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Abstract

The DynaLearn project is an effort to develop an Interactive Learning Envi-
ronment (ILE) that relies on Qualitative Reasoning methods to assist students
in constructing their conceptual system knowledge, either individually or in a
collaborative setting. Such an environment must have the means to assess a stu-
dent’s knowledge state during this process. In order to do so, the system must
be able to understand first how this knowledge is constructed and understood
from the user’s perspective. The goal of this research is to learn what it takes
to get the DynaLearn ILE in the process of students understanding and building
qualitative knowledge of system behavior. We first take the perspective of the
learner and go through the process of model building, tackling the domain of
global warming amplifiers. Then, we learn how to construct a model of the stu-
dent’s knowledge based on Bayesian networks. We provide solutions for some of
the existing issues related to constructing Bayesian network based learner models
in the context of Qualitative Reasoning, prove the applicability of the approach
and propose future work.
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Chapter 1

Introduction

1.1 Problem context

Qualitative Reasoning originates from Artificial Intelligence(AI), and provides the tools for
constructing conceptual models of systems. More specifically, it provides formal means to
externalize thought on notions such as the physical system structure, causality, the start and
end of processes, the assumptions and conditions under which facts are true, etc. (Bredeweg
et al., 2006, 2008, 2009c). The DynaLearn1 project is an effort to develop an Interactive
Learning Environment (ILE) that relies on Qualitative Reasoning methods to aid students in
learning (Bredeweg et al., 2009b). Learners will be given an opportunity to use diagrammatic
representations to articulate, analyze and communicate ideas in an easy to use environment
for constructing their conceptual knowledge. Learners working on similar ideas will be able
to collaborate thanks to ontology mappings, which will allow for individualized and mutually
benefiting learning opportunities. Interactions with the learning environment will be made
more engaging and motivating through the use of Virtual characters.

However, in order for the DynaLearn learning environment to be able to help a student
develop their knowledge, it must be able to assess their knowledge state during this process..
In order to assess a learner’s state of knowledge, the system must understand first how
this knowledge is constructed and understood from the user’s perspective. The goal of this
research is to learn what it takes to get the DynaLearn ILE in the process of students
understanding and building qualitative knowledge of system behavior. Therefore, we will
first take the perspective of the learner and go through the process of model building. Then,
we will learn how to construct a model of the student’s knowledge based on a probabilistic
approach, namely, Bayesian networks (Mitchell, 1997; Bishop, 2009).

We will first familiarize with the domain of Qualitative Reasoning, that is, its essential
ingredients, but also Garp3, an environment that facilitates building conceptual knowledge

1http://www.DynaLearn.eu
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models (Bredeweg et al., 2009c). As there is growing interest from ecological experts to
create qualitative models of phenomena for which numerical information is sparse or missing
(Salles and Bredeweg, 2006; Cioaca et al., 2009)., in the first part of this thesis, we will shift
to the Qualitative Reasoning paradigm by seeing how QR can be used to model systems
in the field of Environmental Science, namely, the domain of global warming (Allaby, 2000;
Philander, 2008; Lerner and Lerner, 2009). The second part of the research builds on the
work of Brielmann (2009), where a learner model initially proposed by Corbett and Anderson
(1995), and later formalized and implemented in terms of a Bayesian network by Reye (2004)
is used to construct the system’s view of a learner’s state of knowledge about a QR model.

The DynaLearn project, its purpose, the overall approach and the architecture will be
discussed below.

1.2 DynaLearn - learning by modeling

Constructing conceptual knowledge of system’s behavior is of great importance for under-
standing and successfully interacting with the environment. Moreover, cognitive science
research has shown that students learn about system behavior best when they have a clear
mental picture/model of how the system functions, i.e. they can distinguish the system
from the surrounding environment, identify its building parts, and predict and explain its
behaviors (Bredeweg et al., 2006).

The past three decades have given us a number modeling environments, starting with
Papert’s Mindstorms (1980), and then moving forward with StarLogo (Resnick, 1994) (later
NetLogo), Stella (Richmond and Peterson, 1992), and Model-It (Jackson et al., 1998). These
innovative environments were among the first to offer students the possibility to construct
their own simulations to solve different problems, allowing them to examine new levels of
complexity, and look at previously hidden details (Bredeweg et al., 2009b). However, despite
the value for learning, this technology for handling qualitative knowledge couldn’t overcome
a number of issues. Bredeweg and Winkels (1998) give a full list of arguments; we will
mention only the most important ones. First and foremost, the fact that the underlying
representation is quantitative, makes these systems useless when numerical information is
not available. Moreover, dealing with numbers distracts learners from focusing on devel-
oping their conceptual understanding of how systems work. Second, (Forbus, 1984) argues
that many crucial conceptual notions are not explicitly represented in such quantitative
approaches, such as landmark values, causality, qualitative distinct states of behavior, pro-
cesses, etc. This prevents the learners from using the appropriate language to develop their
knowledge, thereby resulting in suboptimal learning. Also, when certain essential notions are
not captured by the underlying representation, creating interactive tools that teach learners
the key conceptual insights that explain system behavior is difficult. In other words, the
automated feedback that can be provided is suboptimal.

The DynaLearn project is an effort to develop an individualized and engaging cognitive
tool - an interactive learning environment that will allow the learners to acquire conceptual
system knowledge, either individually or in a collaborative setting (Bredeweg et al., 2009a,b).
The three main characteristics/goals of the workbench are:
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• Accommodate the true nature of conceptual knowledge

• Be engaging by using personified agent technology

• React to the individual knowledge needs of learners

1.2.1 Global design

All of the above mentioned characteristics should be covered by the the DynaLearn software’s
main components: Semantic Technology (ST; allows for searching for and recommending
related models), Conceptual Modeling (CM; facilitates capturing of conceptual knowledge
about system behavior, and allows for using that knowledge for simulations) and Virtual
Characters (VC; engage the learner by being interactive in a knowledgeable way and by
providing support). (Figure 1.1)

Figure 1.1: DynaLearn software main components (Bredeweg et al., 2009a)

Chapters 2 and 3 give an insight into the CM component. The former introduces Garp3,
a conceptual modeling environment, whereas the latter covers a set of five qualitative models
from the domain of Environmental Science, built using this workbench. The ST component
is not thoroughly covered by this thesis; Chapter 3, only briefly discusses Cyc2, a proposal
for term grounding, and Appendix A describes OWL, a language for sharing and reusing
qualitative knowledge, but mainly for the purpose of constructing learner models. Finally,
chapters 4 and 5 discuss tracking and updating a student’s state of knowledge during an
examination session using a Bayesian network based learner model, thereby covering both
the CM and VC components. A more detailed organization of the report is given below.

We will first explain the essentials of Qualitative Reasoning, and Garp3, a workbench
for building, simulating, and inspecting qualitative models (Chapter 2). In Chapter 3, the
author takes a qualitative view on the popular domain in Environmental Science of global
warming. More specifically, we will see Qualitative Reasoning at work in an attempt to tackle
the domain of global warming amplifiers. The models get reviewed by two field experts and
conclusions are drawn at the end of the chapter. In Chapter 4, we get acquainted with
Bayesian networks, and review the existing work in the field of Learner Modeling. This
chapter also serves as an introduction to Chapter 5, where we describe our own approach

2http://www.cyc.com
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to modeling and updating the student’s state of knowledge of domains described in Garp3,
using a Dynamic Bayesian network. Finally, we sum up the results, discuss the outcome of
the work, and suggest further improvements. Appendix A explains the low level details of
Garp3 models, namely, their representation in OWL, the Web Ontology Language (Horrocks
et al., 2003), and Appendix B shows the Bayesian network structure for Communicating
vessels, a QR model we use to evaluate our approach in Chapter 5.



Chapter 2

Qualitative Reasoning

2.1 Qualitative Reasoning and Interactive Learning
Environments

The means for capturing continuous aspects of the world, such as space, time, and quantity
are provided by Qualitative Reasoning, an area of Artificial Intelligence that supports rea-
soning with very little information, i.e. without numerical data (Forbus, 1997). A reason
to abandon quantitative data when modeling a system’s behavior is that this kind of data
can often be missing, which cancels out the applicability of a pure mathematical approach.
What’s more important is that these models can’t capture causality or the model’s struc-
ture properly (Salles and Bredeweg, 2006). This makes interpreting and explaining a model,
or comparing alternative models difficult. In other words, the usability of the model in
question is directly affected. Qualitative Reasoning, on the other hand, doesn’t suffer from
such deficiencies. A property of qualitative models that is crucial for DynaLearn, or edu-
cation and training in general, is the fact that usable conceptual models make “knowledge
communication” between the agents involved in the learning process possible.

The link between QR and education or, more specifically, ILEs starts with some of the
earliest work on QR, which focuses on automatic explanation generation in the context of
environments that facilitate interactive learning (Brown et al., 1982; Hollan et al., 1984).
Also, some of the first approaches to computer based conceptual analysis of system behavior
(Bobrow, 1984) gave rise to the idea of using qualitative models and simulations, also known
as articulate simulations (Forbus, 1988; Bredeweg and Winkels, 1998).

2.2 Representing qualitative knowledge

2.2.1 Values and changes

The power of Qualitative Reasoning models lies in the ability to capture both system’s struc-
tural and behavioral information. Quantitative information is abstracted and represented
via ordered sets of qualitative values. Each set’s elements are usually alternating points
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and intervals (also known as magnitudes), forming the so called quantity space. The points
represent landmarks that refer to situations in which system behavior changes significantly
(e.g. a substance’s boiling point - the substance will stop getting hotter and start boiling).
Quantities can be assigned quantity space values, but this isn’t enough to capture the behav-
ior changes within a system. To overcome this obstacle, qualitative derivatives are used for
each quantity, showing the direction of a change, i.e. whether a quantity is steady, decreasing
or increasing.

2.2.2 Causality

As already mentioned earlier, QR models can also capture the notion of causality. Different
(types of modeling) primitives have been suggested, each of them having a specific and formal
meaning and calculus, so they can be implemented in computer programs. This work has
laid down the foundation for further research and advancements in the field (Bredeweg et al.,
2006).

Causal information within a system is represented via a set of dependencies that is
defined so that it can both closely match human reasoning, and be grounded in mathematical
formalisms that facilitate automated computation. The most typical examples are illustrated
in the notions of direct and indirect influences. The direct influences represent changes
initiated by processes, whereas the indirect ones, also known as proportionalities, show the
causal propagation of these changes to other quantities. In quantitative terms, they represent
the ordinary differential equations and monotonic functions, respectively (Bredeweg et al.,
2009c).

2.2.3 Simulations

The behavior of a system over a period of time is shown in the results of qualitative sim-
ulations, where each state in the simulation state graph represents a qualitatively distinct
moment in time. The states don’t hold the information about their duration. Quantity
magnitudes changes (increases or decreases) cause state transitions. In case of ambiguity, as
in the case of competing influences, when the information on the magnitude of one influence
with respect to the other influence is unknown, Qualitative Reasoning engines generate all
possible solutions.

2.2.4 Domains and libraries

A fundamental aspect of using this technology is capturing knowledge from a certain domain
in model fragments and combining them to build libraries. By using these libraries, QR
engines automatically generate qualitative models of systems belonging to the domain. A
lot of effort has already been put into covering the domains of physics and engineering. Some
of the successful application areas include autonomous spacecraft support, failure analysis
and on-board diagnosis of vehicle systems, automated generation of control software for
photocopiers, and intelligent aids for learning about thermodynamic cycles as well as for
learning about other systems and phenomena (Bredeweg et al., 2009c). Lately, however, the



12 A working example - Tree and shade

domain of environmental science is being tackled more and more (Bredeweg et al., 2006;
Salles and Bredeweg, 2006; Cioaca et al., 2009).

2.3 Garp3

In order to preserve the full expressiveness of the above mentioned Qualitative Reasoning
formalisms, but also be able to address domain experts and support them in articulating and
capturing their conceptual knowledge, Garp3 was developed. It is an easy to use workbench
that allows for building, simulating, and inspecting qualitative knowledge (Bredeweg et al.,
2009c). The software package allows the modelers to represent their conceptual knowledge
of system behavior in a user-friendly graphical (diagrammatic) environment.

In Garp3, knowledge is built using model ingredients and aggregates that can be built
using the basic ingredients.

2.4 Basic model ingredients

Entities, which can be arranged in a subtype hierarchy, are used to represent the physical
objects or abstract concepts the system itself is made of. The relevant properties that can
change under the influence of processes are represented as quantities.

Agents represent external entities or processes that may influence the system’s behavior.
The agent quantities influencing the rest of the system are called exogenous quantities.

To indicate that certain condition is presumed to be true, the modeler can use Assump-
tions. Their main use is to constrain the modeled system’s behavior.

Finally, Configurations represent the structural relations between instances of entities
and agents.

2.5 Aggregates

Scenarios are used to represent a specific system state the simulation should start from. They
allow the user to inspect system behavior in various real-world or experimental situations.

Model fragments represent individual parts of the user’s knowledge about the system.
When running a simulation for a given scenario, for each simulation state, the QR engine
searches the model fragment (MF) library in order to find the fragments that match the
conditions given in that state. The end result is a state graph, which can be expected using
multiple views.

2.6 A working example - Tree and shade

This section illustrates details relevant to Qualitative Reasoning modeling using a very sim-
ple model that has shown to be successful in teaching elementary QR courses in the past
(Bredeweg et al., 2006).
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Quantity Quantity space
Size {small, medium, large}
Shade {small, medium, large}
Growth rate {zero, plus}

Table 2.1: Tree and shade model quantities and relevant quantity spaces

The Tree and shade model is supposed to describe the relation between a growing tree
and the shade that’s being cast on the ground by the tree. In order to simplify the model
and focus only on the relevant aspects of the domain, we assume that a tree always grows,
and ignore the need for the basic necessities for the growth process, such as water, sunlight,
air and minerals. In this dynamic process, as the tree grows bigger, so does the shade. We
will go step by step in trying to explain the model essentials.

2.6.1 Entities, agents and assumptions

The entity hierarchy for the Tree and shade model contains only one type of entity: Tree
(Figure 2.1). There are no agents defined in this model. Moreover, in order to make the
model as simple a possible, no explicit assumptions are defined either.

Entity Tree*

Figure 2.1: Tree and shade model entity hierarchy

2.6.2 Quantities and quantity spaces

The only quantities we need to know about are the size of the tree and the shade, and the
rate at which the tree grows. In order to be able to visualize the growth of the tree and its
shade, a quantity space with three consecutive values is chosen for both quantities: {small,
medium, large}. As the tree either grows or doesn’t, the growth rate can take the values of
{zero, plus}. This is summarized in Table 2.1.

2.6.3 Model fragments

Our model has two model fragments, one static and one process. The static model fragment,
named Tree with shade, represents the indirect influence (propagation of change) of Size on
Shade for the Tree entity, as depicted in Figure 2.2. This means that changes in Size cause
similar changes in Shade. Moreover, the sizes of the tree and its shade have corresponding
magnitudes, meaning that these quantities always have the same magnitude value (e.g. a
big tree indicates a big shade).

The second model fragment, Growth of tree is a process showing the direct positive
influence of a stable Growth rate on the tree size (Figure 2.3). We model the assumption
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Tree
Tree

Size

Sml
Large
Medium
Small

Shade

Sml
Large
Medium
Small

*

*

Figure 2.2: Tree and shade model: Tree with shade model fragment

that the tree always grows, by assigning the value plus to Growth rate. Another way to do
this would be to explicitly define an assumption and include it as a condition in this model
fragment.

Tree
Tree

Growth rate

Zp
Plus
Zero

Size

*

Figure 2.3: Tree and shade model: Growth of tree model fragment

2.6.4 Scenarios

A small growing tree scenario has only one quantity defined, namely, Size, and indicates that
the initial value for the tree size is small (Figure 2.41). Simulating this scenario should show
a gradual growth of the tree and, as a consequence, its shade.

2.6.5 Simulation results

Finally, we take a look at the simulation results. Figure 2.5 shows the state graph, i.e. the
results of simulating “A tree with small shade” scenario. The simulation produces a single
path and 3 states.

The quantity value history depicting the quantity values in each of the states can be seen
in Figure 2.6. We can see that as the size of the tree increases from small to large, so does
its shade, as expected.

