x (s f(:ci))>. (5.4)

We can define y = A\y; + (1 — \)(s;, f(2;)) as a pseudo-label that is a combination
of the given noisy label y; and the prediction s; from the teacher model. Therefore
Equation 5.4 can be re-written as:

L, (910 (1)) = L): (5.5)

Li et al. (2017) provide an analysis based on a comparison between the risks involved
in training directly on the noisy labels as compared to training on the pseudo label as
defined above. They show that training on the pseudo-labels, for some values of A
defined through distillation, involves lower risks than direct training or bootstrapping.
Therefore, a better model can be trained by driving the pseudo-labels closer to the
ground truth labels. In the case of comparable corpora for NMT, instead of learning only
from uncertain ground truth labels, the student model also benefits from the predictions
of the teacher model while learning to imitate it.

5.5 Experimental setting for noisy data distillation

As discussed in Section 5.1, our first sub-research question RQ3.1 is to evaluate the effect
of noisy data on the performance of NMT when used in conjunction with clean data.
For this purpose, we conduct experiments with three language pairs: Arabic—English,
Chinese—English, and German—English. To this end, we first establish baseline
experiments where either only clean data or only noisy data or concatenations of both
are used as training data. Further, to answer the second sub-research question RQ3.2,
we evaluate our proposed distillation strategy in terms of translation performance as
compared to other filtering and cleaning strategies.

First, we describe the baselines followed by the description of data and model
parameters for recurrent NMT. Next, we discuss our experimental results in detail. As
already discussed, the last research question RQ3.3 concerns a comparison of recurrent
and non-recurrent NMT architectures. We will discuss the motivation, experimental
settings and results for RQ3.3 in Section 5.7, 5.8 and 5.9, respectively.

5.5.1 Comparisons

We compare our knowledge distillation technique to baseline training on clean and noisy
data. Further, we evaluate fine-tuning and data cleaning by back-translation. We carry
out the following experimental comparisons:

* Training on parallel data only: Training only on high-quality parallel data.
This experiment is also the primary baseline for comparison with the proposed
method.
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* Training on comparable/noisy data only: We conduct this experiment to
demonstrate a substantial difference between the performance of the models
trained only on noisy data and the models trained only on clean data.

* Training on combined comparable and parallel data: This experiment demon-
strates the effect of adding noisy training data to the baseline training data pool.

* Back-translation: Here, we use de-noising by back-translation as described
in Section 5.4.2. This is done by training an NMT system in reverse of the
desired direction on the clean data and obtaining pseudo-source sentences for
the noisy training data. After applying back-translation, we discard the original
source sentences in the comparable data and replace them with the pseudo-source
sentences. The back-translated comparable data is then added to the training data
pool.

* Fine-tuning: Fine-tuning is the standard practice commonly used for domain
adaptation. For noisy data, the idea is to first train the model on noisy data and
then continue training on clean data.

* Dual cross-entropy filtering: As discussed in the introduction, Junczys-
Dowmunt (2018) report the best results for the Parallel Corpus Filtering task for
WMT-18. They use the dual cross-entropy method in which sentence pairs in the
noisy corpus are ranked based on forward and backward losses for each sentence
pair with respect to NMT models trained on clean data in forward and reverse
directions. We consider this filtering method as a competitive baseline for our
approach.

Note that back-translation requires beam-search based decoding, which is quite expen-
sive for large amounts of comparable data.

5.5.2 Datasets

Noisy data: Two well-known automatically aligned corpora for Arabic—English and
Chinese—English are the ISI bitexts that are commonly used as representatives of
comparable data. These corpora are built by aligning similar stories in multilingual
news portals such as AFP for Arabic—English (LDC2007708) and Xinhua news
agency for Chinese—English (LDC2007709). We consider all AFP sources from
the ISI Arabic—English bitext with a size of 1.1 million sentence pairs and Xinhua
news sources for the Chinese—English bitext with a size of 550K sentence pairs. Both
corpora are created by automatically aligning sentences from monolingual corpora
(Munteanu and Marcu, 2005). For the German—English task, we randomly sample
a bitext of equal size from the raw Paracrawl corpus (“very noisy” 1 billion English
tokens) similar to (Khayrallah and Koehn, 2018). To be able to compare with the
best filtering method, we also use a bitext of 100 million target tokens submitted by
Junczys-Dowmunt (2018) (available from the shared task website using a score file),
which is filtered using their proposed dual cross-entropy score.

86



5.5. Experimental setting for noisy data distillation

Table 5.4: Datasets and statistics. Para,,, = Randomly sampled subset of Paracrawl
after langid filtering. Filt;,xs—10027 = 100 million target token subsample submitted by
Junczys-Dowmunt (2018).

Clean Noisy
Source | Size Source Size
Arabic—English LDC | 300k ISI bitext 1.1m
Chinese—English | LDC | 550k | ISIbitext | 550k
German—English | WMT-17 | 5.1M Para,,, 5.1M
German—English | WMT-17 | 5.1M | Filtyoxs=1000s | 4.6M

Clean data: For Arabic—English, we compose the parallel data consisting of
325k sentence pairs from various LDC catalogues.” For Chinese—English, a parallel
corpus of 550k parallel sentence pairs from LDC catalogues® is used. Note that for
Arabic—English, the size of the comparable corpus is approximately four times that
of the parallel data while for Chinese—English, the comparable corpus size is almost
the same as that of the parallel corpus. For German— English, we use high-quality
data from the training corpus provided for WMT-17 (Bojar et al., 2017). Table 5.4
summarizes clean and noisy training data for all language pairs. NIST MTO5 is used as
development set for both Arabic—English and Chinese—English. We use NIST MT08
and MTO9 as test sets for Arabic—English and MT-06 and MT-08 for Chinese—English.
A byte pair encoding (BPE) of size 20k is trained on the parallel data for both language
pairs. For German—English, a BPE of 32k is trained on the WMT-17 training data,
newstest15 is used as development set and newstest16 and newstest17 are used as test
sets. Translation quality is measured in terms of case-sensitive 4-gram BLEU (Papineni
et al., 2002). Approximate randomization (Noreen, 1989; Riezler and Maxwell, 2005)
is used to detect statistically significant differences.

5.5.3 Model parameters

We train an LSTM-based bidirectional encoder-decoder model as described in (Luong
et al., 2015) using the Open-NMT-python toolkit (Klein et al., 2017), with both embed-
dings and hidden layers of size 1000. The maximum sentence length is restricted to
80 tokens. Parameters are optimized using the Adam optimizer with an initial learning
rate of 0.001, a decay rate of 0.5 (after every 10k steps), a dropout probability of 0.2
and label smoothing of 0.1. A fixed batch size of 64 sentences is used. Model weights
are initialized uniformly within range [—0.02,0.02]. We train for a maximum of 200k
steps and select the model with the highest BLEU score on the development set for the
final evaluation and decode with a beam size of 5.

2LDC2006E25, LDC2004T18, several Gale corpora, LDC2004T17, LDC2005E46 and LDC2004E13.
3LDC2003E14, LDC2005T10 and LDC2002E18.
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5.6 Resulis

Table 5.5 shows all experimental results for Arabic—English. The performance of the
model trained only on noisy (comparable) data is substantially lower than that of the
model trained only on clean (parallel) data (a difference of up to —13.9). Further, com-
bining the noisy data with clean data degrades the performance significantly (up to —2
BLEU). De-noising the comparable data through back-translation sightly improves the
performance (up to +1.4) as compared to the parallel-only baseline. Fine-tuning shows
slight improvement for two test sets (up to 0.5 for MTO08) but results in a significant
drop for the development set (MTOS5). To evaluate the best performing filtering tech-
nique, for Arabic—English, we apply dual cross-entropy filtering of Junczys-Dowmunt
(2018) by ranking the sentence pairs in the comparable bitext based on to the dual
cross-entropy score. Then we select subsamples from the top 25%, 50%, and 75% of
the full comparable bitext. Filtering at 25% and at 50% shows significant improvements
(up to +1.4 and +1, respectively). However, filtering 75% again degrades the baseline
performance (up to —1.2) as compared to the parallel-only baseline. Our proposed
knowledge distillation approach, which utilizes all comparable data, consistently out-
performs fine-tuning, back-translation, and filtering with an improvement of up to +2.4
over the parallel-only baseline.

Table 5.5: Performance of various training strategies for Arabic—English.
Comparable;.;, = Back-translated comparable corpora. KD = Knowledge distilla-
tion. Boldfaced represent Significant differences at p < 0.01; * represents baseline
experiment.

Arabic—English
MTO5 MTO08 MTO09
Parallel only 57.7 46.1% 49.9*
Comparable only 48.9 (s 32.7 ci5a | 36.0 139
Combined (Parallel + Comparable) | 55.2 25 | 44.2 o) | 47.9 o
Parallel + Comparablebck 60.4 27 47.5 1 51.0 ¢
Fine-tuning 56.1 1o | 46.6 wos) | 50.3 s
Dual cross entropy filtering
Parallel + Comparablefilt_%% 59.9 w22 | 47.4 1 S51.1 o
Parallel + Comparablefilt,so% 59.2 w15 | 46.8 o 50.9 ¢
Parallel + Comparablefilt_75% 56.7 i 44.9 (1 49.1 cos
Knowledge distillation
KD ‘ 62.3 (10 ‘ 48.4 (23 ‘ 52.3 29

Similarly Table 5.6 reports the results on the Chinese—English experiments. The
performance of training on noisy data is significantly lower than training on parallel
data only (a difference of up to —17.5). Again, adding comparable data to the clean
data degrades baseline performance by up to —2. Unlike Arabic—English, neither
de-noising by back-translation nor fine-tuning shows any significant improvements over
the baseline for Chinese—English. The dual cross-entropy filtering is applied similarly
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to Arabic—English, as described above. However, unlike Arabic—English, filtering
shows no improvement at all for any amount of the filtered comparable data. For all
settings, filtering still degrades the performance significantly as compared to the parallel-
only baseline. On the other hand, the knowledge distillation method consistently yields
improvements over the parallel-only baseline (up to 40.8).

Table 5.6: Performance of various training strategies for Chinese—English.
Comparable,.;, = Back-translated comparable corpora. KD = Knowledge distilla-
tion. Boldfaced represent Significant differences at p < 0.01; * represents baseline
experiment.