1The shaded Size icon means some quantity details are hidden. In this case, the derivative is not shown
for the sake of simplicity, as it is not s et.
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Tree
Tree
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Sml
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Figure 2.4: Tree and shade model: A small growing tree scenario

1
2

3

Figure 2.5: Tree and shade model simulation results

As both model fragments are applied in each of the states, we depict the dependencies
only for state 3 in Figure 2.7.
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Figure 2.6: Tree and shade model quantity value history
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Figure 2.7: Tree and shade model dependencies in state 3



Chapter 3

Qualitative Models of Global
Warming Amplifiers

The growing concern about global warming, as well as the impact it is expected it will have
on people and the ecosystems on which they depend, have caused the field experts across the
globe to turn to finding new methods for modeling, explaining and predicting the important
phenomena within the domain of environmental science (Haupt et al., 2008; Philander, 2008;
Lerner and Lerner, 2009). In this chapter we will show a number of successful applications
of QR modeling techniques, more specifically, via Garp3, the expert tool described in the
previous chapter, to the domain of global warming.

As mentioned earlier, in order to assess a student’s state of knowledge, the system must
understand the user’s perspective, i.e. how such knowledge is constructed and understood by
the learner. This chapter will give a deeper insight into the Conceptual Modeling component
of DynaLearn. The final result is to be contributed to the DynaLearn model repository.

3.1 Climate change

Climate is defined as the average weather of a region over time (Lerner and Lerner, 2009).
Some of the most important aspects of climate are temperature, winds, heat waves and
cold snaps, rainfall, when seasons begin and end, and similar weather patterns and events.
The global machinery of ocean currents, winds, forests, ice caps, mountain ranges, bacteria,
planetary orbital motions, and many other factors is what shapes the Earth’s weather.

Although the global climate has been changing since the creation of our planet, and
even though Earth has experienced sudden ice ages and heat waves, that have happened in
as little as a decade, the changes in the past half-century appear to be more drastic than
ever before. The important difference is that these changes appear to be coming mostly
from increased burning of fossil fuels for energy, industrial processes, and transportation,
i.e. human activities. In 2007, the IPCC (Intergovernmental Panel on Climate Change), a
large, international panel of experts on the Earth’s climate, concluded that human activities,
specifically those that cause an increase in the atmospheric concentration of carbon dioxide,
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have started affecting the Earth’s climate (Philander, 2008). Since 1906, the temperatures
have already risen 0.77◦ C, with much of this warming occurring in just the last 3 decades.
Moreover, the temperatures will likely rise at least another 1.1◦ C, and possibly more than
6.1◦ C, over the next 100 years (Lerner and Lerner, 2009; Staudt et al., 2009). This warming
is expected to cause significant changes in sea level, ecosystems, and ice cover, among other
impacts. The landscape and ecosystems are already changing rapidly in the Arctic, where
temperatures have increased almost twice as much as the global average.

3.2 Global warming amplifiers

Factors that can amplify or reduce the effect of the causes of climate change are known as
feedbacks. More specifically, those factors that amplify the effect of global warming are called
positive feedbacks, whereas the ones that reduce it are known as negative feedbacks. They
consist of interconnected processes in which a change in one feedback leads to a change in
another, which ultimately leads to further changes in the first factor. The idea for modeling
these factors came from a careful inspection of 28 models developed by the students at the
University of Amsterdam for a course in Qualitative Reasoning by Bert Bredeweg, as well as
a Marian Koshland Science Museum’s (Washington, USA) exhibition titled Global Warming
Facts and Our Future1. Four factors listed as the key feedbacks by the latter, will be the
focus of this section:

1. Snow and ice cover

2. Water vapor

3. Cooling and warming aerosols

4. Low and high clouds

In the following sections, we will see how each of these amplifiers affects the global climate,
and then see if we can abstract a general mechanism for each of the feedback types.

The models provide abstract explanations of the above outlined phenomena, and, as such,
are not intended for field experts. Instead, a possible end-user could be a student looking to
better understand the field of environmental science and the domain of global warming. It
is also worth noting that, in approaching the domains from the QR perspective, a modeling
framework proposed by Bredeweg et al. (2008) was followed.

3.2.1 Planetary radiation balance and greenhouse effect

The Earth’s radiative energy balance depends on the balance between the incoming (short-
wave) solar radiation and its absorption by the planet, and subsequent outgoing (longwave)

1An online version of the exhibit can be seen at www.koshland-science-museum.org (Last accessed: Jan-
uary 11, 2010)
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radiation from the Earth to outer space (Philander, 2008). The Earth emits the absorbed
radiation from the Sun back to outer space to maintain its heat energy balance. The green-
house gases, however, prevent the outgoing longwave radiation from leaving the atmosphere
by absorbing it, and then emitting it back toward the surface as shortwave radiation. This
“surplus” in the planet’s energy “budget” is what leads to global warming (Allaby, 2000).
This mechanism plays an important role in our positive feedback models.

3.2.2 Modeling choice: entity hierarchies

It is worth noting, that the entity hierarchies for all of our models contain a number of higher
levels that may appear redundant, as well as a naming style that may seem confusing at first.
This is because the entities are named after their corresponding concepts within Cyc2, the
world’s largest multi-contextual knowledge base and inference engine developed by Cycorp.
The entire Cyc ontology, whose domain is all of human consensus reality, contains hundreds
of thousands of terms, along with millions of assertions relating the terms to each other.

Cyc concepts are linked to both corresponding DBpedia3 entries and WordNet4 synsets.
Therefore, enforcing a strong correspondence (i.e. grounding) between the concepts in our
QR models and relevant Cyc terms, would pave the way for linking DynaLearn to the existing
and ongoing researches, and make it part of a much larger community. Furthermore, the
approach should also make model comparison and recommendation mechanisms easier to
implement later on and, hence, prove to be useful from a practical point of view as well.

3.3 Snow and ice cover

Freshly fallen snow reflects as much as 80 – 90% of the light falling on it, whereas grass can
reflect only 18 – 25 percent (Allaby, 2000). As Allaby (2000) states, “this is why you need
dark glasses when crossing snow: it may be almost as bright as the Sun itself.”

The reflection coefficient, or more usually albedo of a surface, is the proportion of light
reflected by that surface. It is usually expressed as a fraction or a percentage, as shown
above in our snow and grass examples. Albedo varies widely from one surface to another.
As reflected radiation does not warm the Earth’s surface, the surfaces with a high reflection
coefficient, such as the snow and ice cover, have an important climatic effect. To be more
precise, snow and ice have a cooling effect on the Earth. This also means that if the global
warming reduces the global snow and ice cover, the warming will be enhanced because more
solar energy will be absorbed. In relation to our previous discussion, we can also say that
the snow and ice cover of the Earth’s surface provide a negative feedback mechanism, one
that can be easily affected by human intervention.

2http://www.cyc.com
3http://www.dbpedia.org
4http://wordnet.princeton.edu
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3.3.1 Entities and agents

As outlined in section 3.2.2, the entity hierarchy shown in Figure 3.1 follows closely the Cyc
concept hierarchy for the entities describing our domain. The reader may focus only on the
“leaf” nodes, namely, Theearthsatmosphere, Thesun, Planetearth and Snow and ice cover.
Theearthsatmosphere represents two concepts here – that of the lower part of the atmosphere
and the Earth’s surface. The concept is left general enough to remain clear for all end user
levels. Thesun is the Earth’s Sun, and the source of incoming solar radiation, Planetearth is
our planet, and Snow and ice cover 5 is the portion of the planetary surface covered by snow
and ice.

Entity

Astronomicalbody

Planet Terrestrialplanet Planetearth

Star Sun Thesun

Atmosphere Theearthsatmosphere

Snow and ice cover

Figure 3.1: Snow and ice cover entity hierarchy

We also have a single agent (Figure 3.2), Person, which is the closest Cyc match for
human being.

Agent Intelligentagent Socialbeing Person

Figure 3.2: Snow and ice cover agent hierarchy

3.3.2 Assumptions

Our first global warming amplifier model, Snow and ice cover, contains no explicit assump-
tions.

3.3.3 Quantities and quantity spaces

The important quantities we need to take into consideration when discussing the domain
of snow and ice albedo are given in Table 3.1. We use Amount to denote the amount of
snow and ice covering the Earth’s surface, Temperature for the Earth’s temperature, and
Solar radiation to represent the incoming radiation from the Sun. To visualize the changes
within these quantities, we use a quantity space with three values ranging from low to high.
Effective radiation represents the total amount of radiation reaching the Earth’s surface, i.e.

5At the time of writing this thesis, Cyc was lacking an entry that would correspond to the planetary snow
and ice cover. Therefore, a generic name was used.
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Quantity Quantity space
Amount {low, medium, high}
Temperature {low, medium, high}
Solar radiation {low, medium, high}
Effective radiation {min, zero, plus}
Greenhouse gases {min, zero, plus}

Table 3.1: Snow and ice cover quantities and relevant quantity spaces

the portion of incoming shortwave radiation that doesn’t get reflected back to outer space.
A quantity space with a negative value (min) is used to be able to show opposite effects on
global temperature. Finally, we use a quantity named Greenhouse gases for the amount of
greenhouse gases emitted by the humans into the atmosphere. As with the effective radiation
quantity, we use the {min, zero, plus} quantity space, so we can simulate the two-way effect
on temperature (and, indirectly, snow and ice cover).

3.3.4 Model fragments

Our first global warming amplifier model contains one static, one process and one agent
model fragment. The static model fragment is named Snow and ice (Figure 3.3) and shows
only that the snow and ice cover amount is indirectly influenced by the Earth’s temperature.

Theearthsatmosphere
Theearthsatmosphere

Planetearth
Planetearth

Snow and ice cover
Snow and ice cover

Has Has

Temperature Amount

Figure 3.3: Snow and ice cover: Snow and ice model fragment

The process model fragment, Solar radiation reflectance defines the incoming shortwave
radiation reflectance by snow and ice mechanism.

3.3.4.1 Radiation balance

Although snow and ice work in the opposite way when compared to greenhouse gases, the
idea of the Earth’s radiative energy balance getting disturbed (as presented in Section 3.2.1)
is still present.

One could expect that the above idea implies we could model the planet as a partially
closed system affected merely by external factors providing incoming and outgoing radiation.
Such an approach would leave out the real idea of balance. That is, it is exactly the process
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Snow and ice

Theearthsatmosphere
Theearthsatmosphere

Planetearth
Planetearth

Snow and ice cover
Snow and ice cover
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Temperature Amount

Lmh
High
Medium
Low

Thesun
Thesun

Shines on

Solar radiation*

Lmh
High
Medium
Low

Effective radiation

Figure 3.4: Snow and ice cover: Solar radiation reflectance model fragment

of the surplus being created within the system by external factors that we would like to
model. This is a key point in all of the global warming amplifier domains.

We define the effective radiation magnitude as the difference between the solar radiation
and the amount of snow and ice covering the planet (Figure 3.4). As the terms’ quantity
spaces don’t contain zeros, in order to be able to calculate the difference, we connect the
two medium points using an equality relation. We also define a positive proportionality from
solar radiation and a negative one from snow and ice cover amount to effective radiation,
indicating that a potential increase in incoming radiation would result in an increase in
effective radiation, and an increase in snow and ice cover would set the effective radiation
derivative to decrease. Finally, the Earth’s temperature is directly and positively influenced
by effective radiation.

The single external (positive) influence on the global temperatures, provided by the
greenhouse gases is defined in the Humans agent model fragment and shown in Figure 3.5.

3.3.5 Scenarios

The snow and ice cover model contains 5 scenarios: two scenarios showing the opposite effects
of solar radiation, two for the same effects of greenhouse gases and one scenario showing the
balance between the snow and ice cover and the incoming solar radiation, if there are no
disturbances. Figure 3.6 depicts the Increasing greenhouse gases scenario, where the amount
of snow and solar radiation are set to medium, the Earth’s temperature to low (to clearly show
the expected increase in temperature) and the amount of greenhouse gases being emitted
into the atmosphere to zero. The solar radiation quantity here is set to be steady (it doesn’t
change throughout the simulation), but the greenhouse gases are set to increase. This way,
the change in the system will depend only on the human influence.
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Snow and ice

Theearthsatmosphere
The atmosphere

Planetearth
The earth

Has

Temperature

Person
Human

Lives on

Greenhouse gases

Figure 3.5: Snow and ice cover: Humans (agent) model fragment
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Figure 3.6: Snow and ice cover: Increasing greenhouse gases scenario

3.3.6 Simulation results

Simulating the Increasing greenhouse gases scenario results in a linear path state graph
containing five states (Figure 3.7).

1
2 3 4 5

Figure 3.7: Snow and ice cover: Increasing greenhouse gases state graph

The value history presented in Figure 3.8 shows that the magnitude of the planet’s
temperature increases with an increase in greenhouse gases. That is, as soon as the amount
of greenhouse gases enters the plus interval (state 2), the balance is disturbed. Moreover, as
the temperatures increase, they decrease the snow and ice cover, which further amplifies the
increase in temperature as the effective radiation increases, even though the solar radiation
is steady (states 2 to 5).

Finally, we give the dependency graph for state 3 of the Increasing greenhouse gases
scenario simulation in Figure 3.9. The graph shows the dependencies between the domain
quantities, as well as the magnitudes. We see that the increasing greenhouse gases have a
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Figure 3.8: Snow and ice cover: Increasing greenhouse gases scenario value history

positive influence on the temperature, which also starts increasing. The negative indirect
influence coming from the latter causes the snow and ice cover amount to decrease and enter
the low interval, thereby disturbing the radiation balance (Effective radiation = medium−
low = plus), which in turn adds an additional positive influence to the temperature and
amplifies the warming.

Plus
Zero
Min

Greenhouse gases

Human

= Solar radiation - Amount(Snow and ice cover)

Plus
Zero
Min

Effective radiation

High
Medium
Low

Solar radiation

Thesun

High
Medium
Low

Temperature

Theearthsatmosphere

High
Medium
Low

Amount

Snow and ice cover

Figure 3.9: Snow and ice cover: Increasing greenhouse gases scenario dependencies for state
3

To show the opposite effect, we once again use a scenario that provides effective radiation
disturbance via the same external agent, i.e. greenhouse gases, and, once again, the resulting
simulation state graph contains a single path and five states. The value history graph
(Figure 3.10) however, shows the expected opposite effect. That is, as the greenhouse gases
take the negative value (state 2 again), the temperature drops and causes the snow and ice
cover to increase, which, in turn, further cools the Earth (states 2 to 5).

3.4 Cooling aerosols

Aerosols are solid or liquid particles, small enough to remain suspended in the atmosphere
up to a number of days (Philander, 2008). Created by both natural and human-caused



25 Cooling aerosols

Human: Greenhouse gases

Min

Zero

Plus

1 2 3 4 5

 

    

Snow and ice cover: Amount

Low

Medium

High

1 2 3 4 5

  

   

The sun: Solar radiation

Low

Medium

High

1 2 3 4 5

     

The sun: Effective radiation

Min

Zero

Plus

1 2 3 4 5

  

   

The atmosphere: Temperature

Low

Medium

High

1 2 3 4 5

   

 

 

Figure 3.10: Snow and ice cover: Decreasing greenhouse gases scenario value history

factors, they can be both directly emitted from sources and formed in the atmosphere from
the condensation of gases. The effect of aerosols on global warming is twofold, depending
on their characteristics. For instance, sulfate (SO4) aerosol is light-colored and reflects solar
radiation back into space. The volcanic aerosols produced by the Mt. Tambora eruption of
1815 caused North America’s “year without a summer” in 1816 (Philander, 2008).

Although aerosols can affect the Earth’s climate both directly, by the scattering or ab-
sorption of radiation, and indirectly, through the modification of clouds and precipitation,
we will be taking into consideration only the former effect.

3.4.1 Entities and agents

As expected, the entity hierarchy is very similar to that of the first global warming amplifier
model (3.3). The only difference is in the bottom graph branch shown in Figure 3.116 where
the snow and ice cover entity has been replaced by Cooling aerosols, a child node of the Gas
entity.

Entity

Astronomicalbody

Planet Terrestrialplanet Planetearth

Star Sun Thesun

Atmosphere Theearthsatmosphere

Gas Cooling aerosols

Figure 3.11: Cooling aerosols entity hierarchy

As for the agent hierarchy, it remains the same as in Figure 3.2. A notable difference
here is that our agent, i.e. human being has a slightly different role in this model, as it

6As with the snow and ice cover model, a generic name was used for the cooling aerosols entity, as no
appropriate concept could be found within Cyc’s knowledge base.
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Quantity Quantity space
Amount {low, medium, high}
Temperature {low, medium, high}
Solar radiation {low, medium, high}
Effective radiation {min, zero, plus}
Human activity {min, zero, plus}

Table 3.2: Cooling aerosols quantities and relevant quantity spaces

is the chief factor controlling the aerosol amount in the atmosphere. As a mere reminder,
in our previous model, the snow and ice cover amount was being governed by the Earth’s
temperature.

3.4.2 Assumptions

The assumption hierarchy has no explicit assumptions defined.

3.4.3 Quantities and quantity spaces

The quantity/quantity space table remains almost the same as in Figure 3.1. The greenhouse
gases quantity has been replaced with “human activity” (Table 3.2).

3.4.4 Model fragments

Although in this model the same set of MFs was used as the one described in the Section 3.3.4,
the static model fragment this time has no direct or indirect influences defined, as the cooling
aerosols have no direct relations to temperature. Instead, they’re being controlled by the
humans, as shown in Figure 3.12, where there is a direct influence from human activity to the
amount of cooling aerosols in the atmosphere. The Solar radiation reflection MF matches
that of the snow and ice model, being different only with respect to the right hand side of
the effective radiation equation, where the Snow and ice cover entity has been replaced with
Cooling aerosol entity (Figure 3.13).

3.4.5 Scenarios

The four scenarios defined are the ones showing the possible opposite effects of the two main
factors on the system, i.e. solar radiation and the human activity. However, in the case of the
two solar radiation scenarios, we set the cooling aerosol quantity to steady, as its magnitude
and derivative depend only on external influences, but also in order to be able to see how
the temperature behaves when only solar radiation changes. The other scenarios differ with
respect to their snow and ice counterparts only in choice of external influences, as explained
earlier.
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Figure 3.12: Cooling aerosols: Humans (agent) model fragment

3.4.6 Simulation results

The simulation graph for the Increasing human activity scenario (Figure 3.14) has one extra
state compared to its predecessor. The reason for this can be seen in the value history given
in Figure 3.15.

We see that, in the first two states, the temperature is increasing. The reason for this is
the fact that the effective radiation is still in the positive interval. Once it hits zero (state 3)
the temperature stabilizes, and then finally starts decreasing. This effect is due to the fact
that in our second model, there is only one influence affecting the aerosol amount, whereas
in the snow and ice model, the temperature itself was a factor, influenced directly by two
quantities. This can be further inspected in the dependency view shown in Figure 3.16.
Human activity increases the amount of cooling aerosols in the atmosphere which has taken
the value medium. As the magnitude of Solar radiation is also set to medium, Effective
radiation equals zero, and the positive influence on Temperature has no effect. The effective
radiation is decreasing, though, due to the negative proportionality relationship coming from
the cooling aerosol amount, which is set to increase.

3.5 Water vapor

The Earth’s water present in the atmosphere in gaseous form, i.e. water vapor, is the most
abundant and most important greenhouse gas on the planet (Lerner and Lerner, 2009).
Although the humans are not significantly increasing its concentration, at least not directly,
it contributes to the enhanced greenhouse effect, because the warming influence of greenhouse
gases leads to a positive water vapor feedback. In other words, if the temperatures were to
increase by a modest amount due to the other greenhouse gases, then evaporation from
the oceans will increase, which will in turn increase the concentration of water vapor in
the atmosphere, thus creating an enhanced greenhouse effect that increases temperatures
further, and so on. The eventual runaway greenhouse effect is what is today believed to be
the main reason why Venus has no water (Philander, 2008). Being further from the Sun
than Venus, and sufficiently cool for the air to become saturated with water vapor (that is,
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Figure 3.13: Cooling aerosols: Solar radiation reflectance model fragment
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Figure 3.14: Cooling aerosols: Increasing human activity state graph

cool enough for clouds to form), the Earth was spared this fate.

3.5.1 Entities and agents

In comparison with the Cooling aerosols model, the leaf node of the bottom branch has
been replaced by the Water vapor entity. No modifications have been applied to the agent
hierarchy (Figure 3.2).

3.5.2 Assumptions

No explicit assumptions are defined in this model.

3.5.3 Quantities and quantity spaces

The new model comes with three new quantities. The Return radiation quantity represents
the amount of outgoing radiation that gets emitted back by water vapor, as explained in
section 3.2.1. OLR is the Outgoing Longwave Radiation and Total effective radiation is the
combined effect of incoming solar radiation and return radiation on the global temperature.
For all of the new quantities, we use the same quantity space {min, zero, plus}, so we can
easily control the temperature (i.e. see it flow in both ways).
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Figure 3.15: Cooling aerosols: Increasing human activity scenario value history
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Figure 3.16: Cooling aerosols: Increasing greenhouse gases scenario dependencies for state 3

3.5.4 Model fragments

When compared to the models seen in sections 3.3 and 3.4, the first positive feedback model
is based on a different mechanism, so its MF hierarchy is also different. We have one static
model fragment, two processes and one agent MF. The static fragment (Figure 3.17) defines
a one way relation, i.e. positive proportionality between the global temperature and water
vapor. It goes only one way, since the water vapor effect on temperature is indirect, as we
will see in the following process model fragments.

The Outgoing Longwave Radiation and OLR absorption model fragments define our plan-
etary radiative energy balance mechanism and the creation of the surplus. The parent
process, Outgoing Longwave Radiation (OLR) shows how the OLR cools off the Earth (Fig-
ure 3.18). The amount of outgoing radiation equals that of the incoming one, and an increase
in the incoming solar radiation results in an increase in the outgoing longwave radiation, due
to the indirect positive proportionality relationship between the two respective quantities.
The negative influence from OLR to Temperature decreases the global temperature.

The OLR absorption model fragment (Figure 3.19) shows the second half of the balance
mechanism, via the Total effective radiation quantity, which directly (positively) influences
the planetary temperatures. The total effective radiation equals the sum of the solar radiation



30 Water vapor

Quantity Quantity space
Amount {min, zero, plus}
Temperature {low, medium, high}
Solar radiation {min, zero, plus}
Effective radiation {min, zero, plus}
Total effective radiation {min, zero, plus}
Return radiation {min, zero, plus}
OLR {min, zero, plus}
Greenhouse gases {min, zero, plus}

Table 3.3: Water vapor quantities and relevant quantity spaces

Theearthsatmosphere
Theearthsatmosphere

Water vapor
Water vapor

Planetearth
Planetearth

Is in

Has

Temperature Amount

Figure 3.17: Water vapor: Water vapor model fragment

and return radiation emitted by water vapor. Therefore, if there is no water vapor in the
atmosphere (i.e. the water vapor’s Amount magnitude equals zero), the OLR compensates
for the incoming solar radiation, and the system is at balance. However, the higher the
amount of water vapor in the atmosphere, the greater the amount of return radiation, due
to the equality and positive proportionality relationships; the quantity space correspondence
relationship makes sure the magnitudes are always in the same interval. If the return or
solar radiation increase, so will the total effective radiation influencing the temperature (due
to the two positive proportionalities provided by their respective quantities and aimed at
Total effective radiation).

3.5.5 Scenarios

As the outgoing longwave radiation is always there to compensate for its incoming solar
counterpart, we don’t have two versions of the solar radiation scenario. We did leave the
Increasing solar radiation scenario in order to demonstrate the planetary radiation balance
mechanism. The Increasing greenhouse gases scenario is similar to the previously described
ones, and can be seen in Figure 3.20
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Figure 3.18: Water vapor: Outgoing Longwave Radiation model fragment

3.5.6 Simulation results

In the Increasing solar radiation scenario, the solar radiation quantity’s initial value is set to
zero and its behavior to increase. The behavior of other quantities in the resulting two-state
simulation graph (Figure 3.21) shows the Earth’s radiative energy balance mechanism at
work. We see only the solar radiation and the outgoing longwave radiation increasing. The
temperature remains stable, as expected.

The Increasing greenhouse gases scenario, on the other hand, produces a 5-state graph.
The rising amount of greenhouse gases in the air increases the temperature, which is the
cause of higher levels of water vapor present in the atmosphere. As soon as the water
vapor amount enters the positive interval (Figure 3.22, state 3), the return radiation from
this greenhouse gas ads to the total effective radiation, which provides the second direct
influence on the global temperatures (Figure 3.23), and increases it further.

3.6 Warming aerosols

Although it is nowadays believed that the cooling effect of the aerosols in the atmosphere is
dominant, the warming influence also leaves a significant mark on the global climate. Black
carbon particles or soot, the coproduct of fossil fuel and vegetation burning, absorb and
emit back the outgoing longwave radiation in the same way water vapor does (Staudt et al.,
2009). Therefore, many of the aspects of the corresponding model will be based on the water
vapor model. As a matter of fact, the main differences are in a way reminiscent of those
we saw earlier between the two negative feedback domains. To be more specific, as with ice
and snow albedo, the amount of water vapor both influences and strongly depends on the
temperatures, whereas none of the aerosols have this relation to the planet’s temperature.
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Figure 3.19: Water vapor: OLR absorption model fragment
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Figure 3.20: Water vapor: Increasing greenhouse gases scenario

3.6.1 Entities and agents

Compared to the cooling aerosol entity hierarchy (or any other entity hierarchy seen so far;
Figure 3.1), the only new entity is Warming aerosols, which replaces the cooling aerosol /
snow and ice cover / water vapor one in the bottom branch of the graph. The agent hierarchy
remains the same (Figure 3.2).

3.6.2 Assumptions

As in the case of the previous models, this model doesn’t contain any explicit assumptions.
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Figure 3.21: Water vapor: Increasing solar radiation scenario value history
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Figure 3.22: Water vapor: Increasing greenhouse gases scenario value history

3.6.3 Quantities and quantity spaces

As mentioned above, the warming aerosol amount quantity has no relation to the temper-
ature. Therefore, we replace the greenhouse gases in the water vapor quantity space table
(3.3) with Human activity (Table 3.4), a quantity that will correspond to various human
activities directly leading to increases and decreases in aerosol amount in the atmosphere.

3.6.4 Model fragments

The positive feedback mechanism shown in Figure 3.19 remains the same. The only notable
difference is the right hand side of the total effective radiation equation within the OLR
absorption model fragment, where the water vapor entity has been replaced by warming
aerosols (Figure 3.24).

Quantity Quantity space
Human activity {min, zero, plus}

Table 3.4: Warming aerosols: Human activity quantity and relevant quantity space
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Figure 3.23: Water vapor: Increasing greenhouse gases scenario dependencies for state 3

As described above, the external influence, i.e. the Human agent, provides a positive
direct influence on the amount of aerosols, as depicted in Figure 3.25. Moreover, this is the
only influence governing the aerosol amount in the atmosphere.

3.6.5 Scenarios

We keep the same number of scenarios and the basic ideas we’ve seen in the first positive
feedback example (Section 3.5), only this time the external influence is different (we use
human activity instead of greenhouse gases).

3.6.6 Simulation results

The increasing exogenous behavior set for the human agent activity in the Increasing human
activity scenario, produces a similar behavior as seen in the previous positive feedback model
(Section 3.5.6). However, as with the cooling aerosols (Figure 3.16), we have only one positive
influence affecting the amount of our greenhouse gas in the atmosphere, which results in a
slightly slower temperature increase (Figure 3.26, states 2 and 3).

The dependency graph (Figure 3.27) shows the above mentioned influence relationships
for state 3 of the Increasing human activity scenario. The warming aerosol Amount is in the
positive interval, whereas Solar radiation has the value zero, hence, making Total effective
radiation also positive. As the negative influence on Temperature has no effect due to the
OLR also being zero, the positive one makes the global temperatures increase.
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Figure 3.24: Warming aerosols: OLR absorption model fragment
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Figure 3.25: Warming aerosols: Human influence agent model fragment

3.7 Low and high clouds

Identified by the United Nations IPCC as one of the most uncertain processes in climate
models (Philander, 2008), cloud feedback represents a complex domain that, unlike the
factors we’ve seen so far, affects the global climate in more than one way.

High clouds are optically thin and cold, and reflect a relatively small amount of incoming
solar radiation, but capture and emit the outgoing longwave radiation in the same way the
two positive feedback factors we’ve seen so far. Therefore, their net effect on the planet is
warming.

Low clouds, on the other hand, being thicker and warmer, work in the opposite way, i.e.
they reflect the incoming shortwave radiation back into the outer space, therefore cooling the
planet. An important fact to note is that, as the temperatures rise, so do the water particles
in the air. Therefore, higher temperatures would lead to more clouds in the upper layers of
the atmosphere, which would in turn lead to even further increases in the temperatures, and
so on.
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Figure 3.26: Warming aerosols: Increasing human activity value history
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Figure 3.27: Warming aerosols: Increasing human activity scenario dependencies for state 3

Hence, the nature of the domain gives us a unique opportunity to see both of the above
presented (competing) mechanisms at work in a single, larger model.

3.7.1 Entities and agents

The entity hierarchy shown in Figure 3.28 has a similar structure as the hierarchies of the
models seen so far. The new branch is the one having CloudInSky, denoting the cloud entity
we will use for both of our cloud types, as the leaf node.

Entity

Airborne Cloudinsky

Astronomicalbody

Planet Terrestrialplanet Planetearth

Star Sun Thesun

Atmosphere Theearthsatmosphere

Figure 3.28: Cloud cover entity hierarchy

The agent hierarchy remains unchanged, which means our external influences will be
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Quantity Quantity space
Amount {low, medium, high}
Temperature {low, medium, high}
Solar radiation {low, medium, high}
Effective radiation {min, zero, plus}
Greenhouse gases {min, zero, plus}
OLR {min, zero, plus}
Return radiation {low, medium, high}
Total effective radiation {min, zero, plus}

Table 3.5: Cloud cover quantities and relevant quantity spaces

provided by human beings (Figure 3.2).

3.7.2 Assumptions

This time the assumption hierarchy is not empty - it contains three assumptions used to
deal with discrepancies between the incoming solar radiation, and low cloud cover amount
change rates. The hierarchy given in Figure 5.3 shows Sr derivative eq lcc derivative, Sr
derivative gt lcc derivative and Sr derivative lt lcc derivative, where sr and lcc stand for
“solar radiation” and “low cloud cover”, and eq, gt and lt for “equals”, “greater than”
and “less than”, respectively. Each of the assumptions will be assigned to a “child” model
fragment (meaning it inherits all of the structural details from its “parent”) of the Solar
radiation reflectance MF.

Assumption

Sr derivative eq lcc derivative*

Sr derivative gt lcc derivative*

Sr derivative lt lcc derivative*

Figure 3.29: Cloud cover assumption hierarchy

3.7.3 Quantities and quantity spaces

The most important difference that needs to be pointed out with respect to the quantities
and quantity spaces in this model, in order to avoid confusion, is the fact that Effective
radiation replaces Solar radiation in the positive feedback mechanism, i.e. OLR absorption
model fragment, as will be shown below. The Amount quantity is used to represent the
saturation of the sky by both cloud covers. The remaining quantities and quantity spaces
are as described earlier.
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3.7.4 Model fragments

The model fragment hierarchy is given in Figure 3.30. The hierarchy also shows the three
special cases, i.e. subtypes of the Solar radiation reflectance model fragment, each carrying
an assumption described earlier.

Static Clouds

Process

Outgoing longwave radiation (olr) Olr absorption

Solar radiation reflectance

Solar radiation reflectance srd eq lccd

Solar radiation reflectance srd gt lccd

Solar radiation reflectance srd lt lccd

Agent Humans

Figure 3.30: Cloud cover model fragments

The single static model fragment, named Clouds (Figure 3.31) depicts the idea of the
planetary temperature affecting the altitude of water particles in the global cloud cover.
That is, as the temperatures rise, the amount of the low cloud cover decreases, as the water
particles move to higher altitudes and accumulate in the high clouds, and vice versa.

Theearthsatmosphere
The atmosphere

Cloudinsky
High cloud cover

Cloudinsky
Low cloud cover

Planetearth
The earth

Is in upper

Is in lower

Has

Temperature Amount Amount

Figure 3.31: Cloud cover: Clouds model fragment

As discussed in Section 3.2.1, the OLR mechanism sends back to the outer space the
incoming solar radiation that reaches the surface, i.e. doesn’t get reflected by the negative
feedback factors. In the two positive feedback models we’ve seen, we weren’t taking into
consideration any such factors, and the incoming solar radiation quantity was called simply
Solar radiation. As the incoming radiation is no longer “pure”, i.e. it is filtered by the low
clouds before reaching the surface, the Solar radiation quantity in the OLR absorption is
now represented by the Effective radiation quantity. The rest of the mechanism is clearly
inherited from the two positive feedback models seen earlier (Figure 3.32).
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Figure 3.32: Cloud cover: OLR absorption model fragment

Finally, we give an example of the above mentioned mechanism for dealing with derivative
change rates in Figure 3.33, where the Solar radiation derivative equals the Return radiation
derivative.