Chinese—English

MTO05 MTO06 MTO08
Parallel only 28.8 27.5* 20.3*
Comparable only 11.3 2y 10.2 (15 5.20 a5
Combined (Parallel + Comparable) | 27.7 ¢y | 26.7 ws | 18.3 »
Parallel + Comparabley .k 29.1 o3 | 27.2 w03 19.8 (0s)
Fine—tuning 25.1 &) 23.5 17.2

Dual cross Entropy Filtering
Parallel + Comparablefilt_%% 19.7 . 20.9 w6 16.8 5
Parallel + Comparable y;;; 509 204 s | 21.8 sn | 17.0 35
Parallel + Comparablefilt_%% 21.5 13 22.3 52 17.5 29
Knowledge Distillation

KD \ 29.4 oo \ 28.2 ¢os) \ 21.1 cos)

For German—English, as shown in Table 5.7, the performance of a model trained
on randomly sampled noisy Paracrawl data is significantly lower (a difference of up
to —16.4) than training on high-quality WMT data. Khayrallah and Koehn (2018)
reported degradation of up to —9 BLEU when combining clean and noisy data for
German—English. However, we observe only —1 BLEU drop for the same setting.
Nevertheless, directly adding noisy data seems to provide no additional improvement
in performance. For the randomly sampled Paracrawl data, fine-tuning shows no
improvement over the baseline; instead, a drop of up to —5.6 is observed. On the other
hand, our knowledge distillation method with randomly sampled Paracrawl instances
performs better than the baseline (up to +0.3).

For German—English, for comparison with dual cross-entropy filtering, instead of
filtering repeatedly, we directly use the filtered bitext submitted by Junczys-Dowmunt
(2018), which is available from the web portal of the shared task, and add it to the
training data. As seen in Table 5.7, adding this filtered data also degrades BLEU by
—1. Junczys-Dowmunt (2018) reported substantial gains after filtering as compared to
the use of randomly sampled noisy bitext. However, we observe that neither training
on the filtered bitext alone, nor combining it with the clean data (WMT) provide any
additional improvement over a parallel data baseline. Instead, the BLEU score is worse
than the baseline in both settings (—1.4 for filtered-only and —1 for combined WMT +
filtered bitext). This implies that when used in conjunction with clean data, even this
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Table 5.7: German—English results. WMT = Only clean Data, Para,,, = Randomly
sampled 5.1 million sentence pairs from Paracrawl. Filt;,xs—10027 = 100 million target
tokens filtered; Boldfaced represent Significant differences at p < 0.01; * represents
baseline experiment.

testl5 test16 testl7

WMT (Parallel only) 25.2 30.0* 26.0*
Randomly sampled Paracrawl
Para,., 14.6 s | 10.2 cos) | 9.6 64
WMT (Parallel) + Param 24.1 oy 29.0 .y 25.0 oy
Fine-tuning (Para,,,) 21.8 54 24.4 56 21.1 ()
KD (WMT + Para,.,,) 25.6 04 30.3 o3 26.3 03
Parcrawl filtered with dual cross entropy
Filttoks:lOOI\/l only 24.0 12 28.8 c1» 24.6 (-1.4)
WMT + Filtsors=100a1 24.1 iy | 287 w3 | 250 c»
Fine—tuning (Filt;ors=10001) 23.9 13 29.1 w9 25.1 o9
Knowledge Distillation

KD (WMT + Filtyors—100M1) ‘ 26.1 iy | 313 con | 26.9 oo

high-performing filtering technique fails to provide any significant gains. On the other
hand, applying knowledge distillation over this filtered bitext yields an improvement
of up to +0.9 over the baseline. Based on the above results, we can now answer our
research questions in this chapter. Our first subquestion in this chapter is:

RQ3.1 What is the effect of comparable or noisy training data on the performance
of a recurrent NMT system?

As is evident from the above results, the performance of an NMT system trained only
on noisy data is substantially worse than training on clean parallel data for all language
pairs. Further, adding noisy data to the training data pool does not provide any additional
improvements, instead it degrades the baseline performance significantly. The relative
difference between the performance drop for all three language pairs can be attributed
to the different sizes of clean and noisy data. While the findings of Khayrallah and
Koehn (2018) were based on only one language pair, our experiments for two additional
language pairs support the argument that low-quality or noisy data indeed harms the
performance of NMT models, however, the relative performance degradation depends
on the source and the quantity of noisy data as well as the clean data.

Finally, to answer research question RQ3.2, we evaluate the performance of our
proposed distillation approach for all three language pairs.

RQ3.2 7o what extent can we leverage noisy comparable data to improve NMT
performance through the transfer of knowledge from a high-quality model?

Our proposed distillation strategy outperforms filtering as well as the back-translation
replacement for all language pairs. The improvements for Arabic—English are sub-
stantially bigger, while only small improvements for Chinese—English are observed.
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Nevertheless, distillation provides significant improvements as compared to the direct
addition of noisy data. For German—English, applying the proposed distillation over
the randomly sampled bitext combined with clean data shows slight improvements over
the clean data baseline. Similarly, applying distillation on the filtered bitext (using “dual
cross-entropy’’) combined with the clean data also shows significant improvements over
the clean data baseline.

The improvements reported with knowledge distillation shown in Table 5.5, 5.6
and 5.7 correspond to the highest BLEU scores with respect to different values for A.
In Figure 5.3, we show the effect of varying values of A (between 0.1 and 0.9) on the
translation performance over the development sets. For all the language pairs, A = 0.5
shows the best performance. In conclusion, the improvements observed for all three
language pairs using distillation provide an answer to our second sub-research question
RQ3.2. We have proposed distillation as a technique to efficiently leverage all noisy
data and demonstrated that it outperforms a strong data filtering technique.

Arabic—English Chinese—English
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Figure 5.3: Variation in BLEU (y-axis) score for different values of A\ (x-axis) for
Knowledge distillation method. (a) Arabic—English, (b) Chinese—English and (c)
German—English.
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5.7 Recurrent vs non-recurrent architectures

Until now, all experiments discussed in this chapter used a recurrent NMT architecture.
Moreover, the majority of the related work discussed in Section 5.2 is also focused on
the exploration of noisy data with recurrent NMT architectures. The possible effect
of the model architecture on robustness against training noise has not yet caught the
attention of the NMT research community. However, the architectures of recently
proposed non-recurrent NMT models suggest that these models may be more capable
of handling noise caused by poor translation equivalence between the sentence pairs in
the training data. In this section, we briefly discuss our intuition behind this hypothesis.
In Section 5.8 and Section 5.9, we describe the experimental settings and conduct
experiments to compare the performance of recurrent and non-recurrent NMT models
when trained in the presence of noisy data.

As discussed in Section 5.3, Khayrallah and Koehn (2018) analyzed the Paracrawal
corpus and categorized the noise into different categories and reported that around
41% of noisy samples are misaligned sentences due to faulty document or sentence
alignment. Re-consider the example in Table 5.8 taken from the German—English
Paracrawl corpus. The fragments or words marked red in the source sentence have no
correspondence on the target side. While optimizing for the generation of a given target,
these fragments or words do not contribute any features or information towards the
generation of the targets and hence can be considered noise.

Table 5.8: Noisy sentence pair example from Paracrawl (De-En). Fragments in red in
the aligned source translation have no corresponding fragment in the target sentence.
Src = Source sentence in bitext, Tgt = Target sentence in bitext. Human = Human
annotated translation of source sentence Src.

German— English (Paracrawl)

Srec: Der Elektroden Schalter KARI EL22 dient zur Fiillstandserfassung und -regelung
von elektrisch leitfahigen Fliissigkeiten .

Tgt: The KARI EL22 electrode switch is designed for the control of conductive
liquids .

Human: | The electrode switch KARI EL22 is used for level detection and control of
electrically conductive liquids.

Due to the sequential processing within recurrent architectures, the hidden state
representation corresponding to each input word is directly affected by the representation
of all previous words. Hence, the presence of noisy words or fragments in the sentence
may equally affect the representation corresponding to each subsequent word, as shown
in Figure 5.4a. Although the decoder attention weighs the importance of each hidden
layer output (of the encoder) for the generation of a target word, these representations
themselves may be noisy due to the presence of an incorrect fragment in previous
positions and thus may result in possibly incorrect feedback.

On the other hand, in the non-recurrent Transformer model (Vaswani et al., 2017),
the encoder processes the input non-sequentially through a self-attention mechanism
by computing a weighted average of all surrounding input representations. That is,
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5.7. Recurrent vs non-recurrent architectures

every hidden layer node has direct access to the vector representation of all the previous
positions individually, and the self-attention mechanism can learn to assign higher
weights to words or segments according to their relatedness to the current position. As
a result, an uninformative or noisy segment in previous positions would be assigned a
low attention weight and thus would be less affected by noisy segments, as shown in
Figure 5.4b.

(a) Recurrent NMT (b) Transformer NMT

Figure 5.4: Recurrent NMT vs Transformer. Purple boxes represent a noisy word or
fragment.

Tran et al. (2018) compared recurrent and non-recurrent architectures with regard to
their ability to model hierarchical structures. They found that recurrent architectures
are better at capturing hierarchical information required for natural language under-
standing tasks such as subject-verb agreement due to the sequential processing of the
input. As an alternative observation, Tang et al. (2018) demonstrated that Transformers
perform better at extracting semantic features and hence excel at word sense disam-
biguation tasks. Nevertheless, Transformers have demonstrated comparable or even
better performance for machine translation than recurrent networks (Vaswani et al.,
2017). This suggests that for the translation task, an attention-based composition of
important features could provide better performance as compared to a sequential carry-
over of information through each time-step. This attention-based direct composition
may reduce the influence of an uninformative word. However, this reasoning is only
intuitive, and in this chapter, our goal is not to provide a detailed investigation of the
hidden state representation of recurrent and non-recurrent models but to focus on the
empirical comparison of the performance of the architectures when trained with noisy
bitexts.

As already discussed in Section 5.1, the “Parallel corpus filtering” shared task was
proposed at WMT-2018 aiming at filtering of sentence pairs of high quality from a noisy
German— English web-crawled corpus. Submitted filtered bitexts were evaluated by the
organizers according to the performance of SMT and RNN-based NMT systems trained
on these filtered bitexts. The best performing systems showed performance equivalent
to models trained on high-quality bitext. However, to the best of our knowledge, the
impact of noisy training data on non-recurrent architectures has not been evaluated yet.
In addition, only two ((Ash et al., 2018) and Sanchez-Cartagena et al. (2018)) of the
18 submissions in the shared task reported their own results for a Transformer model
trained on the filtered bitext from Paracrawl. Therefore, there is an important question
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that must be investigated in the context of the noisy data: “Does noisy training data have
a degrading effect on non-recurrent NMT architectures similar to the effect observed
for recurrent NMT?”

In the next section, we evaluate the impact of translation performance of recurrent
NMT models as compared to Transformer models for three language pairs, when trained
on combined high-quality and noisy bitexts.

5.8 Experimental setup for comparison of recurrent
and non-recurrent NMT

5.8.1 Datasets

For the comparison of recurrent NMT and Transformer models, we use the clean and
noisy training data sets in the same way as described in Section 5.5.2. We evaluate the
comparison experiments on NIST-MTO8 and MT(09 for Arabic—English, MTO06 for
Chinese—English, WMT-16, and WMT17 test sets for German— English.

5.8.2 Model and parameters

To compare RNN and Transformer performance, we train the models using the
OpenNMT-python toolkit* which provides implementations of RNN based sequence-
to-sequence NMT as well as the Transformer architecture. For RNN based NMT, the
encoder is a bidirectional LSTM, and the decoder is a unidirectional LSTM with input-
feeding (Luong et al., 2015). The encoder and decoder both have 2 layers of dimension
1024. Gradients are optimized using Adam with an initial learning rate of 0.001 and
a decay rate of 0.5 and label smoothing of 0.1. We use a fixed batch size of 64. For
Transformer, we use 6 hidden layers, and 8 self-attention heads along with positional
encodings and embedding and hidden size are each 512. We use the Adam optimizer
with an initial learning rate of 2, a second moment decay rate (beta2) of 0.998, decay
method Noam, label smoothing of 0.1 and 8,000 warmup steps. Each batch includes a
maximum of 4096 tokens. Both RNN and Transformer are trained for a maximum of
400k steps and perplexity and BLEU on dev-sets are evaluated after every 20k steps.

5.9 Evaluation and results for comparison experi-
ments

In this chapter, we asked the following third sub-question:

RQ3.3 What is the relative variation in performance of recurrent vs. non-recurrent
NMT models when noisy data is added to the training pool?

As shown in Table 5.9 and 5.10, for most test sets, there is a substantial difference be-
tween the performance of RNN and Transformer models for both Arabic—English and

“https://github.com/OpenNMT/OpenNMT-py
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Chinese—English. Adding the noisy comparable data to the training data pool degrades
the performance for recurrent NMT up to —2 BLEU for Arabic—English and —1.1
BLEU for Chinese—English. Note that the size of noisy data for Chinese—English is
equal to that of clean data, whereas, for Arabic—English, it is approximately four times
that of the clean data. However, the drop is significant for both languages for recurrent
NMT.

On the other hand, for both language pairs, adding the same noisy data for
training Transformer improves the performance significantly: up to +1.3 BLEU for
Arabic—English and +1.9 BLEU for Chinese—English.

Table 5.9: RNN vs Transformer experiments for Arabic—English; Prl = LDC clean
data, Noisy = Comparable data from ISI bitext; RN = Recurrent NMT, TF = Trans-
formers. A/V represent statistically significant differences compared to baseline at p <
0.01.

MTO05 MTO8 MTO09
RN TF RN TF RN TF
Prl 57.7 59.1 46.0 46.0 49.9 52.7
PI‘l+NOisy 55.2'«2.2) 60.2‘(“.1) 44.2'(—1.8) 48.6A(+2.6) 47.9'(72.0) 54.0A(+1.3)

Table 5.10: RNN vs Transformer experiments for Chinese—English; Prl = LDC
clean data, Noisy = Comparable data from ISI bitext; RN = Recurrent NMT, TF =
Transformers. A /V represent statistically significant differences compared to baseline
atp < 0.01.

MTO05 MTO06
RN TF RN TF
Prl 28.8 36.7 27.5 31.6
Prl+N0isy 27.7'(-1.1) 39.4‘<+2.7) 26.7'(-0,8) 33.5‘&2,9)

In Table 5.11, we observe that for German—English, adding either the randomly
sampled bitext from Paracrawl or the filtered bitext subsampled by one of the best
filtering methods (Junczys-Dowmunt, 2018) lowers the performance by —1 BLEU for
recurrent NMT. The results in Table 5.11 show that noisy corpora, even when sampled
with the best-reported filtering technique, fail to provide any additional gains over the
RNN-based baseline trained on high-quality data. On the other hand, Transformer mod-
els seem to benefit slightly (4-0.2) from the randomly sampled bitext and substantially
from the filtered bitext (+1.2).

Our observations for the three language pairs also suggest that the relative drops in
performance of recurrent NMT and the gains of the Transformer model are correlated
with the amount and the quality of the added noisy data as well as the size of the
clean data. The respective gains and drops for RNN and Transformer are higher for
Arabic—English and Chinese—English, which have a much smaller amount of clean
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Table 5.11: RNN vs Transformer experiments for German—English; Prl = Clean WMT
data, Para,,, = Randomly sampled noisy Paracrawl bitext, MSR y;;; = Filtered bitext as
explained in Table 5.4.

newstest13 newstest16 newstest17
RN TF RN TF RN TF
Prl 25.8 27.8 30.0 334 26.0 30.0

Prl + Param 24.8Y 27.94 29.0'(-1‘0) 33.8‘&0.4) 25.0¢10) 30.2‘&0.2)
Prl+ MSR;;, | 2457 | 2855 | 287" is | 35.8%u0 | 25.000 | 312510

data as compared to that of German—English. The above results do indicate that there
are significant differences between the relative performances for recurrent NMT and
Transformer models when the training corpus includes low-quality bitext.

5.10 Conclusion

In this chapter, we explored the utility and effect of noisy training data for neural
machine translation. Our experiments show that depending on the size of the noisy
data, the performance of a recurrent NMT model may suffer significant degradations.
We evaluated the effect of noisy data for three language pairs with different varieties
of noisy data. Further, most of the previous research on using noisy data for NMT
has been limited to data selection or filtering techniques. Besides being expensive in
terms of filtering time, these methods are limited due to their assumption that a sentence
pair ranked lower with respect to various comparability metrics has no benefit for
learning any important features and should be completely discarded. Our experiments
demonstrated that as a result, the best filtering technique is limited in terms of the
additional improvements when noisy data is used in conjunction with clean data. In
view of the evaluation of these previous research, we addressed our main research
question in this chapter:

RQ3 How do noisy training corpora affect the performance of NMT and how can
we leverage them to improve NMT performance?

To answer this question, we first proposed a data cleaning technique whereby we clean
the noisy training corpus through a back-translation procedure. In this approach, instead
of changing the target labels, we regenerated the source sentences using an NMT
model trained on the clean data in reverse of the intended direction. Our experiments
demonstrated that the back-translation strategy provides a cleaner version of the training
corpus as compared to the original noisy data. However, it is expensive due to beam
search based decoding of large amounts of the training corpus. Moreover, it provides
only moderate gains. In view of the above findings, we proposed distillation as a remedy
to efficiently leverage the noisy data for NMT, where we train a primary NMT model
on the combined training data with knowledge distillation from the teacher network
trained on the clean data only. Our experiments show that distillation can successfully
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utilize low-quality comparable data resulting in significant improvements as compared
to training directly on the noisy data. Moreover, it outperforms not only the data
filtering techniques but also fine-tuning based regularisation. We observe consistent
improvements for all three language pairs with different quantities and sources of the
noisy data, which suggests that distillation can be beneficial regardless of the data size
and source of the noise.

Finally, since all previous research for using noisy data for NMT is limited by
only using recurrent NMT models, we proposed to evaluate a more recently proposed
non-recurrent architecture, namely Transformers, in this context. Based on our intuition
that due to recurrent carry forward of information through the sequence, recurrent NMT
models are more susceptible to training noise, we aimed to empirically evaluate the
performance of recurrent NMT vs. non-recurrent Transformers in terms of the impact
of noisy data. Primary experiments for three language pairs show that recurrent NMT
models suffer significant degradation when noisy data is added to the training data pool,
whereas the Transformer model is considerably more robust against training noise and
shows improvements over a baseline that is only trained on clean data.

In the next chapter, we shift the focus from improving the training methods to the
improvement of model architectures for NMT. We propose modifications to the standard
NMT model in order to enhance its capacity to capture important features.
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Convolutional over Recurrent Encoder
for Neural Machine Translation

6.1 Introduction

In the previous chapters, we have addressed problems that concern the quality and
robustness of machine translation models and proposed solutions based on the transfer
of knowledge in incremental steps. All previous chapters address the variation of source,
domain, or quality of the training data. Chapter 3 addresses the robustness of training
procedure for phrase-based MT, Chapter 4 addresses the variation of domains, while
Chapter 5 addresses variation of data quality. However, one other way of exploring
the transferability of models for NMT is to combine the capacity of different model
architectures. Therefore, diverging slightly from the research topics discussed in the
previous chapters, in this chapter, we propose a new model architecture for NMT to
improve the capacity of the model to reliably learn the relevant features in order to
improve NMT performance. Specifically, we propose a combination of two well-known
neural network architectures, i.e., recurrent neural networks (RNNs) and convolutional
neural networks (CNNs), and investigate whether such a combination can model the
relationship between source and target tokens more reliably than a vanilla RNN based
NMT architecture. This addresses our final research question RQ4:

RQ4: What are the limitations of using only recurrent layers towards effective modeling
of source sentences in NMT and can NMT performance be improved by the addition of
convolutional layers?

We have discussed the established architectures for NMT in Chapter 2. However, the
convolutional sequence-to-sequence model (Gehring et al., 2017b) and fully attentional
model (Vaswani et al., 2017) have been proposed concurrently to the research conducted
in this chapter. Prior to the invention of these two models, the dominating architecture in
NMT research has been the recurrent neural network-based encoder-decoder framework
of Bahdanau et al. (2015) in which a recurrent neural network (RNN) called ‘encoder’
converts a source sequence into a high-dimensional representation. Then another
RNN called ‘decoder’ generates a target sentence word-by-word based on the source
representation and target history. Besides machine translation, RNNs have shown
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promising results in modeling various other NLP tasks such as language modeling
(Mikolov et al., 2010) and text similarity (Mueller and Thyagarajan, 2016). The strength
of using RNNs for language processing lies in their ability to recurrently maintain a
history for a long input sequence, thus capturing the long-distance dependency, which
is an important phenomenon of natural language texts.