3.7.5 Scenarios

The ideas for initiating the causal chain remain the same as seen earlier. Namely, the scenario
ideas revolve around the changes in solar radiation and greenhouse gases, only this time, in
order to reduce the number of states, and be able to interpret the results more easily, for
the first time, we introduce assumptions in our scenarios. For instance, the Decreasing solar
radiation srd eq lccd scenario, is shown in Figure 3.34.

3.7.6 Simulation results

In order to illustrate the importance of the assumption idea, we first simulate a decreasing
solar radiation scenario without assumtions. Figure 3.35 shows that the discrepancies be-
tween the low cloud cover and solar radiation change rates result in the simulation engine
producing a total of 17 initial states (the full simulation state graph contains 176 states).

We then test the scenario we saw in the above section, i.e. Decreasing solar radiation srd
eq lccd. Figure 3.36 proves our point, as the simulation graph is now constrained to only 3
initial states, that is, 18 states, overall.

Although we still have a single terminal state, we now have multiple paths leading to it.
The reason for this is depicted in Figure 3.37. It appears that the only difference between
the three states lies in the magnitude discrepancies of the Total effective radiation quantity.

A more detailed look at one of the states (1) reveals how the value of Total effective
radiation is determined (Figure 3.38). We see that the quantity’s magnitude is calculated
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Figure 3.33: Cloud cover: Solar radiation reflectance srd eq lccd

as the sum of Effective radiation and Return radiation. However, due to the fact that the
quantity space of the latter doesn’t have point zero defined, or any other relevant inequality
information, the reasoner is unable to determine how low interval Low actually is, and instead
creates a path for each of the possible cases.

Finally, we take a closer look at one of the paths ([1, 5, 10, 20, 23, 18]), or, more
specifically, its value history in Figure 3.39. The results are surprising. Instead of seeing
the atmosphere cool itself off due to a decrease in incoming solar radiation, the warming
effect prevails and the temperatures go up. Looking back at the dependency graph discussed
above, we see that, when compared to the positive feedback mechanisms seen earlier, the
essential bits haven’t changed. However, one clear difference is the choice of quantity spaces.
While we know that min is less than zero, a value in the low interval could be anywhere in
the {min, zero, plus} quantity space. This seems to be why the amount of high clouds ends
up increasing, eventually amplifying the warming effect and overpowering the negative one.
A more appropriate choice of quantity spaces should solve this problem.

3.8 Evaluation by experts

Once completed, the models were submitted to domain experts for evaluation. Addition-
ally, the experts were given a summary of the current chapter and an introduction text for
clarification.

The experts were asked to answer a number of questions in writing, and add any com-
ments they might have. They also provided the author with additional feedback during a
live interview. The summary of their evaluation is given below. Questions 1-5 are model
specific, whereas the remaining questions are more general.
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Figure 3.35: Clouds cover: Decreasing solar radiation scenario; initial simulation states

It is worth noting that, at the time of reviewing the models, the cloud model couldn’t be
assessed thoroughly due to a bug in the modeling environment which was causing unexpected
behavior to occur during simulations.

3.8.1 Evaluation by expert 1

1. How faithfully do you think the models represent the actual domain?

The expert thinks the author has made a relatively simple representation of the domain
that is, in general, in accordance with what is believed the mechanisms are. He did have
comments on the way some of the ideas were modeled (to be explained below), but the kernel
of the knowledge represented was found appropriate.

2. What about the choice of quantities and quantity spaces? Are the quantity spaces detailed
enough to show the behavior of the system (for learners/experts)?

The expert believes the quantities and quantity spaces used in the negative feedback
models are appropriate. Moreover, he found the quantities used in the negative feedback
examples also a good choice. However, he had comments regarding the negative values in
the negative feedback examples, which he believes are inadequate. For example, the amount
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Figure 3.36: Clouds cover: Decreasing solar radiation srd eq lccd state graph
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Figure 3.37: Clouds cover: Decreasing solar radiation srd eq lccd inital state value differences

of water vapor, aerosols and clouds could never be negative.

3. Does the behavior shown in all of the scenario simulations represent the behavior of the
actual system?

If we do not consider the point about the negative values mentioned above, the simulation
behavior appears to be representing the actual system faithfully. The cloud model could not
be assessed though, due to the Garp3 bug mentioned earlier.

4. Do you think the model would be suitable for educational purposes, i.e. DynaLearn?

The experts believes the models would be suitable for use in education, as the causal
models are mostly interesting and understandable, but once again, points out the quantity
space issue mentioned above.

5. Do you think the model could be used outside the DynaLearn project for other purposes?

The answer is yes - in science education of stakeholders, for example. The models,
probably, couldn’t be widely used by scientists or experts in climate science. However, even
for this audience the models can be sort of a starting point in their reasoning.

General questions:
6. Do you think an abstracted positive feedback mechanism could be used to match against
other positive feedback factors in nature?
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Figure 3.39: Cloud cover: Decreasing solar radiation srd eq lccd scenario value history

The expert agrees that the mechanism could find its use in other environmental science
domains. However, due to time constraints, he couldn’t provide the author with specific
examples.

7. Do you think an abstracted negative feedback mechanism could be used to match against
other negative feedback factors in nature?

Same as for 6.

8. Do you have any additional comments?

First of all, the expert agrees that the task at hand was not an easy one, as the domain
in question is quite challenging. Apart from the negative value comment seen above, he
suggests additional improvements to be considered. First, he points out that a more specific
name for the planetary atmosphere entity could be troposphere, but also notes that the
name would depend on the end user level, and that leaving it as it is for the beginner
learner levels would probably be more appropriate. Additionally, he emphasizes that, as a
clear feedback mechanism is not evident in the aerosol models, these factors should probably
carry a different name. Finally, he suggest an alternative approach to depicting the outgoing
longwave radiation absorption mechanism could be considered.
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3.8.2 Evaluation by expert 2

1. How faithfully do you think the model represents the actual domain?

The expert’s personal attitude toward modeling is different than that of the previous
researcher in the sense that he prefers having domain details defined as explicitly as possible.
Therefore, he found some of the solutions positive and some negative. For instance, he
believes that simply saying that the greenhouse gases directly increase temperature is wrong.
Also, subtracting radiation with snow is also inadequate, in his opinion. A possible solution
for the greenhouse gases issue, would be to call the agent greenhouse effect, he suggests.
Finally, he couldn’t make any comments about the cloud model, since it is not his area of
expertise.

2. What about the choice of quantities and quantity spaces? Are the quantity spaces detailed
enough to show the behavior of the system (for learners/experts)?

The expert’s comments regarding the quantities and quantity spaces were very similar
to those made by the previous expert. He found the ones used in the negative feedback
models appropriate, but had doubts regarding the negative values in the negative feedback
examples. The negative value used for the Total effective radiation quantity, though, was
found suitable, as having more radiation reaching than leaving the planet is conceptually
possible.

3. Does the behavior shown in all of the scenario simulations represent the behavior of the
actual system?

The expert didn’t have any specific remarks regarding the simulations, so the author
assumes the behavior matches that of the actual domain.

4. Do you think the model would be suitable for educational purposes, i.e. DynaLearn?

The expert is not familiar with the DynaLearn project. However, he’s been working on
his own set of global warming models for educational purposes, and believes that the author’s
models are more detailed and could be used for the same purpose (with minor changes).

5. Do you think the model could be used outside the DynaLearn project for other purposes?

No comments were made regarding the matter.

General questions:
6. Do you think an abstracted positive feedback mechanism could be used to match against
other positive feedback factors in nature?

The expert agrees that the mechanism could find its use in other environmental science
domains. However, due to time constraints, he couldn’t provide the author with specific
examples.

7. Do you think an abstracted negative feedback mechanism could be used to match against
other negative feedback factors in nature?

Same as for 6.
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8. Do you have any additional comments?

As his colleague above, this expert also believes that, in order for a mechanism to be
called a “feedback”, there should be a causal loop involved, which is not really present in the
aerosol domain. Also, just like the previous expert, he believes that alternative names for the
entity currently representing the Earth’s atmosphere would depend on the end users (e.g.
simply the air or the environment for absolute beginners; biosphere for advanced users).
Finally, the expert notes that explicit representations of domains are simply his personal
preference, and that there is often a trade off between having working models and models
that closely resemble the actual domains.

3.9 Conclusion

According to the expert reviews, it appears the main goal of creating a set of simple models
that would faithfully represent the domain of global warming amplifiers has been accom-
plished. Moreover, the secondary goal of creating a set of reusable mechanisms has also been
achieved.

Most of the main deficiencies of the models have also been pointed out by the experts,
as seen above. The most important issue so far appears to be the choice of quantity spaces,
from the conceptual point of view, but also from the practical one, as seen in the case of the
low and high cloud cover model. Greenhouse effect is probably a more suitable name for the
external agent, than greenhouse gases, and the Marian Koshland Science Museum’s feedback
factors should probably carry a different name, too.

It appears that most of the other evaluators’ comments revolve around personal prefer-
ences regarding the level of explicitness, or the way a mechanism is depicted. In summary,
both the compliments and the criticism have been embraced, and will certainly help the
models find their place in the DynaLearn project.



Chapter 4

Bayesian Network based Learner
Modeling

Modeling students’ knowledge is a fundamental part of intelligent tutoring systems (ITS’s)
and interactive learning environments, and, therefore, an important issue for the DynaLearn
project, as well. Appropriate amounts of practice on each skill promote complete and efficient
learning (Cen et al., 2007). However, many key aspects of DynaLearn, such as deciding which
problems to focus on while tutoring, are reliant upon accurate estimations of the student’s
knowledge state at any point in time. As one may expect, one of the hardest obstacles to
be overcome while designing such a system is the inherent lack of certainty as to how much
the student really understands.

As we already know, one of the key concepts in the field of Artificial Intelligence is that
of uncertainty. A popular framework that deals with quantification and manipulation of
uncertainty is probability theory, which gave rise to powerful graphical models for reasoning
with uncertain knowledge, called Bayesian networks (BNs), which we will be looking at in
this chapter, on our way to building a state of the art learner modeling tool.

Bayesian networks have been applied successfully to build student models in several
systems in the past, and here we briefly review some of them:

• HYDRIVE (Mislevy and Gitomer, 1995) is a system that models a student’s compe-
tence at troubleshooting an aircraft hydraulics system. Student’s knowledge is charac-
terized in terms of general constructs (dimensional variables), and a belief network is
used to update these constructs, using students’ actions as evidence.

• Andes (Conati et al., 1997) is an ITS that teaches Newtonian Physics via coached
problem solving. This system uses Bayesian networks to do long-term knowledge as-
sessment, plan recognition, and prediction of student’s action during problem solving.

• In (Collins et al., 1996), belief networks are applied together with granularity hierar-
chies. The students’ mastery of the learning objectives is determined by using test
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items as evidence. Three different structures for the network are compared in terms of
the knowledge engineering effort required, test length and test coverage.

• Millán et al. (2000) provide an interesting approach to student modeling by merging
the theories behind adaptive testing and Bayesian networks. Although our approach
doesn’t follow this work, it does share some ideas with it, especially those related to
the network structure design and knowledge aggregation, as we will see later on.

4.1 Probability theory

A simple way to start is to define the probability of an event to be the fraction of times that
event occurs out of the total number of trials (Bishop, 2009).

Imagine a simple setup: two boxes, one red, and one blue, each containing apples and
oranges. Now, imagine that the red box contains 6 oranges and 2 apples, whereas in the
blue one we have 1 orange and 3 apples (Figure 4.1). Finally, suppose that while randomly
picking fruit from the boxes, out of 10 trials, we choose the red box 4 times (40%) and the
blue one the rest of the times (60%) (we put the fruit back in its box after each trial). Now,
to formalize this, we will replace the identities of the boxes and fruits by random variables,
B and F, respectively. B can take one of two possible values: r (i.e. red box) or b (i.e. blue
box). F, on the other hand, can take either o (corresponding to oranges) or a (corresponding
to apples).

Figure 4.1: Two colored boxes, each containing apples (green) and oranges (orange) (Bishop,
2009)

4.1.1 Conditional and unconditional probability

As we have already mentioned, the probability of picking the red box is 40% or 4/10. For-
mally, we write this as p(B = r) = 4/10. Similarly, for the blue box, we write p(B =
b) = 6/101. As this probability is supplied to us beforehand and without any additional
information, it is known as the prior or unconditional probability.

1Although this notation helps avoid ambiguity, as our example is rather simple, it is safe to write p(B = b)
as p(b), and rewrite the notation of the other variables in a similar fashion. One can also use p(B) to denote
a distribution over the random variable B.
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Suppose that we pick the red box by chance. Then, the probability of picking an orange is
simply the fraction of the oranges in the red box, i.e. 6/8, or 3/4. This is called the posterior
or conditional probability and, using the example we’ve just mentioned, we formalize it as
p(o|r) = 3/4 (verbalized as “the probability of orange given red box”).

4.1.2 Sum rule and product rule

In order to answer questions such as “given that we have chosen an apple, what is the
probability that the box we picked it from was a red one?”, we first need to understand the
two elementary rules of probability, known as the sum rule and the product rule.

The sum rule says that if A andB are events, the probability of obtaining either of them
is:

p(A ∨B) = p(A) + p(B)− p(A ∧B) (4.1)

If the events A and B are mutually exclusive(that is, if they cannot occur simultaneously),
then p(A ∧ B) will be impossible, i.e. equal 0. Thus, the sum rule becomes:

p(A ∨B) = p(A) + p(B) (4.2)

The product rule also deals with two events, but in these problems the events occur as
a result of more than one task. This can be used to explain the only part that has perhaps
remained unclear in the first of the two formulae is the so-called joint probability, i.e. p(A∧B)
(also, p(A,B)). If the two events are conditionally independent, e.g. rolling two dice, the
joint probability is obtained simply by multiplying the probabilities of each event:

p(A ∧B) = p(A)p(B) (4.3)

However, if the events are not independent, as in our original example above, where the
second trial (i.e. picking a fruit) depends on the first one (i.e. choosing a box) then we need
to take the conditional probabilities of the events into account:

p(A ∧B) = p(B|A)p(A) (4.4)

4.1.3 Bayes rule

From the product rule, together with the symmetry property p(A,B) = p(B,A) we imme-
diately obtain that:

p(B|A)p(A) = p(A|B)p(B) (4.5)

This relationship can then be rewritten in the following manner:

p(A|B) =
(B|A)p(A)

p(B)
(4.6)

which is what we know as the Bayes rule, which today plays a central role in handling
many problems in AI that are governed by uncertainty.
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4.2 Bayesian networks

Many of the probabilistic inference and learning manipulations in the field of AI, no matter
how complex, are based on repeated application of the above explained equations. Probabilis-
tic graphical models, diagrammatic representations of probability distributions, are useful in
analyzing and solving complicated probabilistic models. These graphical models consist of
nodes connected by edges, where each node represents a random variable, whereas each edge
denotes a probabilistic relationship between the variables it connects. Bayesian networks
(BNs), also known as belief networks, are a popular class of graphical models, represented in
terms of a directed graph, i.e. its links (edges) have a particular directionality indicated by
arrows.

Consider an arbitrary joint distribution p(a, b, c) over three variables a, b, and c. By
applying the product rule of probability we can rewrite the above distribution in the following
form:

p(a, b, c) = p(c|a, b)p(a, b). (4.7)

It immediately follows that

p(a, b, c) = p(c|a, b)p(b|a)p(a). (4.8)

In order to represent the right hand side of the above equation in terms of a graphical model,
we first introduce a node for each of the variables a, b, and c. Then, for each conditional
distribution, we add an arrow from the nodes corresponding to the variables on which the
distribution is conditioned. In our example, for p(c|a, b), we will add arrows from a and b to
node c, and for p(b|a), a link from b to a, as shown in Figure 4.2.

Figure 4.2: A directed graphical model representing Equation 4.8 (Bishop, 2009)

The link directionality tells us how to “read” the graph: if there is an arrow going from
node a to node b, then a is the parent of b, and we say that b is the child of a.

We can now state the relationship between a given graph and the corresponding distri-
bution over the nodes/variables in general terms. For a graph with n nodes, the probability
of an event is given by the product of the probability of each node (xi) given its parents, as
shown in 4.9. This equation expresses the factorization properties of the joint distribution
for a directed graphical model.
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p(x1, ...., xn) =
n∏

i=1

= p(xi|Parents(xi)) (4.9)

An important restriction that applies to such directed graphs is that they must be kept
acyclic. In other words, there must be no closed paths within the graph that would allow us
to start at one node, follow a path and come back to the point of origin. Therefore, Bayesian
networks are essentially directed acyclic graphs (DAGs).

Now, assume the following setup: two events could be the cause of wet grass (W ) in your
garden - either the water sprinker (S ) is on or it is raining (R). Moreover, if the weather is
cloudy (C ), you know it is less likely that the sprinkler is on and more likely that it’s raining.
These relationships, along with their corresponding probabilities are given in Figure 4.3.

Figure 4.3: A sample Bayesian network (Bishop, 2009)

Since the Cloudy node has no parents, its probability table specifies the prior probability
that it is cloudy (50%). Moreover, we see that if both events are True, the probability of
W = T is 99%, and with only one event active, it is still very likely that the grass is wet
(90%).

A node is independent of its ancestors given its parents, where the ancestor/parent rela-
tionship is with respect to some fixed topological ordering of the nodes. This relationship is
also known as conditional independence.

Using Equation 4.9, we can state the joint probability of all the nodes in the graph as:

p(C, S, R, W ) = p(C)p(S|C)p(R|C, S)p(W |C, S, R) (4.10)

The conditional independence relationships allow us to rewrite the above equation as:
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p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S, R) (4.11)

Now, assume that in our water sprinkler network we observe the fact that the grass is
wet (W = T ), but we don’t know the cause. We can use the Bayes rule to find the “culprit”.
Suppose we want to find out whether the sprinkler was on:

p(S = T |W = T ) =
p(S = T, W = T )

p(W = T )
=

∑
C,R p(C, R, S = T, W = T )

p(W = T )
= 0.430 (4.12)

Therefore, the probability of the sprinkler being the cause of wet grass is 43%. The
application of the same rule to the Rain node, tells us that Rain is the more likely reason,
as p(R = T |W = T ) = 0.708, or approximately 71%.

4.2.1 Dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) differ to the “static” approach in respect to the di-
mension of time as an additional ingredient (the term “dynamic” means we are modeling a
dynamic system, and not that the graph structure changes over time; Murphy (2002)). The
structure can be partitioned into slices corresponding to different points in time. Being able
to represent time series or sequences of symbols, DBNs are often used in speech recognition,
for modeling protein sequences etc. The Hidden Markov Model(HMM) (Figure 4.4) is one
of the simplest dynamic Bayesian network examples.

Figure 4.4: A simple DBN (HMM) unrolled for 4 time slices (Murphy, 2002)

The joint distribution for a sequence of length T can be obtained by “unrolling” the
network to obtain T slices, and then multiplying together all of the conditional probabil-
ity distributions (CPDs). For example, the joint distribution for the network depicted in
Figure 4.4 can be obtained by:

P (Q1:T ; Y1:T ) = P (Q1)P (Y1|Q1)
T∏

t=2

P (Qt|Qt−1)P (Yt|Qt) (4.13)
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4.3 Bayesian networks and learner models

In recent years, Corbett and Anderson’s Bayesian Knowledge tracing model (1995) has been
widely popular among the researchers applying Artifical Intelligence methods to education.
It is worth noting that, although this approach uses Bayesian inference for tracking the stu-
dents’ knowledge, it doesn’t explicitly discuss the use of Bayesian networks per se. However,
it lays down a strong foundation for future research that does so. The description of the
theory underlying the design of a Bayesian network based learner model is given by Reye
(2004). Beck and Chang (2007) evaluate this method and point out the first signs of weak-
ness, while Baker, Corbett and Aleven (2008) suggest further improvements, and explore the
topic of estimating the guess and slip probabilities of a student’s answer. Although we might
refer to other researches in the upcoming sections, in general, this will be the path we will
follow while explaining the essentials of our approach, building on the work of Brielmann
(2009).

4.3.1 Knowledge tracing

As mentioned above, Knowledge tracing was an early approach to student modeling that
exploited the power of Bayesian inference, initially used by Corbett and Anderson in their
ACT Programming Tutor (APT; 1995), but was also proven to be useful for designing tutors
for mathematics (Koedinger, 2002), and improving reading skills (Beck and Chang, 2007),
and is statistically equivalent to Reye’s two-node dynamic Bayesian network used in many
other learning environments (Reye, 2004).

The APT was used in high school and university introductory level programming courses
to help students learn how to write short programs in Lisp, Prolog or Pascal. The student
would be presented with a short piece of text, followed by a number of exercises being given
to the student until the system believes the learner has mastered all the skills introduced in
the section. The students wouldn’t write the code completely on their own, though. Instead,
they would get to choose pieces of code from a list of templates, and then fill in the identifiers
and constants.

The system relied on the ideal student model – a set of several hundred language specific
rules for writing programs that form a “complete, executable model of procedural knowledge
of the domain”. Every step in the editor made by the student would be compared to this ideal
student model, and immediate feedback would be given. If the student’s action matched an
applicable rule in the ideal model, the internal representation and the editor window would
be updated. If not, the student would be provided with a hint, so they would always remain
on a “recognizable solution path”. A skill meter served as an indicator of the student’s
knowledge state, i.e. the probability that the student has acquired the skills necessary to
master a section.

In order to support mastery learning, knowledge tracing was introduced. Corbett and
Anderson proposed a two-state model: each rule is either learned or unlearned (i.e. known
or unknown). The model doesn’t implement the idea of forgetting, but it does take the
possibility of guesses and slips into consideration. Their knowledge tracing approach uses
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four initial parameters:

1. G – the guess parameter, i.e. the probability of the student’s correct answer being a
“lucky guess” (when they don’t know the actual correct answer);

2. S – the slip parameter, i.e. the probability of the student accidentally giving an
incorrect answer (when they actually know the correct one);

3. L0 – the probability of knowing a skill at the beginning of a tutoring session;

4. T – the probability of learning an “unknown” skill, at any given point during a tutoring
session.

Therefore, the probability of knowing a certain language specific rule after an action n
is calculated using that action as evidence for the posterior probability (Equation 4.14). In
the APT, the student is given exercises until their mastery level reached the probability of
95%.

p(Ln|evidence) = p(Ln−1|evidence) + ((1− p(Ln−1|evidence))p(T )) (4.14)

4.3.2 Student modeling based on belief networks

Reye (2004) suggests that, although it is possible to design a system in which the student
model is merely a collection of isolated, independent beliefs, such a model wouldn’t suit
many domains. He takes the SQL database language as an example, where it is extremely
unlikely that a student would be familiar with the “having” clause while being unfamiliar
with the “group by” clause.

Hence, he emphasizes that no other tool would be more appropriate to model relationships
between beliefs, than belief networks, as their name implies. Reye puts special emphasis on
prerequisite relationships, as pointed out by Collins and Stevens (1982):

“Rather we assume only a partial ordering on the elements in the teacher’s
theory of the domain. ... The teacher’s assumption is that students learn the
elements in approximately this same order. Therefore, it is possible to gauge
what the student will know or not know based on a few correct and incorrect
responses. These responses are used to determine a criterion point in the partial
ordering; above this point, the student is likely to know any element and below
it, the student is unlikely to know any element.”

According to Reye, in order to model such a partial ordering, where knowledge of topic
A is a prerequisite for knowledge of topic B, there are two aspects we need to take into
consideration:
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1. The lack of a student’s knowledge of A implies lack of knowledge of B. This obvious
constraint is simply expressed in terms of predicate logic as:

¬student-knows(A) ⇒ ¬student-knows(B)

which is logically equivalent to:

student-knows(B) ⇒ student-knows(A)

2. The evidence of a student’s knowledge of A can be taken as evidence for revising our
belief that the student also has knowledge of B. For example, in SQL, knowing the
“group by” clause is a prerequisite for knowing the “having” clause, and if we encounter
a student who already understands the “group by” clause, then it is more likely that
they understand the “having” clause. In other words, evidence for knowledge of A
increases our belief that the student also has knowledge of B. However, sometimes there
is a weaker relationship between A and B, and we may wish to make no such assertions.
For instance, in SQL, the “select” statement is a prerequisite for the “view” statement,
but understanding the former doesn’t carry much evidence for understanding the latter
(for students in the process of learning SQL).

Figure 4.5: A simple BN showing a prerequisite relationship (Reye, 2004)

A graph corresponding to simple two node Bayesian network depicting a prerequisite
relationship between two topics is shown in Figure 4.5. Reye further explains how these
relationships can be modeled using conditional dependencies, depending on how closely the
topics in question are related:

• Knowing A is a prerequisite for knowing B:

p(student-knows(A)|student-knows(B)) = 1

• If there is a close relationship between the concepts (if a student understands A, then
it is more likely they understand B):

p(student-knows(B)|student-knows(A)) = 0.95

• If there is a weak relationship between the concepts, i.e. the knowledge of A does not
affect the knowledge of B, and the prior probability of B is 0.01, then:

p(student-knows(B)|student-knows(A)) = p(B) = 0.01
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Furthermore, a topic can have multiple prerequisites, and Bayesian networks support
gathering information about the student’s state of knowledge. Consider the following analogy
between the suggested network structure and a digital circuit built of logical AND gates
with inputs for the prerequisite topics and one output: each gate outputs 1 if and only
if all the inputs are 1, i.e. all the topics are known. Moreover, a single non-functioning
gate/fault, will disable all of the following gates, i.e. not knowing a prerequisite topic means
not knowing any topics building on that. Millán et al. (2000) propose the same knowledge
aggregation idea, as shown in Figure 4.6 (the C nodes represent concepts to be learned, Ts
are the topics, and A is a subject).

Figure 4.6: Knowledge aggregation in a Bayesian network (Millán et al., 2000)

A student may initially know very little about a domain (i.e. have many faults). De
Kleer and Williams’s (1987) research behind their General Diagnostic Engine (GDE) system
is an efficient approach for finding faults, based on the idea of minimizing the number
of measurements (analogously, minimizing the number of questions asked of the student),
by making a series of measurements, each of which maximizes the expected amount of
information gained by that measurement. Technically, minimizing the expected entropy (H)
of the Bayesian network after making that measurement:

H = −Σpi log pi (4.15)

So, after asking a student whether they know topic tn, the weighted sum of the two
possible responses gives us the expected entropy (He):

He(sk(tn)) = p(sk(tn))H(sk(tn)) + p(¬sk(tn))H(¬sk(tn)) (4.16)

where sk is an abbreviation of “student-knows”.

The fact that the number of possible combinations of faults grows exponentially with
the number of components is a serious obstacle faced by the GDE procedure. Fortunately,
the number of possible combinations for student models is far less. The reason for this lies
in the fact that if there is a single faulty node in the learner model, then all subsequent
(partially ordered) nodes must also be faulty (at any one point in time). By comparison, in
an electronic circuit, subsequent nodes need not be faulty, and so there are more cases to
consider.
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4.3.2.1 Learners as sources of information

Having described how Bayesian networks can be used to gather information about a learner’s
knowledge, we now turn to handling the fact that, when it comes to determining their actual
state of knowledge, students are (somewhat) unreliable sources of information.

As seen in the previous section, we shouldn’t ignore the fact that students sometimes make
lucky guesses, sometimes make slips and sometimes even give wrong answers deliberately.
Therefore, an ITS shouldn’t directly update its beliefs about the student’s knowledge using
such information. Consider the prerequisite relationship described above. A single lucky
guess could result in the system believing that the student also knew all the prerequisite
material. Instead, the we should weigh up the available evidence, including the student’s
response, to decide how likely it is that the student knows the correct answer.

Figure 4.7: Modeling an unreliable source of information using a BN (Reye, 2004)

Let’s imagine the simplest possible case, i.e. a domain with only one topic (Figure 4.7).
The learned state is what the system believes the student knows about the topic. The
outcome is the evidence acquired after assessing the student’s knowledge. Finally, the arrow
represents a probabilistic causal relationship (a correct answer is more probable if the student
knows the topic). To see the relationship at work represented as a conditional probability,
assume the following:

1. p(outcome = correct|learned) = 0.95, i.e. the conditional probability of a correct
outcome when in the learned state is 0.95 (allowing for the occasional slip);

2. p(outcome = correct|learned) = 0.20, i.e. the conditional probability of a correct
outcome when in the unlearned state is 0.20 (allowing for lucky guesses);

3. p(learned) = 0.5, the prior probability of the learned state being true is 0.5 (we have
no initial idea as to whether the student knows the topic or not).

A correct response, would set the probability of the learned state to 0.78. Due to the high
possibility of the student’s answer being a lucky guess, the value increases, but not too much.
An incorrect response, on the other hand, would set the learned state to approximately 0.06.
This value is a good indicator that the student doesn’t know the topic, but it still leaves a
little room for the answer being just a slip.
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4.3.2.2 A belief net backbone

As we have seen earlier, the Bayesian network theory puts no constraints on the way beliefs
are linked, apart from the prohibition of directed cycles in the structure. However, an actual
structure must be specified in any system based on a belief network. For intelligent tutoring
systems, Reye (2004) proposes a structure based on three connected ideas:

• a belief net backbone, linking all the “student-knows (topic)” nodes together in a partial
ordering, according to their prerequisite relationships;

• a set of topic clusters, each consisting of a single “student-knows (topic)” node and a
set of additional nodes directly or indirectly influencing the system’s belief that the
student knows the topic;

• a small set of global nodes keeping track of overall student characteristics, e.g. “student-
is-bored()” and “student-overall-aptitude()”.

Figure 4.8: A belief net backbone (Reye, 2004)

The proposed structure is depicted in Figure 4.8. The backbone is represented by the
vertical arrows, connecting the horizontal planes, and each topic cluster is represented by
the nodes in each horizontal plane. The global nodes are not shown for the sake of clarity.
Although the figure may seem confusing at first, a closer look reveals that the basic idea is
much like the one proposed by Millán et al. (2000) seen earlier (Figure 4.6).

4.3.2.3 Two-phase updating of the learner model

After an interaction with a learner, the ILE should revise its beliefs about the student’s state
of knowledge. Although it might seem natural to perform this update as a single process
(representing the simple transition from prior to posterior probabilities), one should keep
in mind that each system - student interaction carries evidence about two important pieces
of information, i.e. the probability of the student knowing the topic before and after the
interaction. In other words, it tells us if the interaction has caused any change in the system’s
beliefs. Therefore, a two-phase updating approach seems more appropriate, where in:



58 Bayesian networks and learner models

1. phase 1 we incorporate the evidence acquired from the interaction (if any), about the
student’s pre-interaction state of knowledge ;

2. phase 2 we calculate the expected changes (if any) in the learner’s state of knowledge
after the interaction.

It is obvious that phase 1 is necessary if we want to acquire information about a topic for
which there has not been any previous interaction with the learner. However, this phase is
also of great importance for gathering information at each interaction, because we must take
the possibility of external factors that can affect the learner’s knowledge into consideration
(forgetting, studying independently etc.).

L0

learned state

Ln-1

learned state

Ln

learned state

On

outcome

Initial state n’th interaction

Figure 4.9: Two-phase updating of the student model (Reye, 2004)

The approach is illustrated in Figure 4.9. Here:

• On is assumed to be an element in a set of possible outcomes (allowed student responses,
e.g. correct or incorrect);

• p(Ln−1) is the prior belief that the student already knows the topic, before the n’th
interaction (where n ∈ N);

• p(On|Ln−1) represents the system’s belief that the student’s answer will be On when
they already know the domain topic;

• p(On|¬Ln−1) represents the system’s belief that the student’s answer will be On when
they don’t know the domain topic.

Now that we have specified the necessary ingredients, given values for each of them, we
can use the Bayes rule to revise the system’s beliefs in p(Ln−1) when outcome On occurs:

p(Ln−1|On) =
p(On|Ln−1)p(Ln−1)

p(On|Ln−1)p(Ln−1) + p(On|¬Ln−1)p(¬Ln−1)
(4.17)



59 Bayesian networks and learner models

If we let γ(On) be the likelihood ratio:

γ(On) =
p(On|Ln−1)

p(On|¬Ln−1)
(4.18)

we can simplify Equation 4.17 to:

p(Ln−1|On) =
γ(On)p(Ln−1)

1 + [γ(On)− 1]p(Ln−1)
(4.19)

Equation 4.19 shows why phase 2 cannot be omitted when updating the learner model.
When p(Ln−1) is 0, then the posterior belief p(Ln−1|On) must also be 0. If there wasn’t a
phase 2, p(Ln) would be the same as p(Ln−1|On) and so would be 0 also, in this case. In a
similar fashion, if p(Ln−1) is 1, then p(Ln) would also be 1. In other words, values 0 and 1
represent absorbing states, without phase 2. As a consequence of this, this equation would
never allow the system to change its belief, if at some point it became convinced a student
did or didn’t learn a topic. Moreover, unless γ(On) is very large, if p(Ln−1) is very close to 0
or 1, then so will be p(Ln). Therefore, using only phase 1 would make it hard for the system
to move away from values close to 0 or 1.