Although modeling sequences using the recurrence property is important for most
NLP tasks, there is a critical limitation in relying solely on the strengths of an RNN. In
an RNN, at each timestep, the encoder output is a global representation in which the
information about the current word and the previous history is represented compactly.
Although RNNs effectively model interdependence of words, they cannot capture
phrases without prefix context and are often biased towards last words in the final vector
(Wen et al., 2016).

In this chapter, we propose to modify the RNN encoder-decoder framework by
adding multiple convolutional layers on top of an RNN encoder output. Since CNNs
apply to a fixed-size window of the input sentence, at each layer, each output represents
a relatively uniform composition of information from multiple words. This provides
effective guidance to the network to focus on the relevant parts of the source sentence. At
the same time, sequence-to-sequence modeling, as in RNNs, is necessary to capture the
long-distance dependencies between segments of the source sentence itself. Thus, in our
model, a convolutional encoder complements the standard RNN encoder. We evaluate
the performance of our proposed model in order to answer sub-research question RQ4.1:

RQ4.1 Can a combination of recurrent and convolutional layers for the encoder
provide the model with improved effective guidance to focus on relevant
information in the source sequence?

We conduct experiments on multiple language pairs to show that the addition of convolu-
tional layers on top of recurrent layers of the encoder provides additional improvements
in NMT performance as compared to a vanilla model with only recurrent layers. How-
ever, it can be argued that the observed improvements might not be due to the capability
of convolutional layers but merely due to the increased number of parameters. This is
also the concern of our second sub-research question RQ4.2:

RQ4.2 Are the improvements observed with additional convolutional layers due
to properties of convolutions or merely due to the increased number of
parameters?

In order to empirically validate the improved capacity of the proposed model, we train a
deep RNN model by simply increasing the number of recurrent layers in the baseline
model and compare its performance with the proposed model.

We first briefly discuss the properties of RNNs, the neural MT framework of Bah-
danau et al. (2015), and convolutional neural networks in Section 6.2 and subsequently
discuss the related work on convolutional neural networks in machine translation in
Section 6.3. We introduce our model in Section 6.4 and discuss its details. Experiments
and results are discussed in Sections 6.5 and 6.6, respectively.
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6.2 Background

6.2.1 Recurrent neural network

Given a sequence [z1, 9, . . ., T, ] of length ns, at any timestep ¢, an RNN represents
the hidden state output as function of the previous hidden state h;_; output and the
current input z;:

hi = f(hi-1,2:). (6.1)
Here, f is commonly a nonlinear function. Thus RNNs represent a sequence as a vector
by a function of the previous history and current input. It is this recurrence property of
RNN s that makes them capable of capturing larger contexts and, therefore, long-distance
dependencies commonly observed in variable-length texts.

A common problem observed while training RNNss is the decay of gradients over
long sequences. To resolve this problem, Hochreiter and Schmidhuber (1997) proposed
long short-term memory networks (LSTMs), which use input, output, and forget gates
to control the amount of information that can pass through a cell unit in the RNN.

6.2.2 Baseline model

We have discussed various NMT architectures in detail in Chapter 2. In order to explain
our proposed model, we briefly revisit the baseline model that we use for the experiments
in this chapter.

We employ an NMT system based on (Luong et al., 2015) as discussed in Sec-
tion 2.3. The encoder is a multi-layer recurrent network that converts an input sentence
[x1, 22, ...,2,] into a sequence of hidden states [h1, ha, ..., h,]:

h; = fenc(xiv hi—l)- (6.2)

Here, fenc is an LSTM unit. The decoder is another multi-layer recurrent network
which predicts a target sequence y = [y1, Y2, - - ., Ym]. Each word y; in the sequence is
predicted based on the last target word y;, the current hidden state of the decoder s;
and the context vector c¢;. The probability of the sentence is modeled as the product of
the probability of each target word:
m m
p) =T Ipilvr. - yi-1.%) = [T 950 5. ¢))- (6.3)
J J
where g is a multi-layer feed forward neural network with nonlinear transformation and
a softmax layer that generates the probability of each word in the target vocabulary. The
end-to-end network is trained by maximizing the log-likelihood over the training data.
In Equation 6.3, s; is the decoder hidden state generated by LSTM units similar to the
encoder:
$j = faec(Sj—1,Yj—1,¢j)- (6.4)
The context vector ¢; in turn is calculated using an attention mechanism (Luong et al.,
2015) as the weighted sum of annotations of the encoder states h;:

Cj = Zaﬁhi, (65)
i=1
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where a; are attention weights corresponding to each encoder hidden state output h;
calculated as follows :
_ exp(z)

> h—1exp(2r)”
Activations z; = a(sj_l, hy) are calculated by using a context function such as the
dot product between the current decoder state s;_; and each of the hidden states of the
encoder hy,.

In order to reduce the memory requirement for the softmax operation for a large
number of words, the source and target vocabularies are usually limited to a fixed
number of most frequent words. The translation is performed by a simple left-to-right
beam search algorithm, which maintains a small set of the b best hypotheses for each
target word. A hypothesis is complete as soon as the end of sentence <EOS> symbol
is produced or the maximum number of timesteps has been reached. A more detailed
description of the decoding algorithm can be found in (Sutskever et al., 2014).

(6.6)

Oéji

6.2.3 Convolutional neural networks

Unlike recurrent neural networks, which are applied to a sequence of inputs, feeding
the hidden layer from one time step to the next, convolutional neural networks apply
filters of a fixed length over a window of inputs and generate outputs of fixed size. As
discussed by Kim (2014), a narrow convolution operation involves applying a filter 6
over a window of w inputs in order to generate a new feature; w is known as the width
of the filter or kernel size. The new feature C'N; applied to an input window around z;
t0 T;44, 1S then defined as:

CN; = 0(0 - 2i_[(w-1)/2):i+](w—-1)/2] T b)- 6.7

This feature extraction capability of CNNs makes them suitable for image processing.
In NLP, CNNs have been used for tasks such as sentence classification (Kim, 2014).

6.3 Related work

Although recurrent neural networks are very popular for many NLP tasks, CNNs have
also been used for tasks such as text or sentence classification (Kim, 2014), sentiment
analysis (dos Santos and Gatti, 2014), document modeling (Tang et al., 2015) and
sentence modeling (Kalchbrenner et al., 2014), where specific features such as n-grams
and phrases are more important than location-specific or grammatical features of the
sentence.

Similarly, the standard approach to neural machine translation is the RNN-based
encoder-decoder network. However, there have been various attempts towards using
convolutional networks in neural MT. The first attempt to use convolutional networks
for generating sentence representation for MT is (Kalchbrenner and Blunsom, 2013).
The authors proposed to condition a recurrent neural language model of the target
sentence on a source sentence vector generated by a convolutional neural network.
However, their experiments were limited to rescoring candidate hypotheses generated
by a phrase-based MT system. Moreover, the reported results were later significantly
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outperformed by recurrent models (Cho et al., 2014). The first attempt to train a CNN
based end-to-end NMT framework is due to Cho et al. (2014). They fully replace the
recurrent encoder with a gated convolutional network that is recursively applied to the
input sequence until it outputs a single fixed-length vector. However, their experiments
demonstrate that the translation performance of such a network cannot surpass that of a
fully recurrent encoder.

Gehring et al. (2017a) also proposed a similar architecture where the recurrent
encoder is again fully replaced by a deep convolutional neural network. An important
feature in their architecture is the use of a position embedding that encodes the posi-
tion of each word in the source sentence. Their experiments demonstrate that while
translation performance of the network is improved by using a very deep convolutional
network, without the position embeddings, quality drops substantially below the stan-
dard RNN/LSTM encoder baseline. This implies that a CNN encoder by itself with
simple word embeddings alone cannot encode position-dependent features which are
otherwise efficiently captured by an RNN encoder. Another approach using convolu-
tional networks in neural MT is the ByteNet system by Kalchbrenner et al. (2016). They
replace both the encoder and decoder with dilated convolutional networks stacked on
each other.

All of the above approaches either aim to fully replace the recurrent encoders
with convolutional encoders with which they aim to reduce the complexity of the
network and the training speed or to address the variable lengths of input sequences. In
order to achieve performance comparable to RNN encoders, these approaches have to
employ different mechanisms such as position embeddings to effectively capture the
long-distance dependencies and position-dependent features.

Another approach which has shown the strength of convolutional networks as
an additional feature for phrase-based MT is by Meng et al. (2015). They show
improvements over a standard phrase-based MT by encoding the source sentence with a
convolutional network and using it in a neural language model as an additional feature.

A related line of research that combined CNN and RNN is the character-level NMT
(Lee et al., 2017a). However, their main idea is to model words as a combination of
characters using convolutions and then feed the output as word embeddings to the RNN
encoder. Their aim is to avoid having to limit the vocabulary by character modeling.
However, in this chapter, our aim is to capture higher-level features on the source side;
therefore, we apply the convolutional layers on top of the recurrent layer output.

Such a combination of RNNs and CNNs has successfully been used in various tasks
such as saliency detection for image recognition (Tang et al., 2016), document modeling
(Tang et al., 2015) and music classification (Choi et al., 2016).

6.4 Convolutional over recurrent (CoveR) model

As discussed in Section 6.2.2, when using the standard RNN framework, the context
vector is a weighted sum of the encoder hidden states h;. The attention weights as in
Equation 6.6, are also calculated by a similarity function between the decoder state
s; and encoder states h;. The attention weights mainly score how well the inputs
around position i and the output at position j match (Bahdanau et al., 2015). Since in a
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unidirectional encoder, each of these vectors /; is a compact summary of the source
sentence up to word i, the previous or future context available to the alignment function
is only given by these compact global representations. We propose that instead of
relying only on these single recurrent outputs, a composition of multiple hidden state
outputs of the encoder can provide the attention function with additional context about
the relevant features of the source sentence.