4.3.2.4 Expected changes due to tutoring

In phase 2, in order to model the expected changes in the student’s knowledge as a result
of the interaction we need a formula for p(Ln|On), so, for each possible outcome, On, in
the set of possible outcomes, we can assign a probability to p(Ln). To fully define the node
relationships of the right-hand side of Figure 4.9 (“n’th interaction”), we need two conditional
probabilities for each possible outcome:

• p(Ln|Ln−1, On) – the probability of remaining in the learned state as a result of the
outcome (i.e. the rate of remembering/not forgetting);

• p(Ln|¬Ln−1, On) – the probability of moving from the unlearned state to the learned
state as the result of the outcome (i.e. the rate of learning).

Now we can easily express the revised belief after an interaction as:

p(Ln|On) = p(Ln|Ln−1, On)p(Ln−1|On) + p(Ln|¬Ln−1, On)p(¬Ln−1|On) (4.20)

If, for notational simplicity, we assume that:

• ρ(On) = p(Ln|Ln−1, On), and
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• λ(On) = p(Ln|¬Ln−1, On),

we can simplify Equation 4.20 as follows:

p(Ln|On) = λ(On) + [ρ(On)− λ(On)]p(Ln−1|On) (4.21)

4.3.3 Bayesian knowledge tracing model issues

Beck (2007) pointed out a deficiency of most methods for developing Bayesian Knowledge
Tracing models for specific skills – the identifiability problem, where models with equally
good statistical fit to performance data may make very different predictions about a learner’s
knowledge state, which could result in different numbers of problems to be assigned to a
student. Consequently, the problem could result in under- or over-practice.

To address this problem, Beck and Chang (2007) tried addressing the problem by con-
straining the four basic model parameters by finding a prior probability across all skills, using
three basic approaches, namely, the baseline approach, the bounded guess and slip method,
and the Dirichlet priors. However, their solutions are vulnerable to a different statistical
problem, termed model degeneracy by Baker et al. (2008), where it is possible to obtain
model parameters which lead to paradoxical behavior, such as the probability the student
knows a skill dropping after three correct answers in a row.

A model is considered theoretically degenerate when its guess or slip parameter is greater
than 0.5. A guess parameter over 0.5 signifies that a student who does not know a skill is
more likely to get a correct answer than a wrong one. Similarly, a slip parameter over 0.5
means that a student who knows a skill is more likely to get a wrong response.

A model is deemed empirically degenerate if it fails one of two tests. If a student’s first
n responses are correct, but the model’s estimated probability that they know the skill is
lower than before the n actions, we say the model failed the first test of empirical degeneracy.
Also, if a student gets a skill correct m times in a row without reaching skill mastery, we
assume the model failed the second empirical degeneracy test (the values of n and m are
arbitrary; Baker et al. (2008) consider n = 3 and m = 10 as reasonable cut-off points for the
two tests).

4.3.3.1 Contextual estimation of the guess and slip parameters

Baker et al. (2008) propose a new method for finding two of the four basic parameters,
that differs in estimating the guess and slip parameters for individual actions (i.e. related
to the context), instead of holding them constant for all situations. First, the authors use
history log files from earlier interactions with the student to estimate whether an answer
was a guess or slip, using Bayesian analysis. Second, machine learning methods, such as
linear regression, support vector machines and multilayered perceptron, are used to identify
features of an action that characterize whether that action was a guess or a slip, independent
of subsequent actions. Finally, parameter values are fit for P (T ) and P (L0), for each skill,
using curve-fitting.
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Contextual estimation of the two parameters doesn’t eliminate model degeneracy, but
decreases it substantially. Furthermore, the method leads to significantly higher accuracy
than prior methods, and seems generalizable – the machine-learned model of guess and slip
was trained on only 64 skills, but functioned effectively within all 253 skills it was tested on.



Chapter 5

From Garp3 Models to Bayesian
Network Based Learner Models

In this chapter, we will see how we can move from a Garp3 model to a learner model that
will serve as a basis for interacting with a student. More specifically, as this type of learner-
system discussions in DynaLearn are handled by the QUAGS automatic question generator
for qualitative simulations (Goddijn et al., 2003), which works on a scenario/simulation basis,
we’ll be looking at possible ways to represent scenario specific student knowledge in terms
of a belief network.

We will first show how DynaLearn quiz question generation works in Section 5.1, which
will help us understand the kind of information that’s supposed to flow in an out of the
network. Then, we will take a look at an existing approach proposed by Brielmann (2009),
and discuss the possibilities for improvements (Section 5.2). In Section 5.3, we will see a
proposal for a global architecture our learner model should fit in. We will then describe
the essentials of the belief network structure for individual scenarios, while paying special
attention to knowledge aggregation and some design issues that are specific for the domain of
Qualitative Reasoning (Section 5.4). Finally, we will evaluate the model, discuss the results
and make our final remarks (Sections 5.5 and 6).

5.1 Question generation

Figure 5.1 shows the architecture of the DynaLearn quiz subcomponent. The information
flow starts with the user who constructs and simulates QR models. The information from
these models and simulations is used to construct a Bayesian network. Based on the infor-
mation in the network, i.e. the probabilities of knowing each concept, a question focus is
determined, and a question request is sent to QUAGS. The question generator uses this re-
quest, the information about the models, question templates and a number of criteria (to be
discussed in Section 5.4.1) to output a list of possible questions. A question is selected and
forwarded to the learner. After they provide an answer, the information about the question
and the response is stored in the dialog history, and the belief network is updated.
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Figure 5.1: Dynalearn quiz – question generation

5.2 A learner model based on a Bayesian network for Garp3

In Brielmann’s (2009) learner model, each Garp3 primitive is represented as a node in the
model Bayesian network, where magnitudes, derivatives, dependencies and correspondences
are set to be the root nodes. We’ve already discussed the knowledge aggregation methods
proposed by Reye (2004) and Millán et al. (2000), and Brielmann adopts the same approach
in her model. We can observe the low level concepts as the concept nodes, the quantities as
topic nodes, and entities as subject nodes found in Millán et al.’s paper. That is, in order
for a student to understand an entity, they must know all of its quantities first. In order
to know a quantity, on the other hand, a learner must understand all of the root concepts
directly related to it. The idea is shown in Figure 5.2 for the domain of Tree and shade. We
see that the proportionality and influence nodes both contribute to two upper level nodes,
as each of them carries knowledge about two concepts.

Tree

Growth

Derivative1Magnitude1

Shade

Derivative2Magnitude2

Size

Derivative3Magnitude3I+ P+

Figure 5.2: Tree and shade: Knowledge aggregation

Each root node is connected to an extra child node representing an observation from
a system-learner interaction. This approach makes it possible to include the possibility of
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guesses and slips, as proposed by Reye (2004). This is shown in Figure 5.3 for the same
domain as in network after a single interaction (Brielmann places her root nodes at the top;
in our future discussions, we will still refer to the root nodes as the “low level concepts”, as
shown in Figure 5.2).

Figure 5.3: A learner model network for a small growing tree, 1 time slice/interaction (Briel-
mann, 2009)

As the learner’s knowledge changes over time, after each interaction, the network is
extended by another time slice (Figure 5.4). This lets us collect more than one piece of
evidence for a piece of knowledge and provides us with the means to add the possibility
of the learner learning or forgetting something between two points in time/interactions, as
discussed in Section 4.3.2.

There is a number of key issues not covered by Brielmann’s approach. One of them
is dealing with mathematical dependencies, i.e. inequalities and calculations. The latter
is particularly interesting, as it is more complex than any other relationship in a model.
Furthermore, the approach proposes a solution only for a single scenario. If a model has
multiple scenarios, the system would see it as a completely different domain. This also
means that if a new scenario involves concepts that were already covered by a learner, the
system would have no way of knowing this, and the student would have to answer the same
questions again. Moreover, it doesn’t cover recurring concepts or substructures within the
same scenario. Learning about one instance of a model fragment should imply we have
also learned something about any other instance of the same MF. We will discuss possible
solutions to these, and other issues in sections 5.3 - 5.5.
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Figure 5.4: A learner model network for a growing tree, 2 time slices/interactions (Brielmann,
2009)

5.3 Global architecture

A single scenario/superstate file1 within a Qualitative Reasoning model holds only partial
information about the domain covered by the model. Similarly, a single QR model could be
only a small part of a bigger domain a student’s supposed to cover (take the global warming
amplifier domain and models seen earlier, for example). Therefore, our learner model should
not only be able to handle individual scenarios, as per single examination session provided
by the question generator, but also support moving between scenarios, or even models.

Just like in the problem description, we’ll approach the task bottom-up, i.e. start with
scenarios. Thinking about how not to lose the information acquired from one examination
session when moving to the next scenario, two baseline possibilities immediately seem ap-
propriate. We could either update the information inside the existing Bayesian network
(Figure 5.5), or create a new (global) one, based on the information contained in the previ-
ously created network(s)(Figure 5.6).

The advantage of the second approach over the first one is mainly in the fact that the
individual scenario based BNs are independent, which makes per case belief network handling
much easier. However, this also means that the system would be unaware of the knowledge
gained in the previous scenarios. The first approach, on the other hand, would solve this,

1The structure of superstate files, i.e. QR model simulations represented in OWL, the Web Ontology
Language, as well as the language itself, are given in Appendix A. It is strongly advised to consult the
Appendix for the sake of better understanding of the upcoming discussions.
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Superstate (scenario) #1 Superstate (scenario) #2 … Superstate (scenario) #nSuperstate (scenario) #3

BayesNet #1 BayesNet #2 BayesNet #3 BayesNet #n…

Figure 5.5: Approach 1: The information from one BN is propagated to the next one

but it would also move a lot of excess information from one network to another.

Superstate (scenario) #1 Superstate (scenario) #2 … Superstate (scenario) #nSuperstate (scenario) #3

BayesNet #1 BayesNet #2 BayesNet #3 BayesNet #n…

Model BayesNet

Figure 5.6: Approach 2: The information from each scenario BN is added to a global BN

The advantages/deficiencies of the two approaches bring us to a conclusion that the
optimal solution lies in a combination of the two methods. We know we don’t want to
simply move the knowledge directly from one scenario to another and aggregate unnecessary
information as we move on. Also, trapping the acquired information in a single external
network is definitely not the way to move forward. Therefore, an ideal approach should
store acquired knowledge in an external repository after each examination session, but also
be able to retrieve the necessary information from that source when switching to a new
scenario (Figure 5.7). We’re saying “repository” instead of simply “Bayesian network”,
since one such construct should probably also keep track of the number/type of questions
already asked for each concept, or other session specific information.

When loading a new simulation, the system would compare the concepts occurring in
it with the ones contained in the model knowledge base. It would then create the belief
network for the given scenario and update the information about the concepts the student
has already seen earlier accordingly. The same approach could be easily extended to the
global/domain level, so that the information would flow between a domain knowledge base
(KB) and the individual scenario KBs, as shown in Figure 5.8.
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Superstate (scenario) #1 Superstate (scenario) #2 … Superstate (scenario) #nSuperstate (scenario) #3

BayesNet #1 BayesNet #2 BayesNet #3 BayesNet #n…

Model BayesNet /

Knowledge base

Figure 5.7: Approach 3: The information from each scenario BN is added to and retrieved
from the model BN/KB

Model #1 BN/KB Model #2 BN/KB Model #3 BN/KB Model #n BN/KB…

Domain BayesNet /

Knowledge base

Figure 5.8: Global view: The information from each model BN/KB is added to and retrieved
from the domain BN/KB

5.4 Individual scenarios

Before discussing the structure of the scenario specific belief networks, we need to answer the
following fundamental question: what needs to be learned? The task becomes more complex
once we realize the question is twofold. That is, one needs to keep two perspectives in mind –
that of the learner and one of the system. For instance, suppose the student needed to answer
the following question from the Tree and shade domain: How big is the shade of the tree
going to be by the end of the simulation? 2. The learner could see this as merely a question
about the shade of the tree. However, in the “eyes” of the ILE, this is a specific question
aimed at the concept of Magnitude belonging to the Shade quantity of the Tree entity. This
low level view is what we should pay special attention to, as it holds the essential information
stored in each QR model, as suggested by Brielmann (2009). To determine exactly what

2This is not necessarily what an actual QUAGS question would look like.
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low-level concepts need to be represented in the network structure, we need to see first what
questions can be asked, and what information the answers to questions hold.

5.4.1 QUAGS, questions and answers

The question generator for Garp3 can reduce the total number of possible questions about a
domain to a reasonable number using multiple methods. The general idea is to first restrict
this total by using certain criteria, and then select the most appropriate questions from the
restricted set, according to a different set of criteria (Goddijn et al., 2003).

Setting the scope of the question generator could be slightly out of the scope of this
research, and will not be discussed in detail. What is important, however, is understanding
what the focus of the individual questions can be. A thorough analysis of all QUAGS
question types has produced the following list of low level concepts (to be explained below)
the answers to such questions can hold information about:

1. Magnitudes

2. Derivatives

3. Quantity spaces

4. Influences and proportionalities

5. Inequalities

6. Calculations

7. Correspondences

Each of the items in the above list can be addressed directly by a QUAGS question.
We consider quantities, entities and model fragments high level concepts, as the question
generator can’t ask any direct questions about any of them. Keep in mind, though, that if
the current focus of the question generator was a certain quantity, we would like to track
the student’s knowledge about that quantity. Therefore, we’re not saying high level nodes
should be left out from the network structure.

5.4.2 Dealing with mathematical dependencies

As mentioned in Section 5.2, Brielmann doesn’t discuss the issue of inequalities and equa-
tions. The former doesn’t seem to be difficult to solve, as it involves only two concepts. This
means it can be treated in the same fashion as Brielmann treats influences and proportion-
alities, i.e. as a single root node connected to the related quantities (Figure 5.2).

Equations, on the other hand, involve three quantities and an inequality. One solution
would be to add separate root nodes for the inequality and the calculation. However, consid-
ering the fact that, due to the basic properties of addition and subtraction, the result of an
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equation can become a term in a new equation involving the same concepts (e.g. A+B = C,
but also C−B = A), we should regard QR equations as what they essentially are, i.e. three
way relationships. This means that instead of two, we can add a single root node representing
the equation and connect it to the three quantities involved, as shown in Figure 5.9.

Figure 5.9: Bayesian network substructure for equations

5.4.3 Augmenting the superstate

The superstate file structure can’t support the learner model we have in mind, as it lacks
information about most of the low-level concepts seen above (to be more specific, everything
but influences and proportionalities). Therefore, we start by augmenting the superstate
file to include the missing concepts, in the same fashion these concepts are included in the
full model ontology, i.e. by adding individuals and appropriate relationships between these
individuals.

Moreover, as the naming algorithm wasn’t differentiating between model and simulation
specific concepts, we add a suffix ( s) to the existing owl prefix to be able to tell the difference
between the two types. The shortcoming of the previous method was the fact that the first
appearance of the Shade quantity in a simulation and the model fragment could carry the
same name (e.g. Shade1 ). We’ll see why this is important immediately below.

5.4.3.1 Recurring concepts

Imagine the following setup – in an additional model fragment of the Tree and shade model,
instead of one, we have two trees, where one grows in the shade of the other (bigger) one.
Therefore, the more the big tree grows, the slower will the small tree grow. Formally, this
could be represented by a negative proportionality between the Shade quantity of the big
tree and the Growth quantity of the small one (Figure 5.10). Keep in mind that this third
model fragment would become active only if the scenario setup allowed for it. Now, suppose
in one scenario, this new model fragment activates. In terms of low level concepts seen above,
same forces are at work for both trees, because they are merely instances of the same entity,
that serves as a condition for two other model fragments, that specify the dynamics of the
tree and shade growth process. Going back to the original question, i.e. “What needs to be
learned?”, we realize that what we want to learn about is the Tree entity, and any instances
of this entity should be treated as such. That is, every instance of a concept carries a certain
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amount of information about the generic entity, but the global (model/domain) knowledge
base should keep track only of the generic concepts, as this is what we want to know about.