In order to do this, we apply multiple layers of fixed-size convolution filters over
the output of the RNN encoder at each time step. As shown in Figure 6.1, for our model
the input to the first convolution layer is the hidden state output of the RNN encoder.
Thus C N} is defined as:

CN}! =0(0 hi_[(w—1)/2):i+[(w—1)/2] + D)- (6.8)

At each layer, we apply filters repeatedly to the original input sentence length. Each filter
is of a fixed width k. Note that the length of the output of the convolution filters reduces
depending on the input length and the kernel width. In order to retain the original
sequence length of the source sentence we apply padding at each layer. That is, for each
convolutional layer, the input is zero-padded so that the output length remains the same.
The output of the final convolution layer L is a set of vectors [CNL CNE, ... ,CNE]
generated by multiple convolution operations. The modified context vectors ¢} are then
computed similar to ¢; using an attention mechanism:

explals;_1, CNE))

i = = : 6.9)
! > i1 expla(sj—1, CNiL))
¢; =Y a;CN;. (6.10)
i=1
Finally, the decoder is provided with the context vectors ¢, as follows:
p(yi|y1a-"7yiflax):g<yi78iac;)' (6]1)

Note that each of the vectors C' N now represents a feature produced by multiple
kernels over h;. Thus each C'N; represents a wider context as compared to h;.

It is a common practice to use pooling along with convolutional filters in order to
down-sample the features (Kim, 2014). However, since in the proposed model, we
want to widen the context of the encoder output while still retaining the information
represented in the RNN output h;, and also retaining the original sequence length, we
do not apply pooling in our model.

With increasing depth of the network, training of the network becomes unstable. In
order to ease and stabilize training with multiple layers, we use residual connections
(He et al., 2016) between the input and output of each convolutional layer.

6.5 Experimental set-up

6.5.1 Data

The goal of the experiments in this chapter is to evaluate the performance of our proposed
model against a standard recurrent NMT system in which both the encoder and decoder
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Figure 6.1: Convolution over Recurrent model.

are recurrent neural networks. The proposed model uses additional convolutional layers
over the recurrent layers of the baseline NMT model. However, the overall performance
of the convolutional networks is usually dependent on two hyper-parameters: the optimal
number of convolutional layers and the kernel-width of the convolutions. Therefore,
we first experiment by varying these two parameters on a small English—German
corpus known as the TED-talks bitext IWSLT 2013) (Cettolo et al., 2012). We use a
combination of the official test sets for IWSLT 2011, 2012, and 2013 as an evaluation
set for these experiments.

After determining the optimal number of parameters, in the second set of experi-
ments, we evaluate the proposed model against the baseline for four language pairs/di-
rections: English—German, German—English, Arabic—English, Chinese—English
and Romanian—English. For the English<>German experiments, we use the training
data provided for WMT-2015 (Bojar et al., 2015). The training data provided for the
task consists of approximately 4.2 million sentence pairs.

For Arabic—English, we use a collection of parallel sentences taken from the following
data sources released by the Linguistic Data Consortium: LDC2006E25, LDC2004T18,
several GALE corpora, LDC2004T17, LDC2005E46, LDC2007TO08, and LDC2004E13.
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Table 6.1: Training and evaluation sets for all language pairs. Training size = Number
of sentence pairs in training data.

Language Pair Training size | Development set | Test set
English—German 4M newstest13 newstest14, newstest15
German—English aM newstest13 newstest14, newstest15
Arabic—English 1.25M NIST-MTO05 NIST-MT09
Chinese—English 2.15M NIST-MT-05 NIST-MTO08
Romanian—English | 550K Random (2000) | newstest16

This results in a parallel corpus of approximately 1.2 million sentence pairs. Similarly,
for Chinese—English, we use sentence pairs from the LDC catalog (LDC2003E14,
LDC2005T10, and LDC2002E18, LDC2007T09), resulting in approximately 2.1 mil-
lion sentence pairs.

For Romanian—English, we use the training data released for the news translation
shared task at WMT-2016 (Bojar et al., 2016), which is mainly Europarl version-8 data
(approximately 550K sentence pairs). We reserve a random sample of 2000 sentences
as a development set and use the test set provided by WMT for evaluation.

For English<»German, we use WMT-newstest2013 as a development set and WMT-
newstest2014 and WMT-newstest2015 as test sets. For Arabic—English, we use
NIST MTO5 as the development set and NIST MTO9 as the test set. Similarly, for
Chinese—English, NIST MTOS5 is used as a development set and NIST MTO8 as the test
set. Table 6.1 summarizes the training, development, and test sets for all language pairs.
We keep sentences with a maximum sequence length of 80 tokens on both the source
and target side. Results are reported in terms of case-insensitive BLEU-4 (Papineni
et al., 2002).

6.5.2 Baselines

We train a baseline NMT system based on (Luong et al., 2015) implemented using
the Torch deep learning framework. It is a two-layer unidirectional LSTM encoder-
decoder with an attention (dot product) mechanism. Both the encoder and decoder
have input embedding and hidden layer sizes of 1000. As is common practice, we limit
the vocabulary sizes to 60k for the source and 40k for the target side. Parameters are
optimized using stochastic gradient descent. We set the initial learning rate as 1 with
a decay rate of 0.5 for each epoch after the Sth epoch. Model weights are initialized
uniformly within [—0.02,0.02]. A dropout value of 0.2 is applied to each layer. We
train for a maximum of 20 epochs and decode with a standard beam search with a beam
size of 10. All models are trained on NVIDIA Titan-X (Pascal) GPU devices.

6.5.3 CoveR model

As discussed in Section 6.5.1, we first experiment with varying the number of convolu-
tional layers and kernel width. We add multiple convolution layers on top of the output
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of the second RNN layer of the encoder. Note that similar to the baseline system, the
RNN decoder has the same number of layers as the RNN encoder, i.e., two. The number
of filters at each layer is the same as the input sequence length. Each filter operates on a
window of (k =kernel width) consecutive inputs and generates a single output with a
dimension equal to the input. Thus at each layer, the output sequence length is reduced
as compared to the input, as shown in Figure 6.1. In order to retain the full sequence
length, we apply k£ — 1 zero-paddings on both sides of the input. All other optimization
parameters are the same as for the baseline.

6.5.4 Deep RNN encoder

In order to verify that the improvements achieved by the proposed model are due to
the convolutions and not just because of the increased number of parameters, we also
compare our model to another RNN baseline with an increased number of recurrent
layers for the encoder. For the second set of experiments, we train a deeper RNN model
with additional layers, which equals the number of optimal convolutional layers that
are determined in the first set of experiments. For this deep NMT system, the number
of layers in the decoder remains the same as for the baseline, i.e., 2. The initial states
of the decoder layers are initialized through a non-linear transformation of all layers
of the encoder RNN. This is done by concatenation of the final states of all n layers of
the encoder resulting in a vector of size n x D (D is the dimension of the hidden layer)
and then projecting it down to size 2 X D by a simple non-linear transformation and
finally splitting it in two vectors of size D that is used to initialize each of the layers of
the decoder.

6.6 Results

As discussed in Section 6.5.1, in the first set of experiments, we determine the optimal
number of convolutional layers and kernel-widths. In order to do this, we fix the kernel-
width as 3 and vary the number of convolutional layers from 1 to 4. Table 6.2 shows the
performance variation in terms of BLEU for a varying number of convolutional layers.
The reported results correspond to the best epoch on the validation set. As can be seen
in Table 6.2, the performance of the model increases with an increase in the number
of layers up to n = 3. For n = 4, we observe that the performance starts to decrease.
Thus we consider n = 3 as the optimal number of layers.

After setting the number of layers to n = 3, we experiment with kernel-width k.
Since, k = 1 implies only a window of one word, we start with k¥ = 3. Moreover,
since a square kernel operation allows for only odd-sized kernels, we experiment with
values k = 3, k = 5, k = 7. As shown in Table 6.3, we observe that the best
performance is achieved for k£ = 3 and increasing the kernel-width does not improve
model performance. Therefore we consider number of layers n = 3 and kernel-width
k = 3 to be optimal values for the rest of the experiments.

Tables 6.4 and 6.5 show the results for our English—German and German—English
translations experiments respectively. The first column indicates the best BLEU scores
on the development set (newstest13) for all three models after 20 epochs. Results are

107



6. Convolutional over Recurrent Encoder for Neural Machine Translation

Table 6.2: BLEU variation with respect to the number of convolutional layers. Kernel-
width is fixed to 3. Results are reported on IWSLT combined test, as explained in
Section 6.5.1. Results marked with A are statistically significant at p < 0.05 over
baseline.

Number of convolutional layers | BLEU (IWSLT-test)
n = 0 (Baseline) 16.3

n=1 17.1%

n=2 18.0%

n=3 18.9%

n=4 18.4%

n=>5 18.1%

Table 6.3: BLEU variation with respect to kernel-width. The number of layers is fixed
to 3. Results are reported on IWSLT combined test as explained in Section 6.5.1.

Kernel-width | BLEU (IWSLT-test)
k=3 18.9
k=5 18.8
k=17 17.6

reported on the newstest14 and newstest15 test sets. For English—German, our CoveR
model shows improvements of +1.1 and +0.5 BLEU points, respectively for both test
sets. Similarly for German—English, we observe up to +-0.5 BLEU improvements
for the deep RNN over the baseline and +-0.9 improvement over baseline on the de-
velopment set. Although the deep RNN encoder performs better than the baseline, the
improvements achieved are lower than that of the CoveR model.

Table 6.4: English-German results for Baseline, Deep RNN and CoveR (proposed
model). Results marked with A are statistically significant at p < 0.05 over baseline.

newstestl13 (dev) | newstestl4 | newstestlS
Baseline 17.9 15.8 18.5
Deep RNN encoder 18.3 04 16.2 .04 18.7 02
CoveR 18.5‘4—046 16.9‘+1.| 19.0A+o.5

For Arabic—English, as shown in Table 6.6, we observe up to +1.3 BLEU improve-
ments on the evaluation set for the CoveR model while only up to +0.4 for the deep
RNN. Similarly, in Table 6.7, for Chinese-English, we observe an improvement of +0.5
with the deep RNN model, and an improvement of up to +2.1 with the CoveR model.
Finally, as shown in Table 6.8 for Romanian—English, the deep RNN yields up to +0.3
improvements while up to +-0.8 BLEU is achieved for CoveR model.

In conclusion, we can see that the proposed CoveR model shows significant im-
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Table 6.5: German-English results for Baseline, Deep RNN and CoveR (proposed

model).
newstest13 (dev) | newstestl4 | newstestl5
Baseline 224 20.5 21.0
Deep RNN encoder | 22.6 42 20.9 04 21.5 o5
CoveR 22.9‘&5 21.3A+o,s 21.9A+0.9

Table 6.6: Arabic-English results for Baseline, Deep RNN and CoveR (proposed model).

MTO05 MTO09
Baseline 44 4 34.8
Deep RNN encoder | 44.8 w4 | 35.0 02
CoveR 46.2A+1.s 36.1‘+1.3

Table 6.7: Chinese-English results for Baseline, Deep RNN and CoveR (proposed
model).

MTO05 MTO08
Baseline 12.9 8.9
Deep RNN encoder | 15.5%26 | 9.4 05
CoveR 16.0A+3.1 10.9‘+2.1

Table 6.8: Romanian-English results for Baseline, Deep RNN and CoveR (proposed
model).

(development set) | newstest16
Baseline 49.2 134
Deep RNN encoder | 47.1 13.6 03
CoveR 49.9.07 14-.2,A +0.8

provements over the baseline. Moreover, it also outperforms a deep RNN model with
an equivalent number of recurrent layers. This implies that a combination of recurrent
and convolutional layers performs better than recurrent layers only.

6.6.1

Table 6.3 shows some translation examples produced by the baseline systems and our
CoveR model for three language pairs. A general observation is the improved transla-
tions by our model over the baseline with regard to the reference translations. More
specifically, Example 1 shows instances where the baseline suffers from incomplete
coverage of the source sentence. One reason for such incomplete translations is the lack

Qualitative analysis and discussion
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Table 6.9: Translation examples. Words in bold show correct translations produced by
our model as compared to the baseline. Src = Source sentence, Ref = Reference sen-
tence, Base = Translation produced by baseline model. Cover = Translation produced
by proposed (Cover) model.

1: English-German

Sre: as the reverend martin luther king jr. said fifty years ago

Ref: wie pastor martin luther king jr. vor fiinfzig jahren sagte :

Base: wie der martin luther king jr. sagte

Cover : | wie der martin luther king jr. sagte vor fiinfzig jahren :

2: English-German

Sre: he said the itinerary is still being worked out .

Ref: er sagte , das genaue reiseroute werde noch ausgearbeitet .

Base: er sagte , dass die strecke noch <unk> ist .

Cover: | er sagte, die reiseroute wird noch ausgearbeitet .

3 Arabic-English

Sre: ST F v e J el S o ol padl (F B Bl Bl S e 0 ey cel s ob g L oy (B WS

Ref: a total of 52 people were killed and 142 wounded when a car bomb
exploded in the same day in the holy city of najaf, 70 km from karbala.

Base: on the same day , 52 people were killed and 142 injured when a car bomb

exploded in the same day in the southern city of najaf .
Cover: | another 52 people were killed and 142 wounded in a car bomb attack on
the same day in najaf , some 70 km ( 60 miles ) south of karbala .

4: Romanian-English

Srec: insd un grup de oameni care au trdit pe strdzi in copildrie au gasit un mod
de a invata o meserie si de a-si castiga traiul .

Ref: but one group of former street children have found a way to learn a skill
and make a living .

Base: but a group of people who lived on the streets have found a way to learn
and win .

Cover: | however, a group of people who lived in the streets have found a way to
learn a wealth and to make a living .

of coverage modelling which has been addressed by Tu et al. (2016) using coverage
embeddings. We observe this problem frequently with the baseline model in instances
where a specific word can signal completion of a sentence despite more words in the
sequence remain to be be translated.

These words can cause the premature generation of the end-of-sentence EOS symbol.
Since the beam search decoding algorithm considers a hypothesis complete when the
end of sentence is generated. In such instances search stops, aborting further expansions,
ignoring the remaining words. For instance in Example 1 in Table 6.3, by relying on the
attention mechanism, the baseline system generates the translation of said in English
as sagte in German. This is possibly due to the reason that the model might give a
preference to the generation of an end-of-sentence EOS symbol immediately following
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the verb. On the other hand, for our CoveR model, a wider context is available to the
model through convolutional layers from both directions signalling the presence of other
words remaining in the input sentence, thus producing a more complete translation.

he said the itinerary is still being worked out
er
sagte

s

dass
die N
strecke
noch
“unk”

ist

Figure 6.2: Attention distribution for Baseline

he said the itinerary is still being worked out

«

sagte

’ -

dass
die N
reiseroute
noch
immer
ausgearbeitet
wird

Figure 6.3: Attention distribution for CoveR model for Example 2 in Table 6.3

Another difference between the baseline model and our CoveR model can be
observed in Example 2. Here, attention weights are distributed more uniformly among
the source words. Specifically, for target position 6, as shown in Figure 6.3, the
baseline model pays attention mainly to ‘itinerary’ and ‘is’ resulting in the generation of
target word ‘strecke’ which is a more common translation for the English word ‘route’.
On the other hand, as shown in Figure 6.3, for the same position, the CoveR model
pays attention to ‘itinerary’ as well as the last three words ‘being worked out’. This
allows for the generation of the correct target word ‘reiseroute’. Similarly, for both
Arabic—English and Chinese—English, as shown in Example 3 and 4, respectively,
the CoveR model generates more correct translations as compared to the baseline by
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translating fragments which are otherwise dropped by the baseline model.

6.7 Conclusion

Motivated by the limitations of recurrent layers to capture the source context, we
proposed a model that combines recurrent and convolutional layers for neural machine
translation. Our main research question was to evaluate whether adding convolutional
layers on top of the recurrent layers can increase the ability to capture features of the
source sequence:

RQ4: What are the limitations of using only recurrent layers towards effective modeling
of source sentences in NMT and can NMT performance be improved by the addition of
convolutional layers?

The proposed model involves feeding outputs of the RNN encoder to multiple
convolutional layers of fixed kernel size. We first experimented with varying the number
of convolutional layers and kernel-width over a small training set and determined
the optimal value of both parameters. After fixing these hyper-parameter values, we
compared the proposed model to the baseline (recurrent only) model for five language
pairs. Our experimental results demonstrated that the proposed model consistently
performs better than the standard RNN encoder for all language pairs. This answers our
first sub-research question:

RQ4.1 Can a combination of recurrent and convolutional layers for the encoder
provide the model with improved effective guidance to focus on relevant
information in the source sequence?

Further, we aimed to empirically verify whether the improvements demonstrated by
the proposed model are a result of the increased number of parameters or due to the
capacity of convolutional layers to better capture the source features. This is the premise
of our second sub-research question:

RQ4.2 Are the improvements observed with additional convolutional layers due
to properties of convolutions or merely due to the increased number of
parameters?

To answer this question, we experimented with a model where the number of recurrent
layers is equivalent to the total number of layers (recurrent and convolutional) in the
proposed CoveR model. Our experimental results demonstrated that although for all
language pairs, the deep-RNN model with the increased number of recurrent layers
performs slightly better than the baseline model (with fewer layers), the CoveR model
still outperforms the deep-RNN model. This implies that in the proposed CoveR model,
the improvements are not merely due to the increased number of parameters. Further,
a qualitative analysis of the translations of our model shows that CNNs capture the
local context corresponding to each word more effectively while RNNs model the
global information, thus capturing grammaticality and dependencies within the source
sentence.
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In the next chapter, we revisit all our research problems and discuss our solutions
to these problems, along with the main findings of this thesis and possible future
directions.
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Conclusions

In this chapter, we summarize our discussions and the main findings of this thesis. We
start with our main findings, followed by a review and discussions of our main research
questions in Section 7.1. In Section 7.2, we discuss the proposed methods, experiments,
and possible future directions.

7.1 Main findings

As discussed in Chapter 1, research in data-driven machine translation has to consider
various problems such as model training, data selection, and domain adaptation. One
of the most important challenges for data-driven machine translation is the limited
availability of good-quality data in substantial amounts for various language pairs.
However, training of high-performing MT systems is not only dependent on the quality
and quantity of the data but also on the effectiveness of training strategies to learn robust
models from all available training data. Standard training techniques assume that the
training data instances are from identical domains and of high-quality. However, this is
not always the case for different application scenarios, where the training data is often
compiled from multiple sources with different domains and degrees of quality. This can
result in low performance of the MT system due to domain bias, induction of low-quality
features, etc. Therefore, there is a need to explore techniques that can improve the
quality of models while making effective use of all training data. In this thesis, we
addressed various problems such as compactness of translation models, domain bias,
and performance degradation due to training noise. All these problems are sub-problems
of a more general problem, which is the “ineffectiveness of standard training techniques
to make the best use of training data.” Therefore, while addressing different research
questions, the underlying theme in this thesis is to address the question: “to what
extent can incremental transfer of knowledge help improve the performance of machine
translation models?”

In this thesis, we addressed four research questions that target various problems
in phrase-based MT as well as neural MT. The solutions proposed to these problems
revolve around techniques such as knowledge transfer across models and incremental
refinement of model quality, which ultimately aim to improve the reliability of trained
models. Below we revisit these research questions, proposed solutions, and the main
findings from the experiments.
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In Chapter 3, we addressed the problem of unreliable phrase segmentations obtained
through heuristic extractions from word alignments across source-target sentence pairs.
The main research question RQ1 that we addressed in Chapter 1 is as follows:

RQ1: How does heuristic training of translation models affect the performance of
phrase-based MT and to what extent can alternative training strategies based on
re-estimation of models improve phrase-based MT performance?

The heuristic extraction technique for phrase-based MTs is solely based on an abstract
definition of the consistency of phrases. It is devoid of any intuition about which
phrases are more likely to be observed in high-quality translations when scores from
different models are combined. As a result, a large number of unintuitive phrase pairs
are extracted, that affect the size and quality of the models. We provided an analysis
of how the forced decoding method leads to the re-estimation of incorrect phrase
segmentations from noisy samples in the training data. We also discussed the limitations
of the forced decoding method, which is incapable of re-estimating re-ordering models.
Moreover, our final results in Chapter 3 demonstrated that the over-estimation of phrases
in the heuristic method results in a very large size of the phrase translation model, thus
increasing the memory requirements of the MT system.

As a remedy to heuristic extraction, we investigated if it is more beneficial to re-
estimate the phrase segmentations from the best scoring translations of the training
bitext (in terms of BLEU) instead of exact references. We proposed oracle-BLEU
re-estimation as an alternative to heuristic extraction and forced decoding based re-
estimation. Our proposal is based on the idea that due to the constraints of phrase-based
decoding on hyper-parameters such as distortion-limit, phrase length, beam threshold,
it can be very difficult and computationally expensive for forced decoding to generate
the exact target sentence, especially in the case of noisy samples. Instead, it would be
easier to reach the best possible translation in terms of BLEU.