Tree
Big tree

Tree
Small tree

Casts shade on

Shade Growth rate

Figure 5.10: Tree and shade: Growing in shade model fragment

It should be clear by now why we want to be able to differentiate between the simulation
specific concepts and the full model ones. In other words, any OWL individual carrying a
s suffix is simply an instance of some concept a student needs to learn about. Therefore,
we strengthen this relationship by including a hasInstance property and adding the generic
concept relationships to the superstate file, as shown in the following example:

owl ae Tree v Entity
owl ae Tree1 : owl ae Tree
owl ae s tree1 : owl ae Tree
owl ae Tree1 v ∃ hasInstance.{owl ae s tree1}

The above axioms state that owl ae Tree is a subclass of the Entity class, owl ae Tree1
and owl ae s tree1 are individuals of type owl ae Tree, and owl ae s tree1 is an instance of
owl ae Tree1.

5.4.4 Recurring substructures

The example with two trees seen in Section 5.4.3.1 has accidentally served another purpose
by bringing up a rather interesting question: if a student learns something about one of the
trees, haven’t they learned something about the other one as well? The problem at hand is a
peculiar one, as it suggest the information in such cases should flow both ways. We already
know that loops are not allowed in Bayesian networks. That means that a direct connection
from one instance to another, as shown in Figure 5.11a, wouldn’t work. Another approach,
preserving the guess and slip factor for instance-specific question nodes, would also result in
an illegal Bayesian network structure (Figure 5.11b). Many other options also fail.

Therefore, we avoid the cycle trap through the idea of answer collectors. It should
be noted that this is not a solution to the BN cycle problem, but a workaround. This
approach adds an additional layer to the network, between the low level concepts and the
question (outcome) nodes. The structure in Figure 5.12 shows a low level concept called
PositiveProportionality AH and three of its instances. Each answer collector, as its name
implies, collects answers coming from the outcome nodes and distributes it among all of the
instance nodes. Moreover, the idea of guesses and slips is preserved.
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(a) Direct connection (b) Via question nodes

Figure 5.11: Bidirectional flow of information: illegal BN structures

Figure 5.12: Recurring concept knowledge distribution via answer collectors

5.4.5 Options for updating knowledge

When we compare the above approach and the resulting network structure to the one pro-
posed by Reye (2004), it becomes evident that only the bottom two layers fits the picture
seen in Section 4.3.2. This is sufficient if we want to keep track of a learner’s state of knowl-
edge about a single instance, and independently of any other instances of the same generic
concept. In order to be able to track the learner’s knowledge at both the instance level and
the generic node level, the whole substructure would have to become temporal (dynamic).
This means that, for each interaction/time slice, instead of n additional nodes, we would be
adding a total of 2n nodes, which could result in an explosion in the number of states for a
large number of time slices, and represent a network complexity problem for larger models.

5.4.5.1 Other possibilities

Soft evidential updating – Should we still decide to track only the knowledge about
individual instances, independently of other “duplicates”, we could reduce the number of
additional nodes per time slice even further, i.e. to n/2, by relying on the idea of soft
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evidence.

As Valtorta et al. (2000) explain, evidence is a collection of hard or soft findings on
variables. Whereas a hard finding specifies which value a variable is in, a soft one specifies
a probability distribution of a variable. Soft evidence is a collection of soft findings. The
following example explains this. Suppose that the initial position and direction of an object
are known, and its acceleration is zero. Any future position (P ) of the object can then be
determined by its actual speed (S) according to some probabilistic law. This relationship
can be represented easily in terms of a Bayesian network (Figure 5.13).

Figure 5.13: Position and speed (Valtorta et al., 2000)

Now, suppose we don’t have precise information about the actual speed, i.e. the informa-
tion we have is uncertain. Try thinking of E as a separate agent (sensor) providing us with
an estimate of current speed (Figure 5.14). Therefore, this estimate is a belief, a probability
distribution over the possible values of S. This kind of evidence is called soft evidence.

Figure 5.14: Position and speed with soft evidence about speed (Valtorta et al., 2000)

In other words, instead of saying a concept is simply known or unknown, we could di-
rectly involve uncertainty using soft evidence and, after an interaction, say something is, for
instance, 65% known. Then, by leaving only the question node dynamic, we could mimic
Reye’s (2004) approach by directly setting the probabilities for each time slice, with a con-
trolled level of uncertainty.

No temporal nodes – The last option is to abandon the idea of time entirely (this
doesn’t mean we should ignore the concept of interaction history, though). One way to do
this is to assign multiple question nodes to each concept (i.e. one node for each question).
However, in order to preserve the idea of guesses and slips, and merge the new approach
with the rest of the architecture seen so far, we would need to add another, intermediate
layer (as the direction of the edges pointing to question nodes would have to be reversed).
Figure 5.15 shows what this new substructure would look like for an answer collector with
three questions.

5.4.5.2 How many questions?

An obvious question that remains to be answered is how many questions we need to ask for
each concept in order to mark it as “known”.

Concept types – First of all, we need to be aware of the number of possible question
types the question generator can ask for each concept. This can also serve as a relevance
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Figure 5.15: Multiple questions, no time slices

measure for each concept type. For instance, QUAGS can ask only one question about a
quantity space:

• Which values can Quantity5 adopt?

On the other hand, multiple questions can be asked about magnitudes, derivatives,
(in)direct influences etc. For example, below is a number of possible questions for a di-
rect influence relationship between two quantities:

• Is the influence from Quantity2 on Quantity4 effective?

• Why does Quantity4 decrease?

• Which quantities have a direct influence on Quantity4?

• How does Quantity2 influence Quantity4?

Domain difficulty – What is important regarding the above example is the fact that
even more questions are possible. However, although QUAGS does reduce the number of
possible questions using a number of methods, we should have additional criteria to select
an appropriate number of questions for each concept, or, what’s even more important, each
scenario/model. That is, a tutor would probably want to have a more extensive examination
session with a student for a domain they consider more difficult. When it comes to Qual-
itative Reasoning models, domain difficulty could be measured in terms of model, or even
simulation complexity. However, an appropriate complexity measure would have to be a
relative one, taking into consideration a large library of models, scaling from simple domains
to complex ones. We’re saying “simple” and “complex”, instead of “small” and “large”, as a
large model is not necessarily a complex one, as it may produce a simpler state graph than
a considerably smaller model.

Quantity spaces vs. network size - As only a single question can be asked about
a quantity space, not taking quantity spaces into consideration as separate concepts is also
an option. Each quantity node (both generic and scenario specific) requires adding an
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additional node to represent its quantity space. Therefore, by excluding such nodes, we
would be reducing the size of the network by a number corresponding to the total number of
quantity nodes. As a substitute solution, we could attribute quantity space specific questions
to magnitudes.

5.4.5.3 Low level concept impact

In the simplest setup, we assume each of the low level concept nodes contributes to the
higher level nodes equally. In the example seen in Figure 5.2, for instance, that would mean
that each of the four nodes connected to the Size node would “weigh” 25% in terms of
knowledge. However, one could disagree that the concepts are equally important, and say
that, for example, the knowledge about a magnitude is more important than the one about
an influence. This could be regarded as a matter of preference.

5.4.5.4 Answer collector impact

One might argue that an instance specific answer collector should “share” more knowledge
with the instance it belongs to, i.e. have a little more impact on it than the other collector
nodes. We can try to assign a weight, e.g. X, that will help us distribute the probabilities
less “fairly”. For example, in the above mentioned example with 3 instances, with a fair
probability distribution, the definition table for PositiveProportionality AH1 looks as given
in Table 5.1 (K = Known, U = Unknown).

PositiveProportionality AH1
PP AH1 Answer Collector K U
PP AH2 Answer Collector K U K U
PP AH3 Answer Collector K U K U K U K U

Known 1 0.67 0.67 0.33 0.67 0.33 0.33 0
Unknown 0 0.33 0.33 0.67 0.33 0.67 0.67 1

Table 5.1: CPD table for the PositiveProportionality AH1 node

Therefore, if the instance specific answer collector is known, the algorithm should boost
the probabilities by the amount assigned to the weight variable, and if it is unknown, the
probabilities should be decreased by the same amount. To be more specific, currently, the
probability of a node being known (K) is calculated as follows:

K =
k

N
(5.1)

where N is the number of instances and k the number of known instances. By altering
the distribution process as explained above we get:

1. if the instance specific answer collector is known:

K =
k

N
+

X

N
(5.2)
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2. if the instance specific answer collector is not known:

K =
k

N
− X

N
. (5.3)

We normalize the weight (X/N), so the probabilities get boosted/decreased by a normal-
ized “fraction of knowledge” rather than by a fixed number (we don’t want to add/subtract
the same amount, e.g. 5%, to an instance with 1 and 10 duplicates. The modified CPD for
X = 0.06 can be seen in Table 5.2.

PositiveProportionality AH1
PP AH1 Answer Collector K U
PP AH2 Answer Collector K U K U
PP AH3 Answer Collector K U K U K U K U

Known 1 0.73 0.73 0.39 0.61 0.27 0.27 0
Unknown 0 0.27 0.27 0.61 0.39 0.73 0.73 1

Table 5.2: Revised CPD table for the PositiveProportionality AH1 node

Figure 5.16 depicts this idea. The displayed structure uses the non-dynamic approach
(i.e. a fixed number of questions) shown in Figure 5.15 for the sake of clarity. We can see
that one of question nodes was marked as known. Here, we can also see the guess factor at
work – the reason the answer node right above the question one shows the probability of
99% instead of 100%, as one may expect, is the fact that the probability of a guess is set to
0.01 (i.e. 1%). This further boosts the probability of the instance-specific answer collector to
74% and the probability of knowing that particular instance (PositiveProportionality AH1 )
to 60%. At the same time, the other instances also receive an increase in probability, but
the impact of the external answer collector is slightly less, as expected, so the new value
for each of the duplicates is 57%. Each of the instances contributes equally to the generic
concept, so the probability of knowing PositiveProportionality AH is now 58%.

5.5 Final Bayesian network structure and evaluation

For the sake of evaluating our work, we have chosen the well known Communicating vessels
(also known as the U-tube) model (Bredeweg et al., 2006). It is considerably more complex
than the Tree and shade model, and it has been used on numerous occasions to illustrate
problems and solutions concerning many elementary issues in QR. But, what’s much more
important, it contains a number of issues discussed in this chapter which were not covered
by Brielmann’s approach, including inequalities, equations and recurring substructures.

The domain is represented by multiple containers containing a homogeneous fluid, con-
nected to each other at the bottom by a pipe. If there is more liquid in any of the vessels,
the difference in hydrostatic pressure will make the liquid flow out of the container with
the higher amount of content into the other vessels via the pipe, until it eventually finds an
equilibrium (balances out to the same level in all of the containers). The pressure depends
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Figure 5.16: Answer collector impact with instance specific weights

only on how far the liquid surface is from the bottom of the container (the liquid is acted
upon by gravity), and is not affected by the shape of the container.

We will not discuss all of the model details in this section, as the purpose of getting an
insight into the model is merely to better understand the belief network structure we will
use for evaluation.

5.5.1 Communicating vessels model fragments

The structure and behavior of the communicating vessel system is described by two model
fragments. The Contained liquid MF (Figure 5.17) models a single container with liquid.
The quantities Amount, Height, and Pressure are introduced as consequences of a Liquid
entity, contained inside a Container. Since we know that if Amount changes, Height changes
in the same direction, but so does Pressure, we model these relationships using positive
proportionalities in appropriate directions. Moreover, all of the quantities also have to be in
the same interval at the same time. This is modeled using quantity space correspondences.
Finally there is an equality relation between Height and Pressure.

The second model fragment, named Liquid flow describes the communicating vessels
mechanism for two containers, and is given in Figure 5.18. The Contained liquid MF serves
as a condition twice, i.e. once for each container. A conditional Pipe entity instance connects
the two containers, and introduces the Flow quantity, which, when in the positive interval,
increases Amount in the right container and decreases the one in the left one via a positive and
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Figure 5.17: Communicating vessels: Contained liquid model fragment

a negative influence relationship, respectively. The actual magnitude of Flow is calculated
as the difference between the magnitudes of the two Pressure quantities, i.e. by subtracting
Pressure on the right side from the pressure on the left side. In order for the simulation
engine to be able to determine Flow ’s derivative, the change is described using a positive
proportionality from Pressure on the left hand side, and a negative one from Pressure on
the right hand side. That is, when the pressure of the left container increases, the flow in
the pipe increases as well, and when the pressure in the right vessel increases, the liquid flow
decreases.
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Figure 5.18: Communicating vessels: Liquid flow model fragment

5.5.2 Communicating vessels scenario

We will take only a single scenario into consideration and construct our network based
on it. The scenario is called Both tanks partially filled but left is higher and is shown in
Figure 5.19. It represents two containers, partially filled with oil (magnitudes set to plus),
where the height of the liquid column on the left is greater than the one on the opposite side
(modeled using an inequality relationship).
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Figure 5.19: Communicating vessels: Both tanks partially filled but left is higher scenario

5.5.3 Final Bayesian network structure

The final structure of the Bayesian network for the Communicating vessels model is given
in Appendix B3. We can distinguish five basic node levels/layers in the structure.

The upper half of the network / topmost level contains only nodes representing generic
concepts. The names of these nodes are unique across the scenarios, so we could move the
information from one scenario/network to another, as described in Section 5.8.

Each one of the generic concepts is connected to its instance(s) in the lower (scenario-
specific) half of the network, at level two. For instance, the Pipe entity occurs only once
in the superstate, and, therefore, it has a single instance node representing this occurrence.
The Contained liquid model fragment, on the other hand, “fires” twice due to the structure
of the Liquid flow MF. Hence, each of the Contained liquid concepts at the generic level is
connected to two instances at level two. Moreover, concept dependency at the second level
is represented via direct links, as discussed in Section 5.2.

Each root node instance is connected to an answer collector at level three. If the root
node instance is not unique, i.e. there are multiple instances of the same generic concept,
every answer collector, in turn, is also connected to every other instance of the same concept.

Finally, depending on the structure choice, as seen in Section 5.4.5, the bottom two levels
contain question nodes or question-answer node pairs, i.e. each answer collector bears a con-
nection to either a single temporal question node or multiple non-temporal question/answer
pairs.

3The Figure doesn’t depict the bottom (question/answer) level(s), as this part of the network depends
on the structure choice, as discussed in Section 5.4.5
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5.5.3.1 Implementation choice

Unfortunately, our choice of options was constrained due to a number of bugs, and a lack of
support for certain concepts (at the time of this writing) in the jSMILE API4 the DynaLearn
research group was working with. jSMILE is a platform independent library of Java classes
for reasoning in graphical probabilistic models, such as Bayesian networks and influence
diagrams.

To be more specific, the concepts that could not be implemented were the ideas of tempo-
ral nodes and soft evidence. Therefore, we were left with only one option, namely, to abandon
the concept of time and determine the number of possible question nodes beforehand.

5.5.4 Choice of parameters

Table 5.3 lists the choice of parameters used for evaluation of the network. The prior prob-
abilities of all concept nodes are set to 50%, i.e. the probabilities of a student knowing or
not knowing a topic are the same. Furthermore, we assume that all parent (root) nodes of a
concept contribute equally to the child (concept impact entry). For instance, if an entity has
four quantities, each quantity node will be “worth” 1/4, i.e. 25% in terms of knowledge. The
probability of a learner giving a correct answer, although he doesn’t know it (i.e. guessing)
is 0.1. The probability of answering incorrectly, while knowing the topic (i.e. slipping) is
0.01. Finally, the last seven entries in the table represent an experimental set of choices for
the number of questions per concept, based on the number of possible questions that can be
asked regarding each of those concepts by QUAGS.

Parameter Parameter value
Concept node prior 0.5
Concept impact 1/#parents
Answer collector weight 0.06
Probability of a guess 0.1
Probability of a slip 0.01
Questions per magnitude 5
Questions per derivative 5
Questions per influence 5
Questions per proportionality 5
Questions per correspondence 2
Questions per inequality 2
Questions per calculation 1

Table 5.3: Choice of parameters

4http://genie.sis.pitt.edu/
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5.5.5 Evaluation

We test the network given in Appendix B using the parameters shown in Table 5.35. It is
worth noting that the names of the Appendix B concepts don’t match the names of the same
concepts to be shown in evaluation graphs. The structure given in the Appendix was created
manually and made to be more human-readable. The evaluation graph names correspond
to the internal representation of each concept in OWL, as the network construction process
has been automated. For each evaluation concept name, however, we will indicate which
Appendix concept it corresponds to, for the sake of clarification.