We conducted experiments for Arabic—English translation in order to evaluate
the performance of a model trained by the proposed oracle-BLEU re-estimation in
comparison to standard heuristic training as well as forced decoding based re-estimation.
Our results demonstrate that the proposed re-estimation technique provides better results
than heuristic extraction and forced decoding. Moreover, it also reduces the phrase table
size to just 3% of the initial size.

Further, the proposed method can also enable the re-estimation of re-ordering
models, which is not possible with forced decoding. Therefore, it is critical to evaluate
whether the re-estimation of models other than the phrase translation model can provide
additional benefits to the overall translation performance. We conducted experiments for
the re-estimation of re-ordering and Bilingual Language models (BiLm) and evaluated
the performance of re-estimated models as compared to the baseline models. Our results
demonstrated that the re-estimation of re-ordering models, especially the BiLm leads to
additional improvements in translation performance. This implies that reinforcing those
re-ordering decisions that lead to a better translation of the training data is beneficial for
improving the translation performance of the SMT system.

Phrase-based MT is based on training each specialized model individually. There-
fore, in this paradigm, the quality and domain of the training data can have isolated
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effects on the reliability of the models trained from this data. As discussed in Chapter 3,
various methods have been proposed to improve the quality of the trained models. In
Chapter 3, we proposed one such method, which is a refinement of forced decoding.

However, these observations also raise questions about the reliability of neural
machine translation models. As already discussed in Chapter 2, NMT architectures
are based on end-to-end training of a single neural network, and the model parameters
are the weights of the individual layers. Therefore, it is important to ask whether
the reliability of neural network models can also be affected due to domain bias and
low-quality of the training data, and if so, what are the possible remedies to improve
the quality and reliability of these models? In Chapter 4, we addressed one specific
problem related to the domain bias of the NMT models. We asked:

RQ2: How can we apply fine-tuning to adapt NMT models to new domains while
retaining the performance on the source (original) domain?

It has been shown in the literature that NMT models are prone to domain bias (Koehn
and Knowles, 2017). The performance of NMT is good if the domains of the train
and test data are the same, but it tends to be significantly lower if the two domains
are different. However, it is not always feasible to obtain large amounts of training
data for all intended domains. Therefore it is important to explore techniques that
can transfer knowledge across domains. Fine-tuning has been proposed in the NMT
literature as a straightforward way to transfer models trained on large general domain
data to specific application domains (Freitag and Al-Onaizan, 2016; Chu et al., 2017).
However, fine-tuning suffers from a specific problem which is undesirable in practical
settings. This problem is the degradation of NMT performance on the original or source
domain after fine-tuning on the target domain. In Chapter 4, we addressed the question
of retaining a consistent performance of the NMT model across the source and target
domains when adapting the general domain model to specific domains.

We answered RQ?2, in three sets of experiments. First, we evaluated the performance
of a model trained on the general domain (news data) on three different target domains.
Our experiments demonstrated that the performance of the general domain model is
significantly lower than that of the in-domain model when evaluated on the in-domain
test set. Moreover, given a reasonable size of in-domain data, the performance of a
model trained on general domain data is substantially lower than training only on the
in-domain data.

In the second step, our experiments had two evaluation aspects: First, we evaluated
whether fine-tuning provides any significant improvements over the in-domain baselines
when adapting the models to multiple domains. Second, we assessed whether the
model adapted through fine-tuning can retain its performance on the general domain
task. From the results observed for all domains, we concluded that fine-tuning does
provide significant improvements as compared to training only on in-domain data, but
the performance of the adapted model on the general domain tasks degrades drastically.

To address the problem of severe degradation, we proposed two modifications to the
fine-tuning method for NMT in order to retain the performance on the source domain.
Both methods are based on the idea of “knowledge distillation” (Hinton et al., 2014)
where supervision from a teacher model prevents the fine-tuned model from forgetting
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the information learned about the source domain. Based on experimental results for all
domains, we concluded that both proposed approaches achieve performance comparable
to vanilla fine-tuning while retaining performance on the source (general) domain. In
conclusion, our experiments show that while domain bias is indeed a challenge for
NMT, knowledge transfer techniques such as distillation can result in models that are
robust across multiple domains.

Besides domain dissimilarity, one other aspect of the training data that can affect
the performance of the NMT models is its quality. Training high-performing NMT
systems require large amounts of high-quality parallel data. However, for many low
resource languages, high-quality data is rarely available. For such language pairs, an
easy alternative is to utilize slightly low-quality or noisy corpora. However, noisy
corpora can have a negative effect on the performance of NMT systems. Therefore, in
Chapter 5, we asked:

RQ3: How do noisy training corpora affect the performance of NMT and how can we
leverage them to improve NMT performance?

In order to answer RQ3, we first experimented by training NMT systems in different
settings, which include: training only on high-quality data, training only on noisy
data, and training on a combination of noisy and high-quality data. We sampled
from two different types of noisy bitexts (Paracrawl and ISI bitext) for three different
language pairs and used the noisy data along with high-quality parallel data. Our
experiments for three language pairs (Arabic-English, Chinese-English, and German-
English) demonstrated that noisy data does negatively affect NMT performance as
compared to the use of high-quality data only.

In the next step, we focused on possible remedies to reduce this negative effect. We
discussed some well-known techniques, such as data selection (Axelrod et al., 2015;
van der Wees et al., 2017), fine-tuning (Barone et al., 2017), and bootstrapping (Reed
et al., 2014), which have been adapted from either phrase-based NMT or from noise
handling techniques in the deep learning literature. We aimed to devise a method
that can learn from all training data without any reliance on an external oracle to
decide the quality of the training samples. Drawing inspirations again from the idea
of knowledge distillation, we proposed that using supervision from a strong teacher
model can help utilize all available data for training NMT models. In our technique,
we first train a strong teacher model on available high-quality data. Next, we train a
final model on the combined high-quality and noisy data while using supervision from
the strong model. Our experiments demonstrated that distillation yields significantly
better results than training directly on noisy data. Moreover, the proposed method
significantly outperforms alternative techniques, such as data selection and fine-tuning.
In conclusion, our experiments show that it is more beneficial to rely on the judgments
of a strong model instead of an external oracle to decide on the quality of the samples.

Finally, we extended our analysis of the effect of noisy data for non-recurrent NMT
architectures. Specifically, we proposed to evaluate what kind of effect does noisy
training data has on performance of a non-recurrent architecture, namely Transformer
models (Vaswani et al., 2017). Our experimental results for three language pairs
show that Transformer models tend to be more robust against training noise. In our
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experiments, transformer models not only resist degradation due to noisy data but even
displayed slight improvements when noisy data is used in addition to high-quality data.

In conclusion, our experiments show that while noisy data has a negative effect
on the performance of recurrent models, it can be utilized through knowledge transfer
techniques such as distillation from a strong model. Moreover, more recent non-
recurrent NMT architectures such as Transformer models already seem to be robust
against training noise.

In Chapters 3-5, we explored the idea of improving the reliability of MT by transfer
of knowledge across models, domains, and data sources. However, another interesting
way of combining the capabilities of multiple models is the combination of different
NMT architectures. We wanted to explore the effect of combining two different types
of neural network typologies on NMT performance. We focused our experiments on a
combination of recurrent and convolutional architectures for NMT. In Chapter 6, we
asked:

RQ4: What are the limitations of using only recurrent layers towards effective modeling
of source sentences in NMT and can NMT performance be improved by the addition of
convolutional layers?

We discussed the limitations of recurrent processing of the input and proposed that
combining convolutional and recurrent architectures is more beneficial to model local as
well as global features in NMT. Our experiments showed that combining recurrent and
convolutional layers can enable the encoder to capture relevant features of the source
sentences, which leads to improved NMT performance.

7.2 Future work

In the previous section, we revisited the research questions addressed in this thesis
and discussed our findings towards answering these questions. In this section, we list
some of the limitations of the proposed approaches and also discuss possible future
extensions of our solutions. We divide the different aspects of the limitations of the
experiments into three groups: the use of datasets, baselines, and comparisons, and
additional experiments, all of which are discussed below.

7.2.1 Additional language pairs and datasets

In all our experiments, the choices of language pairs and training datasets have been
based on factors such as public availability of datasets, source or origin of the datasets,
domains, complexity of experiments, etc. However, for some of the experiments, there
is always the possibility of replicating the experiments with other language pairs and
datasets to further verify our observations. For example, in Chapter 3, due to the time
and space required for decoding the training bitext, we only conducted experiments
for Arabic—English translation and used samples from publicly available datasets.
However, it would be helpful to verify whether the oracle-BLEU experiments show
similar improvements for additional language pairs such as Chinese—English, where
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re-ordering of words is an important problem. We believe that for such language pairs,
the re-estimation of re-ordering models could achieve better performance improvements.
Moreover, since the proposed re-estimation techniques aim at improving the reliability
of models even from noisy data, it would be interesting to explore re-estimation using
datasets that are known to be noisy such as web-crawled datasets. Similarly, in Chapter 6,
it would be beneficial to evaluate the proposed convolutional over a recurrent model for
additional language pairs.

Further, in Chapter 5, we ran experiments for three specialized domains but limited
the experiments only to one language pair, namely English—German. Although the
three domains that we selected in Chapter 5 provide sufficient insights into the problem
of domain bias, the training datasets for these domains are significantly smaller than
the general domain dataset. Therefore, it would be interesting to explore domain
adaptation in a setting where the in-domain training data size is comparable to that
of the general domain data and evaluate whether the observed results are consistent
with such a setting. In Chapter 6, we experimented with noisy data for three different
language pairs. Recently additional training data has been released for many language
pairs, which are known to be noisy or low-quality, for example, the Paracrawl' resource
provides noisy data for around 23 languages paired with English. Therefore, it would
be interesting to experiment with these additional language pairs to further verify our
observations.

7.2.2 Baselines and comparisons

In all our experiments, we compared our proposed solutions with standard training
methods and architectures as well as with state-of-the-art techniques aimed at solving
a similar problem. However, as already discussed, there is a possibility of alternative
solutions for the same problem. Therefore, it could be beneficial to additionally evaluate
such solutions in comparison to our techniques. For example, in Chapter 3, we compared
the proposed oracle-BLEU re-estimation with heuristic training and forced-decoding
based re-estimation. The re-estimated phrase translation model yields translation per-
formance comparable to the original phrase table. A similar approach for reducing the
phrase table size while retaining the model performance is phrase table pruning (Zens
et al., 2012). Therefore, it would be worth comparing the results from our re-estimation
technique with phrase table pruning techniques. However, it is important to note that
the goal of our proposed training strategy is not to prune the model size but to modify
the training itself in order to improve the model reliability. Nevertheless, a comparison
with pruning techniques can provide additional insights towards reaching similar end
goals.

In Chapter 4, we modified the fine-tuning method in order to reduce degradation
during domain adaptation. Although fine-tuning is a straightforward approach, it is not
the only possible method for domain adaptation. There are various other techniques that
have recently been proposed for domain adaptation for NMT (Chu and Wang, 2018;
Hu et al., 2019). It would be interesting to evaluate whether other domain adaptation
techniques suffer from similar degradation on the source domains and, if so, what

Thttps://paracrawl.eu/releases.html
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remedies are possible.

In Chapter 5, we proposed distillation as a solution for degradation in NMT perfor-
mance due to noisy training data and compared our experiments with state-of-the-art
data filtering techniques. However, there has been a growing interest in training NMT
models using only monolingual datasets in source and target languages. Although the
aim of our proposed method is the optimal utilization of noisy data for training NMT
models, it is important to explore whether models trained only on monolingual data
can perform better than those trained using noisy data (Artetxe et al., 2018; Yang et al.,
2018). Moreover, we evaluated the effect of noisy data on one non-recurrent architecture,
i.e., the Transformer NMT model. However, the convolutional sequence-to-sequence
model has also been proposed as a non-recurrent NMT architecture. Therefore, it would
be interesting to explore whether fully convolutional NMT models would demonstrate
similar resistance against training noise.

Finally, in Chapter 6, we experimented by augmenting the standard recurrent NMT
architecture of Bahdanau et al. (2015) with additional convolutional layers. Additional
enhancements, including newer architectures, have been proposed for NMT, such as
fully convolutional (Gehring et al., 2017a) and fully attentional models (Vaswani et al.,
2017), which have outperformed recurrent NMT models by using various optimization
heuristics. Therefore, it is important to evaluate the performance of these non-recurrent
architectures in comparison to a combined recurrent and non-recurrent architecture
similar to our proposed model. One limitation of our proposed model is the use of
a unidirectional encoder for the recurrent NMT baseline. However, bi-directional
encoders have become the state-of-art in recurrent NMT models (Bahdanau et al., 2015).
Using bi-directional encoders could have a different effect on the baseline model, and a
comparison with the proposed model can provide further insights.

7.2.3 Additional experiments

Phrase-based machine translation and neural machine translation both have a very large
number of hyper-parameters, and different settings can affect the performance of the
MT systems, and some of these have been discussed in Chapter 2. However, we only
experimented using some standard values of these parameters for both baselines and the
proposed solutions. Evaluation with different values of these parameters, especially for
the baselines, may have alternative effects on some of our observations. For example, in
Chapter 3, we fixed the value of 1 in Equation 3.5 to be 0.5. This may not necessarily
be the optimal value for . However, rescoring the lattices for different values of 1 over
all training data is very expensive. Therefore, based on the previous literature, we fixed
this value to be 0.5. Further, to obtain the oracle-BLEU segmentations, we decode the
bitext with standard hyper-parameters identical to that of the baseline. However, we
believe that relaxing some of the decoding parameters can further improve the overall
performance of the oracle-BLEU re-estimation. As explained in Section 3.3.5, to avoid
overfitting, we drop the re-estimated phrase pairs with a frequency below a threshold.
However, a better approach could be to apply the leave-one-out strategy similar to
forced decoding, as explained in (Wuebker et al., 2010).

Similarly, in Chapter 4, we evaluated domain adaptation for a general domain model
to a specific in-domain dataset. In real-life industrial settings, it would be desirable
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to train a model that can be adapted to multiple domains iteratively but retains its
performance for all domains. Therefore one extension of our work would be to evaluate
our distillation based strategy for multiple domains and further explore modifications
that can enable the model to retain its performance for all the domains. In addition,
it would be beneficial to evaluate the proposed solutions along with preprocessing
techniques such as byte-pair encoding (Sennrich et al., 2016b).

In Chapter 5, we provide distillation as a remedy against noisy training data for
recurrent NMT. Additionally, we showed that non-recurrent NMT models are relatively
robust against training noise. However, it would be interesting to investigate whether
non-recurrent models can additionally benefit from noisy data and yield even better
performance through distillation. Further, we empirically compared the effect of noise
on recurrent NMT and Transformer models based on the intuition that the self-attention
mechanism provides the model with the capability to avoid noise propagation in trans-
former models (as discussed in Section 5.7). However, it is important to theoretically
analyze and verify our intuition and evaluate the model under varying parameter settings.

In Chapter 6, we only evaluated the number of layers as a hyper-parameter for the
proposed convolutional over the recurrent model. Tuning other hyper-parameters such
as the number of dimensions for embeddings and hidden layers, learning rate, attention
functions can further affect the overall translation performance of the model.

In conclusion, all experiments conducted in this thesis suggest new research direc-
tions towards answering the research questions that we asked. However, the applicability
and effectiveness of the proposed solutions can be further verified and enhanced by
conducting the experiments suggested in this section.
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Summary

Machine Translation (MT) systems are developed with the aim to automatically translate
text from one language (the source language) to another language (the target language).
The vast majority of present-day MT systems are data-driven, that is, they learn how
to translate between the two languages of interest by modelling the probabilities of
translation patterns from large amounts of parallel corpora. For many language pairs,
the training data is compiled from multiple sources that often come from different
domains and can have varying degrees of translation equivalence.

One limitation of standard training mechanisms is that they assume training data
to be homogeneous with respect to domain and quality. As a result, these training
mechanisms may learn noisy or undesirable translation patterns. This thesis explores
training strategies that can refine the quality of the translation model and minimize the
effect of training data variations. The majority of the strategies proposed in this thesis
are based on the idea of iterative knowledge transfer, in which the quality of a model is
refined through predictions of other models that are trained in earlier steps. The main
idea underlying the solutions proposed in this thesis is that knowledge gathered by the
models during initial training steps can be refined and used for solving varied problems
such as domain adaptation and better utilization of noisy training data. Based on this
idea, this thesis proposes solutions to four different problems.

First, this thesis demonstrates that the quality of models used in phrase-based
machine translation can be improved by re-estimating them from their own predictions
on the training data.

Second, this thesis investigates the problem of low performance of neural MT
models when used to translate sentences from domains that are underrepresented in the
training data. This thesis proposes a knowledge transfer strategy for training neural MT
models with stable performance across multiple domains.

Third, we address the problem of the negative effect of low-quality training data on
the performance of neural MT systems. Our research demonstrates that the performance
degradation due to noise in the training data can be reduced using knowledge transfer
from a strong model trained on small high-quality data.

Fourth, this thesis discusses the limitations of single architectures for neural MT.
We propose a combination of two different neural network architectures to effectively
model important features of the source sentences.
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Samenvatting

Automatische Vertaalsystemen (afgekort MT, naar het Engelse Machine Translation)
zijn ontwikkeld met als doel het automatisch vertalen van tekst van de ene taal (de
brontaal) naar een andere taal (de doeltaal). De overgrote meerderheid van de huidige
MT systemen zijn datagestuurd, dat wil zeggen ze leren hoe ze moeten vertalen tussen
de twee talen door het modelleren van de waarschijnlijkheid van vertaalpatronen van
een grote hoeveelheid parallele corpora. Voor veel taalparen wordt de trainingsdata
samengesteld uit meerdere bronnen die vaak afkomstig zijn uit verschillende domeinen
en die verschillende niveaus van vertalingsequivalentie kunnen hebben.

Een beperking van de standaard trainingsmechanismen is dat ze ervan uitgaan dat
trainingsdata homogeen zijn met betrekking tot het domein en de kwaliteit. Als gevolg
daarvan kunnen deze trainingsmechanismen ruis of ongewenste vertaalpatronen aan-
leren. Dit proefschrift richt zich op het onderzoeken van trainingsstrategieén die de
kwaliteit van het vertaalmodel kunnen verfijnen en het effect van variaties in de train-
ingsdata kunnen minimaliseren. Het merendeel van de in dit proefschrift voorgestelde
strategieén is gebaseerd op het idee van iteratieve kennisoverdracht, waarbij de kwaliteit
van een model wordt verfijnd door middel van voorspellingen van andere modellen
die in eerdere stappen worden getraind. Het hoofdidee dat ten grondslag ligt aan de
oplossingen die in dit proefschrift worden voorgesteld, is dat de kennis die de modellen
tijdens de eerste trainingsstappen hebben verzameld, kan worden verfijnd en gebruikt
voor het oplossen van uiteenlopende problemen zoals domeinaanpassing en een beter
gebruik van trainingsdata met veel ruis. Op basis van dit idee worden in dit proefschrift
oplossingen voorgesteld voor vier verschillende problemen.

Ten eerste toont dit proefschrift aan dat de kwaliteit van de modellen die gebruikt
worden bij het vertalen van frasen verbeterd kan worden door ze opnieuw te beoordelen
op basis van hun eigen voorspellingen op de trainingsdata.

Ten tweede onderzoekt dit proefschrift het probleem van lage prestaties van neurale
MT-modellen bij het vertalen van zinnen uit domeinen die ondervertegenwoordigd zijn
in de trainingsdata. Dit proefschrift stelt een kennisoverdrachtstrategie voor voor het
trainen van neurale MT-modellen met stabiele prestaties over meerdere domeinen.

Ten derde gaat dit proefschrift in op het probleem van het negatieve effect van laag-
waardige trainingsdata op de prestaties van neurale MT-systemen. Ons onderzoek toont
aan dat de prestatievermindering door ruis in de trainingsdata kan worden gereduceerd
door gebruik te maken van kennisoverdracht vanuit een sterk model dat getraind is op
weinig kwaliteitsdata.

Ten vierde bespreekt dit proefschrift de beperkingen van enkelvoudige architec-
turen voor neurale MT. We stellen een combinatie voor van twee verschillende neurale
netwerkarchitecturen om belangrijke kenmerken van de bronzinnen effectief te mod-
elleren.
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