We first evaluate a single root node, see how it’s probability responds to evidence up-
dates, and how this knowledge is propagated to upper level nodes. For each concept we
test, we first visit all of the question nodes once, and arbitrarily add evidence. Then, we
revisit the same nodes, and update any answer that was initially set to be incorrect, to
correct, so the probability of the root node reaches its maximum value (for its answer col-
lector; duplicate instance nodes are affected by other duplicates’ answer collectors, too).
Figure 5.20 shows how the system’s belief of the user’s knowledge of Magnitude s 7 6 and
owl q s flow1 (the quantity the magnitude belongs to) develops across eight learner-system
interactions/questions. As given in Table 5.3, since the node is of type Magnitude, we ask
five questions. The learner gives an incorrect answer to the third question, and the probabil-
ity of both the magnitude and quantity concepts decreases. The remaining two answers are
correct, though, and the probabilities go up. Then, as described above, we “fix” the single
incorrect answer at interaction number six, so the concept of Magnitude s 7 becomes 91%,
which is the maximum value that node can attain, due to the guess and slip factors and
the fixed number of questions (we will discuss this point in Section 6.1). The owl q s flow1
quantity node reaches 56%, which is the maximum probability for that node if there is no
evidence about the other parents of the same node.

The above test shows how the system’s belief progresses when we’re dealing with a single
instance with no duplicates, i.e. only one answer collector. Next, we observe the behavior of
a quantity instance which is not unique, namely, owl q s amount1 7 through it’s magnitude,
i.e. Magnitude s 3 (Figure 5.21). As the first four answers are all wrong, the probability of
knowing the magnitude goes down to only 24%. Meanwhile, the probability of knowing the
quantity it belongs to drops down to 45%, and the second instance of the Amount quantity
decreases slightly less, i.e. to 46%, due to the answer collector impact parameter. Then,
the remaining question is answered correctly, and the examination session is extended by
another four interactions, so all of the answers are fixed. The magnitude concept gets to 72%

5At the time of evaluation, the DynaLearn environment, i.e. QUAGS, wasn’t ready for testing. To be
more specific, automatic question focus selection and question generation were not possible. Therefore, we
chose to simulate parts of an examination session, manually selecting the focus, and updating the concepts
(simulating learner’s answers) arbitrarily.

6Appendix B: Magnitude s 7 = Magnitude F low; owl q sf low1 = Flow1
7Appendix B: Magnitude s 3 = Magnitude Amount1; owl q samount1 = Amount1; owl q samount2 =

Amount2
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Figure 5.20: Learning chart for the flow quantity’s magnitude

after interaction number nine, which is the maximum it can reach, as the second instance
holds the remaining knowledge. At the same time, owl q s amount1 increases to 54%, and
the second instance to around 53%, which is now slightly less, but again, due to the answer
collector impact.

Instead of a root node, we now turn the focus to a whole quantity, namely, owl q s flow1 8.
We test all concepts related to the quantity9 using the same method as seen above, and
watch the system’s belief about both the parent nodes and the child develop. We also see
the system asks a single question about Minus s 1, as the quantity is part of the equation
seen in Figure 5.18. The probability of knowing the quantity slowly progresses towards the
maximum (91%).

In Figure 5.23 we show the results of a session focusing on the quantity owl q s amount1 10.
We test all quantity related concepts, and show the results for both the quantity and the
second instance of the Amount quantity (owl q s amount1 ). We see that as the probability

8Appendix B: Derivative s 7 = Derivative F low;Minus s 1 = Calculation PPF ; NegativeInfluence s 1
= NegativeInfluence FA;PositiveProportionality s 5 = PositiveProportionality PF ;
NegativePropotionality s 1 = NegativeProportionality PF ;PositiveInfluence s 1 = PositiveInfluence FA

9Here, we’re not considering quantity spaces as separate concepts, as proposed in Section 5.4.5.2.
10Appendix B: Derivative s 3 = Derivative Amount1; QuantitySpaceCorrespondence s 1 =

Correspondence AH1; PositivePropotionality s 1 = PositiveProportionality AH1
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Figure 5.21: Learning plot for the amount quantity’s magnitude

of knowing first instance increases, so does the probability of understanding the second one,
only at a slightly slower rate. The breaking point is at question number 24, where the sys-
tem’s belief about the second instance stops changing. This is due to the fact that questions
24–28 are related to the concept of NegativeInfluence s 1, i.e. the negative influence rela-
tionship between the quantities Flow andAmount (Figure 5.18). This information is only
Liquid flow model fragment specific and, as such, carries no information about the second
instance of the Amount quantity.
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Figure 5.22: Learning plot for the flow quantity and related concepts
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Figure 5.23: Learning plot for the amount quantity and related concepts



Chapter 6

Conclusion

We have managed to move from the general knowledge tracing method proposed by Corbett
and Anderson (1995) and later embodied as a belief network by Reye (2004), following the
path of Brielmann (2009), to a successful approach to learner modeling in the context of
Qualitative Reasoning. In summary, Brielmann’s idea was first taken to a higher level with
the proposal for a global architecture and tracing the learner’s knowledge state across scenar-
ios and models. Then, at a lower level, a more detailed approach was taken to constructing
the learner’s knowledge in terms of a belief network. We have seen more concepts that need
to be taken into consideration while collecting information about a learner’s understanding
of a domain. We have also seen how to deal with uncommon structures, such as mathemat-
ical dependencies, but also how to move knowledge between recurring substructures. The
possibilities for updating knowledge and determining the number of questions that need to
be asked have also been discussed. Also, we tackled the idea of the impact that instance
specific questions should have on their instance nodes and the duplicates of that node. Fi-
nally, the applicability of the approach was proven as we saw the system build up its belief
about a learner’s state of knowledge of different parts of a QR model, during a simulated
evaluation session.

6.1 Discussion

Brielmann’s approach was considerably improved, as many fundamental issues related to con-
structing a Bayesian network from a Qualitative Reasoning model were successfully solved.
However, the evaluation of our work was partially hampered by external factors. Therefore,
we were unable to thoroughly test the original idea that included the concept of time. The
alternative approach showed a lot potential. It provides the system with the means to suc-
cessfully gather information about a student’s understanding of a domain. Still, it appears
some obstacles need more work, whereas some others seem to be impossible to overcome.
For instance, selecting an appropriate number of questions per concept type beforehand
needs to be further investigated, as it can depend on many factors. On the other hand, the
lack of temporal nodes makes it impossible to see the learner’s knowledge of any concept go
above a limit set/constrained by the guess and slip parameters. Moreover, Reye’s idea of
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learning/forgetting rates also had to be left out.

6.2 Future work

Although the progress made with this approach is considerable, there is still plenty of room
for future work. One obvious improvement is implementing and testing the alternative
methods for updating a user’s knowledge (both temporal nodes and soft evidence). This
would solve the above mentioned problems regarding the maximum probability that can be
achieved for any node, and learning/forgetting rates. Another idea from Reye’s approach is
a proposal for global nodes. Ideas such as a student’s aptitude or boredom, however, require
more (larger) models and more thorough examination sessions. Also, the idea of different
concept types carrying different amounts of information should be given more attention.

We could/should also keep track of the student-system interaction history. More specif-
ically, on the learner’s side, we could track the types of questions being asked (so we don’t
ask the same question multiple times), or track the user’s overall progress. On the system’s
side, we would gain information such as which parts of a model, or which models students
are having problems with, and therefore have an indication of a concept difficulty or model’s
complexity (which could in turn help us adjust the concept impact or set the number of
questions we would like to ask). Ideally, this approach should work in sync with the global
architecture, which is also yet to be implemented, tracking the users and interactions across
scenarios and models.

Another topic that should be investigated further is the idea of “landmarks”. For in-
stance, certain model fragments have conditions, such as a specific quantity value that needs
to be reached in order for the MF to get activated. This information appears to be crucial,
and, as such, should be properly represented in the learner model.

With these ideas in mind, and the current state of work on understanding the process of
learners gaining and constructing conceptual knowledge of system behavior, the DynaLearn
project is provided with the necessary means and a strong foundation for future research.
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Appendix A

Sharing and Reusing Qualitative
Reasoning Knowledge

To be able to store, share and reuse models and model fragments within a community building
qualitative models, a format needs to be defined that allows the exchange of these fragments
via the Internet. One such language would need to have a clear, well-defined syntax, a
formal semantics and provide sufficient expressive power, efficient reasoning support and
convenience of expression.

A.1 OWL

Description Logics (DL; formerly known as Terminological Systems or Terminological Log-
ics) are a family of knowledge representation languages based on first-order logic (FOL).
Revolving mainly around concepts (entities), roles (relationships between the entities) and
role restrictions, DL were created in attempt to switch from the frame and network sys-
tems which lacked formal semantics to a logic-based approach to knowledge representation
(Baader et al., 2004). As DL are based on FOL, concepts in DL can be seen as unary predi-
cates, while roles can be thought of as binary predicates. The increasingly popular DL family
members SHIQ and SHOIN are both extensions of DL ALC (Attributive Language with
Complement), so we will illustrate Description Logics through this language.

DL ALC allows concepts, concept hierarchies, role restrictions and the Boolean combina-
tion of concept descriptions. The terminological knowledge consisting of concept definitions
in an ALC knowledge base is represented in the TBox, whereas the ABox holds the asser-
tions about the actual individuals. In Description Logics, concept expressions are variable
free; an FOL expression denoting the intersection of two concepts, i.e. saying we would like
to consider only the individuals belonging to both concepts, for instance, C and D, written
as C(x) ∧ D(x), in DL would be represented simply as C u D. In the TBox, the concept
axioms can be of the form C v D (C is subsumed by D; the extension of C is a subset of
the extension of D) or C ≡ D (meaning C v D and D v C). Furthermore, we can build the
concept descriptions according to the following syntax rule:



91 OWL

C,D −→ A (atomic concept)
> (universal concept)
⊥ (bottom concept)
C u D (intersection)
C t D (union)
¬ A (negation)
∃ R.C (existential restriction)
∀ R.C (universal restriction)

It is worth noting that the more advanced DL family members support additional con-
structors, such as the cardinality restrictions, as we’ll get to see later on. We define a formal
semantics of the concepts by considering an interpretation domain ∆I and an interpretation
function which to each atomic concept A assigns a set AI ⊆ ∆I and to each atomic role R
a binary relation RI ⊆ ∆I × ∆I . Hence, we can extend the interpretation function to the
concept descriptions seen above by the inductive definitions shown below.

>I = ∆I

⊥I = ∅
(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(¬ A)I = ∆I \ A
(∃R.C)I = {x ∈ ∆I | ∃y.(x,y) ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x ∈ ∆I | ∀y.(x,y) ∈ RI → y ∈ CI}

Now assume we want to express that a mother is a person who is a female and at the
same time has a child which is also a person. In DL syntax, we write this as:

Mother ≡ (Person u Female) u ∃ hasChild.Person

The OWL Web Ontology Language was created in need of a language that could overcome
the limited expressivity of RDF and RDF Schema, but at the same time combine their power
with a full logic language (Horrocks et al., 2003; Antoniou and van Harmelen, 2004). The
Semantic Web vision is to “build on XML’s ability to define customized tagging schemes and
RDF’s flexible approach to representing data” (W3C, 2009). OWL makes use of the fact-
stating ability of RDF and the class and property structuring capabilities of RDF Schema1,
but adds more to the Web document semantics through an ontology language that can
formally describe the meaning of terminology used in those Web documents. In order to

1For the sake of saving some space in this thesis and discussing more important issues, we will not indulge
in describing the structure and properties of RDF or RDF Schema in detail. For more information, please
consult either Horrocks et al. (2003) or Antoniou and van Harmelen (2004).
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fulfill the ontological requirements we have already mentioned, but also find a compromise
between expressiveness and tractability, the W3C’s Web Ontology Working Group defined
three different “species” of OWL: OWL Lite, OWL DL and OWL Full1. Since each of the
sublanguages is basically a syntactic extension of its simpler predecessor, each legal ontology
in OWL Lite is a legal OWL DL ontology. Also, every valid OWL Lite conclusion will be
valid in OWL DL as well. Moreover, the same relationships hold for OWL DL and OWL
Full.

We’ve already mentioned that OWL builds on RDF and RDF Schema. Therefore, it
uses RDF/XML syntax. However, this syntax is not very readable. Take for instance the
following extract from a university ontology OWL file, defining the property teaches :

<owl:ObjectProperty rdf:about="#teaches">

<rdfs:range rdf:resource="#Course"/>

<rdfs:domain rdf:resource="#TeachingStaff"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

To solve this problem, other syntactic forms have been defined, including an XML syntax
which doesn’t follow the RDF conventions and is easier to read. We will use OWL abstract
syntax to illustrate OWL DL (the abstract syntax is not defined for OWL Full).

OWL Abstract Syntax DL

Class( Professor partial TeachingStaff) Professor u TeachingStaff

ObjectProperty(isTaughtBy domain(course)
range(TeachingStaff))

> v ∀ isTaughtBy−.course
> v ∀ isTaughtBy.TeachingStaff

Individual (John type( Professor )) John : Professor

Class(mathCourse partial restriction
(isTaughtBy hasValue (John)))

mathCourse v ∃ isTaughtBy.{John}

The expressions in the above table describe that Professor is a subclass of TeachingStaff
and that a course can be taught only by a teaching staff member. Moreover, it says that
John is a professor and that he teaches a math course.

1The details and differences of each of the languages will not be discussed here, as such a discussion would
be out of the scope of this thesis. For more details please consult Baader et al. (2004).
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A.2 Qualitative Reasoning models and simulations in OWL

The ordering of the QR vocabulary in an OWL class hierarchy is shown in Figure A.1 (Liem
and Bredeweg, 2006). The graph shows the taxonomy of the QR model ingredients. Both
QR concepts and relations are included, as the latter are reified (treated as classes). Since
every class in the taxonomy is a possible ingredient of a qualitative model, the topmost class
is called QualitativeModelIngredient. The model ingredients are split into two class sets,
namely, BuildingBlock and Aggregate. Separate model ingredients belong to the former,
while the latter describes collections of related model ingredients. As qualitative models
describe both the structural and the behavioral aspects of systems, the building blocks
are further divided into the sets Structural building blocks, Behavioural building blocks,
and AssumptionType (section 8.1). As assumptions do not describe inherent aspects of the
system, they are considered to be separate.

It is clear that ordering the QR vocabulary in a class hierarchy is not enough to formalize
the whole domain of Qualitative Reasoning in the Web Ontology Language. Data properties,
such as has xposition on screen, make sure the same look and feel of each model is preserved
after it’s exported to OWL. Object properties ensure the relationships between concepts from
Garp3 are maintained for each of the ingredients. Take the following quantity-specific axioms,
stating that each quantity has a single magnitude and a single derivative, for example:

Quantity v ∀ hasMagnitude.Magnitude
Quantity v = 1hasMagnitude
Quantity v ∀ hasDerivative.Derivative
Quantity v = 1hasDerivative

A.2.1 Representing models

One can think of a model specific OWL ontology as an augmented version of the QR vocab-
ulary ontology. Each model ontology imports the QR ontology as a “foundation” on top of
which model specific concepts are added. These concepts come in terms of subclasses and
individuals. For instance, a new model fragment in the MF hierarchy is added to the QR
vocabulary class hierarchy, as depicted in Figure A.2 (extracted from the Tree and shade
model).

On the other hand, model fragment and scenario specific occurrences of concepts are
added as individuals. For example, the Size quantity in the Tree and shade model is added to
the class hierarchy as a subclass of the Quantity class. However, each of the three occurrences
of this quantity (one in each model fragment, and one in the scenario) are added as individuals
and named (owl q )Size1, Size2 and Size3.

A.2.2 Representing simulations

Storing an entire state graph in a single OWL ontology doesn’t really seem as a very prac-
tical solution. Therefore, a different approach is taken. The so called superstate file can be
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Figure A.1: The QR ingredient taxonomy defining the QR vocabulary (Liem and Bredeweg,
2006)
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Figure A.2: Tree and shade MF hierarchy in OWL

observed as an intersection of all states in the simulation graph, not taking into considera-
tion magnitudes and derivative assignments, but also (in the early stages of this research)
excluding a few other important ingredients, such as model fragment information, corre-
spondences, inequalities and calculations. Equation A.1 explains this idea in a more formal
fashion, where sn are individual states, and N is the total number of states.

S =
N⋂

n=1

sn (A.1)

The superstate file inherits the QR vocabulary class hierarchy and the state graph inter-
section is given in terms of a set of common individuals. It is worth noting that the original
state of the superstate file is insufficient to support the learner model discussed in Chapter 5.
Some improvements are given in Section 5.4.3.



Appendix B

Communicating Vessels: The
Bayesian Network

The final structure of the Communicating vessels Bayesian network is given in the figure
below. A detailed description of the structure can be found in Section 5.5.3.
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